BOOLEAN RINGS AND BANACH LATTICES1

 \mathbf{BY}

B. J. EISENSTADT AND G. G. LORENTZ

1. Introduction

Let X be a Banach lattice of measurable functions. If $\chi_e \in X$ is the characteristic function of a set e, $\Phi(e) = \|\chi_e\|$ is a function defined on a certain Boolean ring of sets. In this paper we consider the following problem. If a function $\Phi(e)$ is given on a Boolean ring B, what are the conditions under which B can be imbedded into a vector lattice X and Φ extended into a norm on X? Under what conditions on Φ is it possible to postulate some additional properties of X? Answers to such questions are given in Sections 2, 3, 5. This leads in Section 6 to a natural generalization of certain spaces introduced by one of the authors [4] under the name of spaces Λ . We consider abstract Boolean rings B and correspondingly functions in the sense of Carathéodory [3]. The reader may substitute for this, if he so wishes, Boolean rings of sets and point-functions. This substitution would not lead to any simplification of the proofs.

2. Extension of a multiply subadditive function into a norm

Let B be a Boolean ring, i.e., a distributive, relatively complemented lattice with zero element (a Boolean ring is a Boolean algebra if and only if it contains a unit). Let $\Phi(e)$ be a real valued function defined on B. We will discuss extensions of B into a vector lattice S such that unions of disjoint elements of B become sums, intersections become products, and the order is preserved, and at the same time extensions of Φ into a seminorm on S.

The smallest extension of B of this kind is the vector lattice S of step-functions. The elements of S are formal sums $x = \sum_{k=1}^{n} a_k e_k$ (where e_k is also the characteristic function of the set e_k) with an obvious identification rule (see [5], [3]).

A seminorm P(x) on a vector space satisfies the following relations:

(a)
$$P(x) \ge 0$$
, (b) $P(ax) = |a| P(x)$,
(c) $P(x_1 + x_2) \le P(x_1) + P(x_2)$.

Other natural conditions for P(x) are

(d)
$$P(x) \le P(y)$$
 for $0 \le x \le y$, (e) $P(|x|) = P(x)$.

THEOREM 1. (α). A real valued function Φ on B has an extension P onto S which is a seminorm (we call such Φ norm-generating) if and only if Φ satisfies

(i)
$$\Phi(e) \leq \sum_{k=1}^{n} |a_k| \Phi(e_k) \quad \text{for } e = \sum a_k e_k, \quad e, e_k \in B;$$

Received June 7, 1958.

¹ Presented to the American Mathematical Society, August 23, 1956. This work was supported in part by the National Science Foundation.

there is a maximal extension of this type. (β). The function Φ has an extension P which satisfies (a)-(c) and (d) or (e) if and only if Φ is norm-generating and increasing:

(ii)
$$\Phi(e_1) \leq \Phi(e_2) \qquad \qquad for \ e_1 \subset e_2 \,,$$

or, alternatively, increasing and multiply subadditive:

(iii)
$$p\Phi(e) \leq \sum_{k=1}^{n} \Phi(e_k) \quad \text{whenever} \quad pe = \sum_{k=1}^{n} e_k.$$

Proof. (a) The necessity of the condition is obvious. If it is satisfied, we first conclude (applying it to the representation e = e - e + e) that $\Phi(e) \ge 0$. Put

(1)
$$P_0(x) = \inf \sum_{k=1}^n |a_k| \Phi(e_k),$$

where the infimum is taken for all representations $x = \sum a_k e_k$ of x with $e_k \in B$. Clearly P_0 satisfies (a)-(c), and (i) implies that P_0 is an extension of Φ . If P is any seminorm which satisfies $P(e) \leq \Phi(e)$ for $e \in B$, then for $x = \sum a_k e_k$, $P(x) \leq \sum |a_k| \Phi(e_k)$; hence $P(x) \leq P_0(x)$.

