INVERSION OF TOEPLITZ MATRICES II*

BY
HarorLp Wipom

1. Introduction

With a function ¢(68) € Ly (0, 27), 0(0) ~ 2 2 ¢ €*°, is associated the semi-
infinite Toeplitz matriz T, = (Cit)ogiicw . Incase  |c| < o, T, repre-
sents a bounded operator on the space I5; of bounded sequences

X'_—{x(),xla }a

and in [1] a necessary and sufficient condition was found for the invertibility
of T, (i.e., the existence of a bounded inverse for T,), namely that ¢(6) 5= 0
and A_rco<r arg ¢(8) = 0. If ¢(8) € Lo, T, represents a bounded operator
on the space I3 of square-summable sequences, and in §3 of [1] sufficient con-
ditions were obtained for invertibility in this situation.

The purpose of the present paper is to obtain conditions which are neces-
sary as well as sufficient for invertibility of 7', as an operator on l. That
the situation is quite different in the I} and I3’ cases can be seen, for instance,
from the fact that in the former, the set of ¢ for which 7', is invertible forms
a group, while in the latter we may have T, invertible but 7,2 not (Corol-
lary 2 of Theorem IV).

As in all problems of Wiener-Hopf type, and this is one, the basic idea is
a certain type of factorization. In our case, the idea is that of writing 7',
as the product of triangular Toeplitz matrices (which amounts to a factori-
zation of ¢), the question of invertibility for these being simpler since any
two triangular Toeplitz matrices of the same type commute. Thus, roughly
speaking, if ¢ is sufficiently nice, we can factor T, and then invert each factor,
thus obtaining the inverse of T',. This gives rise to sufficient conditions for
invertibility, as in [1, §3]. Now in the I} theory it turned out that the ¢’s
for which this could be carried out were exactly those giving rise to invertible
Toeplitz matrices; thus the invertibility of 7, implies the existence of a
suitable factorization of ¢. It is the content of Theorem I of the present
paper that this situation prevails also in the I3 case. From this result we
easily settle the invertibility question for triangular and self-adjoint Toeplitz
matrices.

For general Toeplitz matrices we have been unable to find a simple cri-
terion for invertibility; there is one however (Theorem IV) in case arg ¢(8)
is reasonably well-behaved.

Before proceeding, we introduce some notation. For f(6) e L,(0, 27),

Received August 28, 1958.
1 This work was supported by a grant from the National Science Foundation.

88



INVERSION OF TOEPLITZ MATRICES II 89

1Sp = o, f(0) ~2 2 ar e’ weshall say thatf e L} (resp. L) if ay = 0
for k < 0 (resp. k > 0). Thus f e L means there exists an F(z) belonging
to H, of the unit circle [3, Chapter 7] such that F(¢”) = f(6) pp., and
f(6) e Ly means f(6) e L}.

For f e L, Cf will denote the conjugate function of f,

1 o 1
Cf(w) = — PVf 7(6) cot = (0 — 0) do pPp;
2m o 2
Mf will be the mean of f,
1 27
mf = o [ 16 as;

and the operator P is defined by
(1) Pf = 3(f + Mf + i Cf).

If fe L, with 1 < p < o, then also Cf € L, , and the Fourier series of Cf is
the conjugate series of the Fourier series of f [3, §7.21]. It follows that if
F(0) ~ D % ar €™’ then Pf(0) ~D % ax ¢*’:thusfor1 < p < o, P projects
L, onto L}.

Throughout this paper ¢(8) will be bounded, and T', will be considered an
operator on lf. Now I is imbedded in a natural way in the space I of
square-summable doubly infinite sequences X = {--« , xy, %0, 21, +--}. If
we define the isomorphism U: l; — L in the obvious way, then Ulf = L7
and UT, W™ = Pyp. (Here Py means, not P applied to ¢, but the operator
consisting of multiplication by ¢ followed by P; ambiguities of this sort will
appear occasionally but should cause no difficulty.) The Toeplitz matrix
T, and the operator Py may therefore be discussed interchangeably.

