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1. Introduction
Recently [1, 2] we discussed the curved shocks in three-dimensional steady

gas flows. In that discussion formulas were derived which make possible the
determination of the derivatives of velocity, density, pressure, and entropy
behind the shock surface when the flow in front is known. Furthermore the
explicit determination of the vorticity components behind the shock was
made. That led to the formulation of a general theorem regarding the char-
acterization of surfaces behind which the flow will remain irrotational. It
was found that a plane, a right circular cone, a cylinder, and a developable
helicoid are the only such surfaces. The main purpose of this paper is to dis-
cuss the same problem in the case of unsteady flows. In the case of plane
unsteady flows Taub [3] has solved the corresponding problem by introducing
a dimensional argument which indicates that, when viscosity and heat con-
ductivity are neglected, there is no intrinsic length in the problem and the
problem may be stated in terms of the independent variables x/t alone instead
of x and t. In this notation x are the cartesian orthogonal coordinates, and

is the time. The same argument has been introduced in the following
analysis.
In this discussion it is found that at time the flow behind a shock wave

will be irrotational if the shock is plane, or if it propagates normal to itself
relative to the fluid, or if it is developable and the direction of its propagation,
relative to the fluid, at every point on it lies in the plane determined by the
generator and the normal to the shock surface at that point. It is further
found that, as in the case of steady flows, the component of the vorticity
normal to the shock vanishes at every point on the shock.

2. Equations of motion

The motion of a gas when the effects of viscosity and heat conduction may
be neglected is described by the following set of differential equations:

dp Ou(1) d- p - 0, (equation of continuity),

du Op(2) p -- - - 0, (equations of motion),

(3) dS
d- 0, (changes of state are adiabatic),
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where summation over index i is implied by its repetition in a term. The
symbols u, S, p, and p represent, respectively, the components of velocity,
entropy, pressure, and density in the gas. The derivative d/dt is the material
derivative which indicates the variation on following a particle of the fluid.
Since there is no distinction between covariant and contravariant indices
within a rectangular system, we may write any index as a superscript or sub-
script without modification of the value of the term in which the index occurs.
The shock configuration in u three-dimensional gas flow at time may be

represented by the equations:

(4) x a(yl y),

where yl and y are the Gaussian coordinates on the shock surface. This sub-
stitution leads to the following form of the differential operators in the equa-
tions (1) to (3)"

(5) dg 1 (u 1
a )g, Ug,

dt -[

(6) Og 1
Ox---- -[ g,

where g(x/t, x/t, x3/t) is any function into which the coordinates and time
enter in the manner indicated and the derivative Og/Oa has been written
g,. The symbol U is defined in the equation (5).
When this substitution is introduced into the equations (1) to (3), they

become
(7) U p, + pU, + 3p O,

(8) pU + pU U, + p, O,

(9) US,i O.

A flow which meets these requirements is called pseudo-stationary [4]. From
(4) we notice that the components of the velocity of the shock are given by

(10) v ai.

Since the u are the components of the particle velocity, the quantities U
u a, when evaluated on either side of the shock front, give the velocity
of the flow relative to the shock at the corresponding points. The Rankine-
Hugoniot equations may be written as

(11) [U,] _.UI ____A
1-+- ’

(12) [P]
1 -t-

p Un,

(13) [p] p,
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where
2(U p)(14) i

2/pl + ( 1)pl U.’
and the bracket denotes the difference of the values on the two sides of
the shock surface of the quantity enclosed. are the components of the unit
normal vector to the shock. The normal is assumed to be directed from
region 1 into region 2.

3. Derivation of the partial derivatives of the flow quantities behind
the shock surface

As in the analysis of steady gas flows [1, 2] we take the lines of curvature as
the Gaussian coordinates yl, y. In the following we shall use Latin letters
for the indices referring to the space variables and Greek letters for the indices
referring to the surface variables. Thus the Latin indices will assume values
1, 2, 3; and Greek indices the values 1, 2.
The surface unit tangent vectors to the coordinate curves are i[/ and
i/where g, are the components of the first fundamental form of the
surface [5]. The corresponding space components of the unit tangent vectors
are x/’x and x/%/-, respectively, where we have put

Ox Oa(5) : -t--.
Oy"

As in the steady case we define the dimensionless variables

(1O)

wherea isnot summed, V, U x, and c p/p. It is clear that V./
(a not summed) are the physical components of the velocity field U along
the lines of curvature on the shock surface.
Derentiating the relations (11) to (13) with respect to y and y, we get

relations along the shock surface of the form

(17)

(is) p, z/t p,, x/t + S. S,
(19) p. x/t p. x/t + C C
where for simplicity we have omitted the subscript 2 on the quantities appear-
ing in the left members of these equations. The explicit values of A., B
and C, are obtained by differentiating the right members of the equations
(11) to (13).
We first eliminate the derivatives p. from the six relations given by (7), (8),

(9), (17), (18), and (19), and obtain the following equations, which we repre-
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sent as two sets of equations for convenience of reference, namely,

(20) p,. x C*.,

(21) p,j U1 + pU,,k + 3p O,

and
(22)

(23)

(24)

where q Ui Ui.

U, x. A*

pU, xU (t B*. + pV.),

q2Ui U Ui, c Ui,i %" 3(2,

Now from (22) to (24) we can obtain U,., and then
from (20) and (21) p,i can be found; after this the equation (8) yields the
value p,. As in the steady case this determination can be effected by intro-
ducing the matrix"

(25)

C C C.