(β) Condition (ii) is necessary for (d). It is also necessary for (e), since if $e_1 \cap e_2 = 0$, (e) and (c) imply

$$2\Phi(e_1 + e_2) = P(e_1 + e_2) + P(e_1 - e_2) \ge P(2e_1) = 2\Phi(e_1).$$

Assume now that (i) and (ii) hold. We define for $x \ge 0$

(2)
$$P_1(x) = \inf \sum_{k=1}^n a_k \Phi(e_k) \quad \text{for } x = \sum a_k e_k, \quad a_k \ge 0,$$

$$(3) P_1(x) = P_1(|x|), x \in S.$$

From (i) we see that $P_1(e) = \Phi(e)$, $e \in B$, and it is clear that P_1 satisfies (a)–(c) (with $a \ge 0$ in (b)) on the cone C of positive elements of S. If $0 \le x \le y$ and $y = \sum a_k e_k$, $a_k \ge 0$, there exists a representation [2, p. 19]

$$x = \sum_{k,l} a_{kl} e_{kl}, \quad a_{kl} \ge 0, \quad \sum_{l} a_{kl} \le a_k, \quad e_{kl} \subset e_k.$$

Hence by (ii)

$$\sum_{k,l} a_{kl} \Phi(e_{kl}) \leq \sum_{k} \Phi(e_k) \sum_{l} a_{kl} \leq \sum_{k} a_k \Phi(e_k)$$

and $P_1(x) \leq \sum a_k \Phi(e_k)$, so that $P_1(x) \leq P_1(y)$. Thus P_1 satisfies (d) on C, and hence (a)-(e) on S. Also P_1 is the *largest* extension of this kind. In this proof we used the condition (i) only with $a_k \geq 0$. It follows that this special case of (i) is equivalent to the general case, if (ii) is assumed. But this is also equivalent [5, p. 457] to (iii). This completes the proof.

We conclude by remarking that the extension P is a norm if and only if

(iv)
$$\Phi(e) > 0 \qquad \text{for } e \neq 0.$$

3. Norms additive for covariant elements

We shall now discuss functions Φ which possess an extension P additive for certain positive elements of S. Let $x = \sum a_k e_k$, $a_k \ge 0$. There exists an extension P with the properties (a)-(e) and

$$(4) P(x) = \sum_{k=1}^{n} a_k \Phi(e_k)$$

if and only if (4) is true for the seminorm P_1 instead of P, in other words, if and only if

(5)
$$\sum_{k=1}^{n} a_k \Phi(e_k) \leq \sum_{l=1}^{m} a'_l \Phi(e'_l)$$
 whenever $\sum a_k e_k = \sum a'_l e'_l, \quad a'_l \geq 0.$

For if there is an extension P satisfying (4), then

$$P_1(x) \leq \sum a_k \Phi(e_k) = P(x) \leq P_1(x).$$

Each positive element x of S has a representation

$$(6) x = \sum_{k=1}^{n} a_k e_k, a_k > 0, e_1 \supset \cdots \supset e_n,$$

which is unique if the e_k are assumed different. Two positive functions x(t), y(t) are covariant if the differences x(t) - x(t') and y(t) - y(t') have always the same sign. Two positive elements x, $y \in S$ are covariant if there exist representations $x = \sum a_k e_k$, $y = \sum b_l f_l$ of type (6) in which all e_k , f_l are comparable in B.

We now ask whether an increasing, multiply subadditive $\Phi(e)$ has an extension which is additive for covariant elements. As a necessary condition we have

(7)
$$\sum_{k=1}^{n} a_k \Phi(e_k) \leq \sum_{l=1}^{m} a'_l \Phi(e'_l)$$
 for $\sum a_k e_k = \sum a'_l e'_l$, $a_k \geq 0$, $a'_l \geq 0$, $e_1 \supset \cdots \supset e_n$.

This condition is also sufficient. We prove more, replacing (7) by the simpler condition (v), which is implied by (7).