2. A general theorem

TuaroreMm I. A necessary and sufficient condition for the tnvertibility of T,
is the existence of functions ¢4 (0) and ¢_(0), in L3 and Lz respectively, such
that

(a) (6) = ¢4(0)e—(0);
(b) 1/poseLli and 1/o_e¢Ls;

(¢) forfeLs, Sf = o7 Po= feLs, andf— Sfis a bounded operator on
L.

We first prove the conditions sufficient for invertibility of 7, , or equiva-
lently that of Pg; in fact we shall show that S, when restricted to Li is just
(Po)™". Letfe LY. Then

(2) PoSf = Po_Pe”' f = Pf — Pp_(I — P,
where I represents the identity operator. Now ¢ = ¢ (I — P)¢~' felLsi,
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and Mg = 0. Tt follows from this that Pg = 0. For let 0,,(6) be the Fejér
means of g(6). Then clearly Ps, = 0 for all n. Since o, — ¢ (L), we have
Po, — Pg (L) forany pin 0 < p < 1[3, §7.3 (ii)]. Thus Pg = 0, and
(2) gives PpSf = Pf = f since f e L. Since PeS is a bounded operator,
we have PpSf = f for all f e L3, i.e., S is a right inverse for Pp. To show
that S is also a left inverse, again let f e LE . We have

SPef = ¢7' Poy [ — o5 PA\Z'(I — P)ef.

By an argument similar to the one above, we see the second term on the
right is zero; moreover since ¢, f e L3, we have Po, f = ¢4 f, and the first
term on the right is f. Consequently SPof = f for f e L, and so for f e L3.
Thus 8 is a left inverse for Py, and the sufficiency is proved.

To prove the conditions necessary, assume T is invertible, and denote the
inverse matrix by (Sjr)o<jk<w . Define

O = Zlgmin(j,k) Sj—1,0 So,k—1 ;
we shall prove

(3) D0 Chk Oki = S0 O h,j = 0.

Note that since > 5 | s |° < o for each k, and ) r | s | < o for each
7, similar statements hold for o , so the left side of (3) converges absolutely.
We have

0 0
Zk=0 Ch—k Tkj = Zk:(y Ch—k Zlgmin(k, 7) Sk—1,0 So,j—1
el oo
= Zk=0 Ch—k Z 1< gk Sk—1,0 S0,5-1 + Zk=;‘ Ch—k Sk—j,0 S0

j—1
= ZLO So,j—1 Z;f;l Cht Sk—1,0 T+ Z;:;j Ch—k Sk—3,0 Soo

(4) = Z]l:(% 80,1 Zl?=.0 Ch—tomt Sko + Zla;o Ch—j—k Sk So0 -
Now since (s;;) is the inverse of T, = (c¢;_x), we have
(5) D R0 Chk Sk = Dm0 Shk Chg = Ouz h,1 = 0.

Thus if j < h, the inner sum of the first term of (4) is always zero
for 0 =1 £ j — 1, so the entire first term is zero. Moreover the second
term is 8y Soo . This proves (3) in case j < h.

To obtain the result for j > h, we note that by (5)

o0 ]
0 = D 70 S0s Clmjh = Chji So0 Zl=1 Clth—j—k S0l ,

SO
D0 Ch it S0 S00 = — D i Sk0 Dyt Clphj—t SO1
(6) = —D 71 801 D nm0 Ciyh ik Sko

j—k ]
= —Zz.—.1 So1 Zk=o Clyh—j—k Sko

j—1 o
= —Zl=h So, j—1 Zk=0 Ch—1—Ik Sko -
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Now if j > h, we see from (5) that the outer summation in the first term
of (4) may begin with I = h, so we have just shown that the sum of the
two terms of (4) is zero, which verifies (3) in the case j > h. We must still,
however, justify the step leading to (6), this being not completely trivial.
Let W(2) = X mosw? for |2| < 1. Then