C12 C22 C32

C13 C23 C33 U U2 U3
U, U. U,,

where ),. denote the space components of the unit tangent vector to the ya
curve and are given by the relation

(26) a not summed.

The determinant of this matrix can be easily seen to be unity.
define the quantities Dk by

Hence we can

The second relation (27) follows readily from the first relation, and conversely.
The matrix I[ D. If is given by

Dn DI D31

D D22 D32

D13 D.3 Da

(28)

Un Vn

2

3

Now define the quantities Bj by

(29) Bi U, C C..
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Then from (22), (23), (24), and (29) we have

Bll BI B13

B21 B22 B23

B31 B32 B3

(30)

A* *x A.x -(Bt + pV)

, ,
A* x. A x (B. + pV)

If we multiply both sides of (29) by D8 D’t and use the relations (27), we
readily obtain
(31) Uz, B. Dz Dj.
The first eight elements of the matrix can be determined from the right hand
sides of the equations (17) and (18). However, we must still express B33 in
terms of similar quantities. Setting m in (31) and using (28), we get

(32)
Uk, Bll(1 -- x) -{- B: (1 + x) - 2 B)x x

2Bla)xl 2B(2a)x-t- B3,

where x’s are defined by the relations (16) and for brevity we have introduced

B() 1/2 (Bj + Bi).

Thus we arrive at the value of B33, namely

(33)

B33 Bn(1 -t- x2) -t- B2(1 + x) - 2B(12) x x: 2B(.) x 2B(23) x2 M
M2 C

where M q/c and M is defined by the relation (16).
To effect the determination of the derivatives p, behind the shock, we

observe that the set of equations (20) and (21) can be written in the form

(34) p, C d,
where

*(35) d Ct/%/, d Ct/, 43 -p(U, + 3)/U.

Hence we have
(36) p, d D.
Finally from (8) the derivatives p, behind the shock can be determined by
the equations

(37) p, pU Ui,i- pUi pUn BI3 D- oU.
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4. Calculation of the invariants d and B
It is possible to give n explicit formulation of the inwrints d, nd B

under the ssumption that the flow in front of the shock surface is uniform,
i.e. u, p, nd p re constants, in manner nlogous to the steady cse. In
ddition to the expressions ge, x, nd ), introduced in the previous section,
we need some more results of the differential geometry [4] which we write
down for the ske of redy reference. The expressions for normal curwtures
in the direction of the coordinate curves re

(38) K bn/gn K b22/g22
where b re the components of the second fundamental form of the shock
surface. As we hve tken the lines of curvature as the coordinate curves on
the shock, we hve

(39) g. b2 0.

Moreover, if g denotes the components of the tensor conjugate to g, i.e.,

we obtain

(41) gn g/g, g g’ O, g gu/g,
where g g[ gn g. In this notation the space components of the
unit normal vector to the surface are given by the relations

(42) e"- x,
where e"a and e are, respectively, the components of the surface and space
permutation tensors. The Weingarten’s formulas give

(43) x;’,
where the subscript denotes the surface covariant differentiation.
With the help of these results it can be readily found that

(44) U,, U; VK, a not summed,
and

K. , a not summed.
Now for uniform flow

(46) A, x/t + A, S B. C* C
The components of the matrix (30) i.e. B can now be easily calculated
and are given as

(KUj)t 0

0 (OK,.Uj*)t(47)

4V1 K1 V

4VK V
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where
4 iZ-
/i i+

and B33 is obtained from the relation (33) by substituting the values of the
quantities B from the above matrix.

Correspondingly the d are given by the expressions

d,_ C:t 2 V:K:t {(/_ 1)p- (,+ 1)p}

Ct 2 VKt {(_ 1)p- ( + 1)p}(48)
u.

d -p(U, + 3),

where U, is known from the relations (32) and (47).

5. The expression for the vorticity vector behind the shock
The components of the vorticity vector w behind the shock are given by

w e OU/Ox (l/t) e U, (l/t) eBDD

wherein we hve mde use of he relions (6), (28), nd (81). Now for w
o be zero time , i is necessary s well s sueienh el,her g/(1 + ) or

wnish. In the ltter cse coefficients of both X nd X must vnish because
A nd X are perpendicular to ech other. Thus in order that the flow be
irrottionM behind the shock surface t least one of the following conditions
must be stisfied:

(i) 0, i.e. no shoc surface;
(ii) K 0 K, i.e. he shock surface is plane;
(iii) V V 0, i.e. the shoclc propagates in he direction normal o iself

relative o he
(iv) K=0= V;
(v) K 0 V.

It is clear that (iv) nd (v) led to the sme result. Let us tke the cse (v),
i.e. K 0 V. Now K 0 implies that the shock is developable sur-
face, and as such its generators and their orthogonM trajectories form its con-
gmences of lines of curwture; while V 0 implies that every point on these
orthogonM trajectories is propagated, relative to the fluid, in the plane de-
termined by the generator nd the normM to the surface through that point.
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Thus the flow behind the shoc wave will be irrotational if one of the following
conditions holds:

1. The shoc surface is a plane.

2. The wave propagates normal to itself relative to the fluid.
3. The shoclc surface is developable, and at every point the direction of propaga-

tion of the shoclc, relative to the fluid, is in the plane determined by the generator
and the normal to the surface at that point.

Furthermore, w 0, i.e. the component of the vorticity normal to the
shock vanishes at every point of the shock. This was also found to hold in
the case of steady gas flows [1, 2].
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