THEOREM 2. (a). An increasing function Φ on B has an extension P on S which satisfies (a)-(e) and is additive for covariant elements if and only if Φ is concave, i.e., satisfies

$$\Phi(e_1 \cup e_2) + \Phi(e_1 \cap e_2) \leq \Phi(e_1) + \Phi(e_2).$$

(β). A concave increasing function Φ is multiply subadditive. (γ). If the desired extension exists, it is given by $P_1(x)$ of Section 2.

Proof. If Φ satisfies (v), we first prove that

(8)
$$\sum_{k=1}^{n} \Phi(e_k) \leq \sum_{l=1}^{m} \Phi(e'_l) \quad \text{if } \sum e_k \leq \sum e'_l, \quad e_1 \supset \cdots \supset e_n.$$

From (v) we derive $\Phi(e_1' \cup e_2') \leq \Phi(e_1') + \Phi(e_2')$ and the subadditivity property

 $\Phi(e) \leq \sum_{1}^{m} \Phi(e'_{l}) \qquad \text{if } e \subset \bigcup e'_{l}.$

This is (8) with n=1; we prove (8) by induction on n. Let $\sum_{1}^{n} e_{k} \leq \sum_{1}^{m} e'_{1}$, $e_{1} \supset \cdots \supset e_{n}$. We put

$$g_l = e'_l \cap (e'_1 \cup \cdots \cup e'_{l-1}); \quad f_l = e'_l - g_l, \quad l = 1, 2, \cdots, m.$$

Then the f_l are disjoint, and $\bigcup f_l = \bigcup e'_l \supset \bigcup e_k = e_1$. Multiplying $\sum_1^n e_k \leq \sum_1^m f_l + \sum_2^m g_l$ with e_1 we obtain

$$\sum_{1}^{n} e_k \leq e_1 + \sum_{2}^{m} g_l,$$

so that $\sum_{i=1}^{n} e_{i} \leq \sum_{i=1}^{m} g_{i}$, and by the induction hypothesis,

(9)
$$\sum_{k=2}^{n} \Phi(e_k) \leq \sum_{l=2}^{m} \Phi(g_l).$$

Next we have by (v)

(10)
$$\Phi(e'_1 \cup \cdots \cup e'_l) \leq \Phi(e'_1 \cup \cdots \cup e'_{l-1}) + \Phi(e'_l) - \Phi(g_l),$$

$$l = 2, \cdots, m.$$

Adding (9) and all relations (10) we obtain

$$\sum_{i=1}^{n} \Phi(e_k) + \Phi(e'_1 \cup \cdots \cup e'_m) \leq \sum_{i=1}^{m} \Phi(e'_i),$$

which implies (8). If a_k , a'_l are all rational in (7), this inequality reduces to (8). Finally, in the general case, we have only to approximate the a_k by rationals from below, the a'_l by rationals from above, and pass to the limit.

Since (7) implies (i) and (iii), we see that Φ is norm-generating and multiply subadditive.

It remains to show that if $P_1(x)$ is defined by (2), then $P_1(x+y)=P_1(x)+P_1(y)$ for covariant positive $x, y \in S$. Writing $x=\sum a_k e_k$, $y=\sum b_l f_l$ in form (6), we arrange the e_k , f_l to obtain a single decreasing sequence $g_1 \subset \cdots \subset g_{n+m}$. If c_l denote the corresponding a_k or b_l , we have

$$\sum c_i \Phi(g_i) = \sum a_k \Phi(e_k) + \sum b_l \Phi(f_l) = P_1(x) + P_1(y).$$

This completes the proof.

4. Extension of Φ onto a complete Boolean ring

We now assume that the Boolean ring B is contained in a σ -ring \mathfrak{B} where countable unions and intersections are defined. A subring B^* of \mathfrak{B} is relatively σ -complete if each sequence $e_n \in B^*$ with $e_n \subset e \in B^*$ has $\bigcup_{n=1}^{\infty} e_n \in B^*$. In what follows, Φ always will be a strictly positive increasing multiply subadditive function on B. Our purpose is to imbed B into a relatively σ -complete B^* and to extend Φ into a function Φ^* on B^* which has some continuity properties. We say that Φ is σ -subadditive on B if

(vi)
$$\Phi(e) \leq \sum_{1}^{\infty} \Phi(e_n) \quad \text{whenever } e, e_n \in B, \quad e \subset \bigcup_{1}^{\infty} e_n.$$

Also, Φ is multiply σ -subadditive if

(vii) $p\Phi(e) \leq \sum_{1}^{\infty} \Phi(e_n)$ whenever $e, e_n \in B$ and e is covered p times by the e_n .