) 21

2 Seo T Crn—jk = §1— / W(re ")p(0) 77 ¢ dp.

k=0 T Jo
Since

(2)

Limeor ¥ (re ()™ = W (e )p(0)e M’
(note that ¥(z) e H, and ¢ e Ly,), we have
lim,a 25 l D0 S0 Crpnii(7t — 1) I2 = 0.
Consequently,
DR S0 Do k0 Copnik = HM,1_ D5y S0r D oreeo Sk0 Crpnj 7

. ) k © ) )
= lim,1— Zk=0 Sko T Zl=1 Clth—j—k So1 = Zk=0 Sko Zz=1 Clh—j—k Sol

since the last series converges. This completes the justification of (6) and
therefore the proof of (3).
It follows from (3) and the invertibility of 7', that

(7) Ok = 800 Skj -
Next we show that sp 5% 0. Assume s = 0; then by (7), ax; = 0 for
all k, j. Assume s = -+ = Sopq = 80 = -+ = 810 = 0. We shall

show sy, = 8,0 = 0. Fori = n,
0 =90, = Zkgn Si—%,0 So,n—k = Si0 Son .

If sp. # 0, we would have s;0 = 0 for ¢ = n. Thus we would have s;,p = 0

for all 4, i.e., the first column of the invertible matrix 7', consists entirely of

zeros. Since this cannot be, we must have s, = 0. A similar argument

shows s,0 = 0. But now we have proved by induction that s, = s, = 0

for all n, which again cannot be. Thus our assumption sp = 0 was incorrect.
Introduce the functions

Yi(0) ~ Do swe™,  Yo(0) ~2ioswe
belonging to Li and Lz, respectively. We have, for j = 0,
‘/’+(0)P‘//—(0)3H0 = ‘/’+(9)Zi=o Sok 6i(j_k)o
= 27;0 S0 6“6 ZLO 80, j—k eiko
=2 0™ Dokgimsn S0.iok Snko

(8) = Z:@Lo Onj eino = Soo Z:S:o Snj eina
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by (7). But if S denotes the inverse of Py as an operator on L%, we have
saj = (8¢, ™),
50 e’ = D% 4 s,;¢™’. Therefore by (8)
Vi (O)PY_(8)e" = s Se'™, jz0,

from which we conclude ¥, Py_f = sy Sf for any trigonometric polynomial
feLf. To prove this for an arbitrary f e L3, let {sy} denote its sequence of
partial sums. Then since S is a bounded operator

(2) 2)
(9) So0 Sf = Lim.yoee Soo S8y = LMy ¥ PY— Sy .
Now since ¢_ € Ly, we have
1)
l.i.m.N_,m II/_ SN = II/_f,
so that
(p)

l.i.m.N_,w Pll/_ Sy = Pl//_f

for any p < 1. (This follows easily from [3, Theorem 7.24 (i)].) There-
fore, for a suitable subsequence N’,

Pgl/_f = limN/_,w Pll/... SNt .
We obtain from (9) therefore that

(10) s Sf = ¢4 PY_f, feLf.
Setting f(#) = 1 and applying Pp to both sides of (10), we obtain

s = Py Py_ . Since Py_ is a constant (nonzero since sy # 0), so is

Pgy, . Thus

(11) e els.

Now the adjoint of P is Py (since that of T, is T;), and that of ¥ Py_
(which we know to be bounded by (10)) is ¢_ Py, . Therefore

(Pe)($— PY)f = swf, feLi.
Setting f(8) = 1 we see as above that Pay_ is a constant, so ¢_ € Lz ; hence
(12) o e Lf.