The last statement means that if g_n is the maximal element covered p times by e_1 , \cdots , e_n (g_n is obtained from the e_1 , \cdots , e_n by finite intersections and unions), then $e \subset \bigcup_{n=1}^{\infty} g_n$.

Theorem 3. There exists a multiply σ -subadditive extension Φ^* of Φ onto a relatively σ -complete subring B^* of \mathfrak{B} , $B \subset B^*$, if (and only if) Φ satisfies (vi) on B.

Proof. Let B_0 be the set of $f \in \mathfrak{B}$ which admit a covering $f \subset \bigcup_{1}^{\infty} e_n$, $e_n \in B$, and put

(11)
$$\Phi^*(f) = \inf \sum \Phi(e_n), \qquad f \in B_0,$$

where the infimum is taken for all possible coverings. Let B^* be the subset of $f \in B_0$ with $\Phi^*(f) < \infty$. Only the fact that Φ^* is multiply σ -subadditive on B^* requires a proof. From the definition of Φ^* it follows that we have only to prove (vii) in case $e \in B^*$, $e_n \in B$. If $g_n \in B$ is the largest element covered p times by e_1, \dots, e_n , then by the multiple subadditivity of Φ , $p\Phi(g_n) \leq \sum_{1}^{\infty} \Phi(e_k)$. Also by (vi), $\Phi(g_m - g_n) \leq \sum_{n=1}^{\infty} \Phi(e_k)$. Combining this with $\Phi(e) \leq \Phi(g_{n_1}) + \sum_{1}^{\infty} \Phi(g_{n_{k+1}} - g_{n_k})$, and taking n_k sufficiently rapidly increasing, we obtain (vii).

In the same way we can prove:

(12) If $f_n \in B^*$ increase, and $\Phi^*(f_m - f_n) \to 0$ for $n, m \to \infty$, then $f = \bigcup_{n=1}^{\infty} f_n \in B^*$ and $\Phi^*(f - f_n) \to 0$.

The order relation \subset defines order convergence [1, p. 50] on B. We shall call a function Φ order continuous if order convergence $e_n \to e$ implies $\Phi(e_n) \to \Phi(e)$.

Theorem 4. Let Φ be an increasing multiply subadditive function on B. There exist a relatively σ -complete ring B_0^* , $B \subset B_0^* \subset \mathfrak{B}$, and an order continuous extension Φ^* of Φ onto B_0^* if and only if Φ satisfies (vi) and

(viii)
$$\Phi(e_{n+p} - e_n) \to 0$$
 if e_n , $e \in B$, e_n increase, and $e_n \to e$.

Proof. The necessity of the condition is obvious. To prove the sufficiency, we take B_0^* to be the subring of B^* of all $f \in B^*$ with the property that for each $\varepsilon > 0$ there is a representation

$$f = e + \varphi - \psi$$
 with $e \in B$, $\varphi, \psi \in B^*$, $\Phi^*(\varphi) < \varepsilon$, $\Phi^*(\psi) < \varepsilon$.

The main difficulty is to prove that if $f_n \, \epsilon \, B_0^*$ are increasing, and $f = \bigcup_{1}^{\infty} f_n \, \epsilon \, B^*$, then $\Phi^*(f - f_n) \to 0$. We can write $f_n = e_n + \varphi_n - \psi_n$. The elements $\bar{e}_n = \bigcup_{k=1}^n e_k$ increase and are contained in $e_0 + \psi$, with $e_0 \, \epsilon \, B$, $\Phi^*(\psi) < \varepsilon$, if the φ_n , ψ_n are chosen properly. For the $\bar{e}'_n = \bar{e}_n \cap e_0$ we have (viii). Then the relations between the \bar{e}'_n , \bar{e}_n , f_n imply $\Phi^*(f_{n+p} - f_n) < 2\varepsilon$ for all large n, and the desired conclusion follows from (12).