Since ¥_ €Ly, (11) gives oy v_eLi, and since ¢, eLi, (12) gives
ov.y_eLi. Hence oYy ¥_ = «, a constant. Since S 5 0, we have ¢ # 0
and ¥_ # 0, from which it follows that neither ¥, nor y_ is zero on a set of
positive measure. (In fact ¢ ¢ L7 implies log | ¢ | e Ly [2].) Since, more-
over, ¢ # 0, we deduce @ # 0. Applying (10) to

f =Dy = Po(ey)™ = a 'Peyy,
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we obtain

swo Yy =Yy PY_PYT =y
Therefore o = sy, and so
(13) Y = So .

Finally, set ¢(6) = ¥4(8)" and ¢_(6) = so¢_(6)"". (11)-(13) show
that ¢4(8) and ¢,.(6) " are in LT, that ¢_(8) and ¢_(8) " are in Lz, and that
¢ = ¢4+ ¢ . Thus conditions (a) and (b) of the theorem are satisfied. As
for (¢), we know from (10) that for some constant A we have

lexPe=flls = A f:s felLf.
For general f € L,

i PeZ f = o' Pe”'Pf + o' Pe” (I — P)f = ¢i'Pe”'Pf
by the argument used in the proof of sufficiency. Thus
I ex Pe=flle = [ e Pe=Pflla = A | Pflle S A (S ]l2,
and this completes the proof.
CoroLLARY. If T, is invertible, then 1/¢ € L., .

Proof. It suffices, in view of Theorem I, to show the following: If ¢,
Yy e Ly are such that ¢, Py, represents a bounded operator on L., then
Y1,¥2eL,. LetfeLs, $2(0)f(0) ~D P ¢*®. Then forn > 0

C—inOP‘p?(o)f(B)einﬁ ~ ZI:;—n a eikO’

S0 e_i"oP%(())f(B)ei"o — ¥2(0)f(0) in Ly as n — «. By choosing a subse-
quence we have convergence pp. Then

| ¥1(8) Pea(0)F(0)e™" | — | ¥1(8)¥=(0)£(6) | pp.

| Y1(0) Pya(0)F(8)e™ |2 = A || f(0)e™ |l = A || £ |2

for an appropriate A. It follows from Fatou’s lemma that ¢y s fe Ly and
l¢rdaflla = A|[f]lz. This holds for all fe Ly, so ¢1,¥2 € Ly .

But

3. Special theorems

LemMma 1. If either ¢y € Ly or o2 e Ly, we have Ty, Ty = Topp, -
P2 192

Proof. Let ¢i(8) ~ S ace™ o(8) ~ D bee™. Then T,, T,, has j, k

entry
Z?;o aj1bi.

If either az = O for k > 0 or b, = 0 for £ < 0, the summation may begin
with I = — . Thus the 7, k entry of T,, T,, is

Zﬁ_w aj1bi = Z;;-oo aji-1br,
which is the (7 — k)™ Fourier coefficient of ¢; ¢ .
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TuroreMm I1.  Let ¢ € L (resp. Ly). Then T, is invertible if and only if
1/¢ € LE (resp. L), in which case T,' = Ty, .

If ¢, 1/¢ € L (resp. L), then by Lemma 1 we have T, Ty, = Ty, T, = I,
so the sufficiency is proved. To prove necessity, we shall assume ¢ e L7 , the
result for L, following by taking adjoints. With ¢,(8) and ¢_(6) as in
Theorem I, we have ¢g; = ¢_. Since ¢ eL: and o' e Lf, we have
¢o7' e Lf. Moreover ¢_ e L;. Thus ¢¢7' = ¢_ = a, a nonzero constant.
Then ¢ ' = o ‘¢ e L§. Since, by the corollary to Theorem I, ¢ ' € Ly ,
we have ¢ " e LY.

TaeoreMm III. Assume ¢ is real, i.e., T, ts self-adjoini. Then T, is in-
vertible if and only if either ess sup ¢ < 0 or ess inf ¢ > 0.

If, for example, ess inf ¢ = m > 0, we have for f e LT,

(Pef, ) = (ef, ) 2m IS5,

so that Pg is positive definite and therefore invertible.