Remark. One sees easily that if B is relatively σ -complete, then (viii) is equivalent to

(ix)
$$\Phi(e_n) \to 0$$
 if $e_n \in B$ decrease and converge to 0.

We mention some examples. The outer Lebesgue measure μe of subsets

e of [0, 1] satisfies (i)-(vii), but not (viii). Another example is the function $\Phi(e) = \sup_n \mu(e \cap E_n)$, where $E_n = (2^{-n}, 2^{-n+1})$, $n = 1, 2, \cdots$, which satisfies all conditions (i)-(ix) except (v).

5. Extension of S into a Banach lattice

Let B, \mathfrak{B} , Φ have the same meaning as in Section 4; B in addition is relatively σ -complete, and Φ and B satisfy the first half of (12). P is a norm which extends Φ onto S and satisfies (d) and (e). We wish to imbed S into a Banach lattice X and to extend P into a norm of X. The possibility of this extension is discussed in Theorem 5 below; it is interesting to note that this possibility depends only on the properties of Φ and not on the mode of extension of Φ into P.

A Banach lattice is a Banach space and a vector lattice in which the norm has the property that $|x| \le |y|$ implies $||x|| \le ||y||$ (from this also the continuity of the lattice operations follows).

Theorem 5. (α) . There exists an extension of S into a Banach lattice X such that B is a closed sublattice of X and of the norm P of S into the norm of X if and only if Φ satisfies (vi). In this case X can be taken relatively σ -complete. (β) . There is an extension of S into a Banach lattice such that order convergence implies norm convergence if and only if in addition Φ satisfies (ix).

Proof. We show that the condition (vi) is necessary. Let $e \subset \bigcup e_n$ and

$$\sum \Phi(e_n) < \infty. \text{ We put } \bar{e}_n = e \cap \bigcup_{1}^n e_k; \text{ then}$$

$$\parallel \bar{e}_{n+p} - \bar{e}_n \parallel \leq \sum_{n+1}^{n+p} \Phi(e_k) \to 0;$$

hence e_n converges in norm to an element $x \in X$. From

$$0 \le \|(\bar{e}_n - x) \cup 0\| \le \|(\bar{e}_{n+p} - x) \cup 0\| \le \|\bar{e}_{n+p} - x\| \to 0$$

we see that $(\bar{e}_n - x)$ \cup 0 = 0, $\bar{e}_n \leq x$. Since $\bigcup \bar{e}_n = e$, we have $\bar{e}_n \leq e \leq x$; hence $\bar{e}_n \to e$. Therefore $\Phi(e) = \lim \Phi(\bar{e}_n) \leq \sum \Phi(e_k)$.

Sufficiency is proved by a direct construction of X. A positive real function x (see [3]) is a map $x(\alpha)$ from the positive reals into B such that $\bigcup_{a>\alpha} x(a) = x(\alpha)$. Functions x_1 , x_2 are disjoint if $x_1(\alpha)$, $x_2(\alpha)$ are disjoint for each $\alpha > 0$. Arbitrary real functions are differences of disjoint positive functions. We now define for $x \ge 0$

(13)
$$||x|| = \sup_{0 \le \bar{x} \le x} P(\bar{x}), \qquad \bar{x} \in S,$$

and put ||x|| = || |x|| for an arbitrary function x. Then X is the set of all x with $||x|| < \infty$. Only the proofs of the subadditivity of the norm and the norm completeness require some care. In the first proof, the following device is used. For each $x \ge 0$, ||x|| may be approximated by the norm of a special element $0 \le x' \le x$ which does not take arbitrarily large or arbitrarily small positive values, and ||x'|| in its turn by the norm of an element $\bar{x} \in S$, $\bar{x} \ge x'$.