Suppose now that T is invertible, and let ¢, , ¢_ be as given by Theorem
I. Then since ¢ is real, p1o_ = @,0_, or _ ¢y = ¢_&;. The function
on the left belongs to LT, and that on the right to L7. Thus each is a constant
. Theny¢_ = apy,50¢ =¢_ ¢, = a|p, [*. Therefore either ess inf ¢ = 0,
or ess sup ¢ < 0. But since 1/¢ € L, equality cannot occur.

The following series of lemmas leads to invertibility eriteria for T, in case
¢ possesses a sufficiently well-behaved argument.

Lemma 2. If ¢ e LT and Ry € Lo, , then ¢, e’ el

Proof. Let ¥(z) in H; of the unit circle be such that ¥(e'®) = ¢(6). The
Poisson integral representation shows that ®¥(z) is bounded in | 2| < 1, so
¢=*® belongs to H, , which yields the conclusion of the lemma.

LEMMA 3. Assume ¢ = ¢y ¢y, where ¢y, o1, o2 € Lo , and there may be de-
fined an arg ¢1(0) which belongs to L. and whose conjugate function belongs to
Le,. Then T, and T,, are equivalent, i.e., T, = UT,, V for invertible U, V

Proof. Setloger = log || + 7arg ¢r ;
log ¢1(0) ~ D r o a €™’
A simple computation shows
2RP log o1 = log | @1 | — Carger + Rao,
so ®RP log ¢; is bounded. Since
®RU — P)loger = log | e | — ®P log ¢,
this is also bounded. Set

Yy =exp (Ploge), ¢ =exp ((I — P)loge).
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It follows from Lemma 2 that ¢, , ¢i' eLs and ¢_, ¢~ eLs. Since

¢ = ¥_e2 ¢, Lemma 1 gives T, = Ty_T,, Ty, , and by Theorem II, Ty_
and Ty, are invertible.

Lemma 4. If 1/p € Ly, Ty and Tegn o are equivalent.

Proof. We write ¢ = |¢|sgne, which is a factorization satisfying the
conditions of Lemma 3 since we may take arg | ¢ | = 0.

It follows from the lemma that we may restrict our attention to ¢ of abso-
lute value 1. We shall assume that arg ¢(6) is smooth except for a finite
number of jumps. Next to a constant, the simplest such function is

J(8) = 0 — 2n[6/2x].

Thus J(8) = 6 for 0 = 6 < 27 and has period 27; it is continuous except
for a jump of —27 at 8 = 0 (mod 27).

Lemma 5. Let 6., ---, 0, be distinct (mod 27), ou, ---, a, real with
law| <3 (k=1,---,n). Thenif

‘P(o) = exp (127?;1 g J(0 — Ok)),
T, is tnvertible.

Proof. Set
<P+(0) - H (1 _ ei(ﬂ——ok))ak’ @—(0) — e—iwzak H (1 _ e—i(o—ok))-—ak,
Jo=1 k=1

where the convention —x/2 < arg (1 — €'°) < 7/2 makes the powers un-
ambiguous. That ¢(0) = ¢.(0)e_(8) (except possibly for 6 = 6,, --- , 6,)
is easily verified. Now ¢,(8) is the boundary function of

&, (2) = kII_1 (1 — ze Pr)or, lz] <1,

and both ®,.(z) and &,(2)”" belong to Hy. Therefore ¢.(6), ¢.(0)" ¢ L3.
Similarly ¢_(8), ¢_(6)"" ¢ Lz, so we have verified conditions (a) and (b) of
Theorem I; (¢) remains. Since o7 '¢=" = ¢ " € Ly , it suffices to show ¢ Pe.
is a bounded operator, or, by (1), that ¢;'Ce, is a bounded operator. For
almost all w

o (@) = o1 () o PV [ 0, (0)1(6) cot ) (o — 0) do

-l i ‘P+(0>___ _1_w— fw
=5 <¢+(w) 1>f(0) cot2( 9) df + Cf(w),

where in the last integral the PV has been dropped since the integrand is in
L. We know [|Cf|| £ ||fll. (A norm without a subscript will mean

Ly-norm.) Moreover
|£(0) | d8 H < {fohfo” e:(0) _

e+ (w)

fh ¢+(9) _
]

e+ (w)

1

"o dw}m TiE
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Therefore, since
1 2 2 2
COtﬁ(w_o) —(w—0+w—-0—21r+w—-0+27r)
is bounded for 0 < w, 6 < 2, it suffices to prove

F 000 (i ramp) o] <4

which reduces to inequalities for three integrals. We consider the first, the
others being entirely analogous. The relevant inequality is implied by one
of the form

‘/.211' g(w) dw f2r

holding for all nonnegative f, g € Ls .
For any finite index set L we have

M+ =1+ > Ila,

or, replacing & by & — 1,

IMa—-1= > IlG&-1.

keL KCL;K#0 keK

o (0) f(6)
o) 1| L0 w=a1s) 1al

In our situation L = 1, --- , n, and

1 — T(0—05)\ @
£k = <_1 ei(w—ok) )
— €
so it suffices to prove, for each nonempty K C L, an inequality of the form

[a [T tem) - 1| (2w = a1l 1ol

Split the interval (0, 27) into subintervals I w1th 6, in the interior of I ;
then split I, into Ix", Iy , I with 6, in the interior of It. Then it suffices to
show that for each m, m' e L, — 1 < ¢, & = 1,

0= [y | (b)) — 1|2 ms 4151 101,

Case 1. The intervals I%,, I.. are not adjacent. Then 1/|w — 6] is
bounded, and

1_6'5(0——01,;) ay $0—0,) | —lam (w0 —lamr

keK 1~ e““""’”

S0

054 [ A [ @ s Aol 11
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Case 2. The intervals are adjacent but m’ 5 m. In this case, no 6
touches IZ u I%: . It follows that

1 — 6w
1 — eile—br)
is continuous on I5, X IS and is in fact 1 + O(] w — 6|) there. Conse-
quently
L — O\
(14) Q(m) —1’=0(lw—0|)

on Il X I ,s0Q < Allf gl

Case 3. The intervals are adjacent and m’ = m. If m¢K, there is a
bound of the type of (14) on I, X I%, and Q =AUl lgll- We as-
sume therefore that m ¢ K. Then

ez [ g [ |(Fobem) 1| 1w
iy fo”gl(w) do f:’ G _"_z:> ORI,

lw—0]
where we have set @ = am, and

f(0+0m), 0+0m61m7 g(0+0m)7 0+ Oneln,
J1(6) = 91(0)

0, otherwise, 0, otherwise.

By symmetry it is clear we may assume « > 0. We next use a device sug-
gested by H. Pollard. We change variables:

1 _eiuw 3
os4[ fay hsasen, (ii-—e—) = 1 Aluelgi(e) do.
Now J ¢ (u—1)
1_ezuw 1_61u—w
mg‘— = \—l:eT éA!u—-H

for0 < w < 2m, 0 < uw < 2w. Therefore

1—6““"”_1 <fAlu—ll for all «,
1 — e = \A(u —1)* foru= 2.
Thus

Tuw\ a
I<w<g2m - -
|u - 1 I O<uw<2T e“"

< Af du/o<w<21r Ji(uw)gi(w) dw

<uwl2wT

1/2 1/2
é A j(; du {j:)<uw<2r fl(m)2 dw} {‘/‘;<w<2r gl(w)2dwj
— A0S0 Wl [ ™ au=alsl gl

filuw)gi(w) do
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l_eiuwa
(Tff) -1
< 4150 ol [ gy = 4151 Nl

This completes the proof of Lemma, 5.