The subspace S is not always dense in X. This can be true even for all extensions P of a norm-generating function Φ . For example, if $x(t) = 2^n$ on E_n , $n = 1, 2, \cdots$ in the last example of Section 4, then $x \in X$, but $||x - \bar{x}|| = 1$ for each $0 \le \bar{x} \le x$, $\bar{x} \in S$.

6. Spaces Λ_{Φ}

The phenomenon just described cannot happen for a certain class of spaces which we shall discuss now. Let X be a Banach lattice of functions on a relatively σ -complete ring B; this implies by definition that $x \in X$ if $0 \le |x| \le y$, $y \in X$. Let the norm on X be additive for covariant functions. In particular, for this norm the function $\Phi(e) = ||e||$ will satisfy (v). We shall show that for $x \ge 0$, $x \in X$

(14)
$$||x|| = \int_0^\infty \Phi(x(\alpha)) \ d\alpha.$$

Let x_n be defined by $x_n(\alpha) = x(n + n^{-1})$ for $\alpha > n$, $x_n(\alpha) = x(\alpha + n^{-1})$ for $n^{-1} \le \alpha \le n$. Then $x - x_n$ and x_n are covariant; hence $||x - x_n|| = ||x|| - ||x_n||$. The x_n increase and $x_n \to x$; therefore $||x_n|| \to ||x||$, $||x - x_n|| \to 0$. Each x_n can be approximated uniformly by elements of S. It follows that S is dense in X. Moreover we have $||x|| = \sup ||\bar{x}||$ for the elements $\bar{x} \in S$ of the form

$$\bar{x} = \sum_{k=1}^{n} a_k x(a_1 + \cdots + a_k), \qquad a_k > 0.$$

This gives

$$||x|| = \sup \sum a_k \Phi(x(a_1 + \cdots + a_k)) = \int_0^\infty \Phi(x(\alpha)) d\alpha.$$

For a given concave Φ , the Banach lattice of all functions with the norm (14) is called a space Λ_{Φ} . We obtain in this way

THEOREM 6. Let X be a Banach lattice of functions on B with order continuous norm. Then X is a space Λ_{Φ} if and only if the norm in X is additive for covariant functions.

Spaces Λ considered in [4] were of the following type. Let x(t) be measurable functions on a measure space S with a countably additive measure μ . We select a nonnegative measurable function $\varphi(t)$ and put

(15)
$$||x|| = \sup \int_{s} \varphi x' \ d\mu,$$

where the supremum is taken for all functions x'(t) equimeasurable with x(t). It is fairly easy to see that the space $\Lambda_{\varphi,\mu}$ with the norm (15) is a space of type Λ_{Φ} . The converse is not in general true. However we can find necessary and sufficient conditions for Φ in order that Λ_{Φ} have a concrete representation as a space $\Lambda_{\varphi,\mu}$. The tools of this proof are: a theory of equimeasurable functions for arbitrary measure spaces, and theorems similar to those of

D. Maharam [6] about the representation of a function $\Phi(e)$ in form $\Phi(e) = F(\mu e)$, where μ is a measure. We hope to come back to these results in a separate publication.

REFERENCES

- G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloquium Publications, vol. 25, rev. ed., 1948.
- N. BOURBAKI, Intégration, Chapitres I-IV, Éléments de Mathématique, Livre VI, Paris, 1952.
- 3. C. Carathéodory, Mass und Integral und ihre Algebraisierung, Basel and Stuttgart, 1956.
- G. G. LORENTZ, Some new functional spaces, Ann. of Math. (2), vol. 51 (1950), pp. 37-55.
- 5. —, Multiply subadditive functions, Canadian J. Math., vol. 4 (1952), pp. 455-462.
- D. Maharam, The representation of abstract measure functions, Trans. Amer. Math. Soc., vol. 65 (1949), pp. 279-330.

WAYNE STATE UNIVERSITY
DETROIT, MICHIGAN
SYCRACUSE UNIVERSITY
SYRACUSE, NEW YORK