Call a periodic function f(8) nice if it is continuous and either

(a) f(0) has an absolutely convergent Fourier series, or

(b) the modulus of continuity w(8) of f(6) is such that w(8)/8 is integra-
ble near § = 0.

and similarly

filuw)gi(w) dw

fw *
= fo<w<2r
2 u—1 I<uw<2r

TuroreM IV. Assume 1/¢ € L., and that there may be defined an arg ¢(6)
which is continuous except for jumps at 6, , - -+ , 6, (mod 27). Defining

ar = (1/27) {arg ¢(6+) — arg ¢(6x-)},
assume that the continuous functzon
H(8) = argo(8) + D i an J(6 — 6)

is nice. Write ap = B + vi, where By is an integer and —% < i < 3.
A necessary condition that T, be invertible is that each vi < 3. If this holds,
then

(1) D Bk = 0 implies T, invertible;

(il) 2. B8k < 0 implies T, is one-one with range a subspace of deficiency
=22 B
(ii1) Z Br > 0 tmplies T, is onto and has null space of dimension > Be.

By Lemma 4 we may assume |¢ | = 1. Consider first the case when each
v < 1. We have ¢ = ¢; 2 93, Where
iH (0 —i 6—6 - -0
<P1(0) — eH( ), (P2(0) = ¢ i 2B5J ( k)’ ¢3(0) = ¢ pLTNAC k)'

By Lemma 3 (using the fact that H nice implies CH bounded) T, is equiva-
lent to T, 4, . Since each B is an integer, 8x(J(6) — 6) is an integral multi-
ple of 2= for all 6, so

02(0) = ¢ "FPH0 20 — gonstant e’

where we have set

n = “Zﬁk~

Thus if we denote by e, the function whose value at 6 is ¢'*’, T, is equivalent
to T, o, - Lemma 5 tells us that 7', is invertible. Thus we have (i). If
n > 0, we have by Lemma 1

Al Al
7%9’3 = T«’z qeny
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the operator T, being one-one with range of deficiency n. Similarly n < 0
gives
Ten en = Ten T¢3 )

and 7., is onto and has null space of dimension —n. Therefore (ii) and (iii)
are proved.

To show T, is not invertible if some v, = %, we approximate by nonin-
vertible matrices. Assume first that ) 8 = 0, and for small positive & set

0.(0) = cxp (dlarg ¢(0) — £2 20 J(0 — 6)]),
so that

arg ¢.(0) = arg (8) — €21 J(8 — 6.

Denote by oy the jumps of arg ¢.(8) with corresponding 8% , v% . Sincear > ay
we have 8f = B forall k, and 8§ > B, if yx = 3. Therefore D 8 > 0. Since,
for small enough &, no y; = 1, we may apply (iii) to conclude that T, is not
invertible. Since ¢. — ¢ uniformly as ¢ — 0, T,, — T, in norm, so 7, is
not invertible. A similar argument takes care of the case Y 8, < 0.

CoroLLARY 1. Assume ¢(0) is nice and ¢(8) = 0. Set

n = (1/27)Aococar g (0).
Then

(i) n = 0 wmplies T, invertible;
(i) n > 0 smplies T, is one-one with range a subspace of deficiency n;
(iii) n < 0 emplies T, s onto and has null space of dimension —n.

Proof. 1If arg ¢(6) is continuous for 0 < 6 < 2, it has a jump of —2wn
at § = 0. Thereforey = 0,8 = —n, and H(0) = arg ¢(0), where we have
set ¢(0) = @(8)e*"’. The result will follow from Theorem IV if arg ¢(0)
is nice, and so certainly if log ¥(8) is nice. In case ¢ has an absolutely con-
vergent Fourier series, so does ¢, and since A arg ¢ = 0, log ¢ has an ab-
solutely convergent Fourier series (see [1], Lemma of §2) and so is nice.
If the modulus of continuity of ¢ is w(8), then that of log ¢ is at most Aw(8).
Thus in either case ¢ nice implies log ¢ nice.

CoRrROLLARY 2. There ts a ¢ such that T, is tnvertible while T,z is not.
Proof. We need only take ¢(6) = ¢’ (0 < 6 < 2r) where } < a < 1.
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