ON THE EXISTENCE OF THE STIELTJES MEAN o-INTEGRAL

BY
PasQuaLE PorceELLI

The object of this paper is to establish a necessary and sufficient condition
(Theorem 1) for the existence of the Stieltjes mean o-integral [> fdg, where f
is a bounded function on [a, b] and ¢ is of bounded variation on [a, b]. We
then use this condition to settle a question raised by T. H. Hildebrandt’
(Corollary 1.1) and to show that the mean s-integral is absolutely convergent?
(Corollary 1.2) when f and g satisfy the above condition and [%fdg exists.
‘We base our proof of Theorem 1 on an earlier existence theorem due to T. H.
Hildebrandt.

We recall that the Stieltjes mean o-integral is one of several limits intro-
duced by H. L. Smith (cf. [2]) and is defined as follows: if each of f and g is
a function on [a, b}, then the statement that the number J (hereafter denoted
by % fdg) is the Stieltjes mean o-integral of f with respect to g on [a, b] means
that for each £ > 0, there exists a subdivision D of [a, b] such that if E is any
refinement of D, then | f2fdg — Sx(f, g; I) | < &, where

Se(f, 95 1) = 2500 27 (i + 1) + F@)llgyivr) — 9],

y¥i,2=0,1, ---,m + 1, are the terms of F, and I denotes the interval [a, b].
If for each subinterval I’ of [a, b], we set
w(f, g; I')

= LUB[| S&(f, g; I') — Se(f, g9; I) |; all subdivisions E and F of I'],

then, according to Hildebrandt (cf. [1], Theorem 2.13), [%fdg exists if, and
only if,
GLB [2 o w(f, g5 I,); D] = 0,

where D is a subdivision of [a, b]and I, , p = 0, 1, - - - | n, are the subintervals
formed by D.
We shall need the following definitions and lemmas.

DeriniTION 1.1.  If f is a bounded function on [a, b] and % a positive num-
ber, then M (f, k+) denotes a subset of [a, b] such that « is in M(f, k+) if, and
only if, z # b and for each y > x there exist points { and ¢’ in the segment
(2, y) such that ¢ < b, ¢ < b, and |f(t) — f(')| = k. M(f, k—) denotes a
subset of [a, b] such that z isin M (k,k—) if,and only if, z > a andforeachy <
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there exist points ¢ and ¢’ in the segment (y, ) such that @ < ¢, ¢ < ¢/, and
|f@®) — f@) | = k. M(f, k) denotes the logical sum M(f, k+) + M(f, k—).

DeriniTION 1.2. If f is a bounded function on [a, b], ¢ a nondecreasing
function on [a, b], and & > 0, then the statement that M(f, k) has directed
content C, M(f, k) means that C, M ({, k) is the largest nonnegative number S
such that if {[a,, by]}p=1 is a finite collection of nonoverlapping subintervals
of [a, b] satisfying

(1) apisnotin M(f, k—) and b, is not in M(f, k+) forp = 1, --- , n, and

(11) {[ap ) bp]};=1 covers M(f: k):
then > 51 [9(b,) — 9(ap)] 2 S.

Lemma 1. If f is a bounded function on [a, b], g of bounded variation on
la, b], & > 0, and [c, d] a subinterval of [a, b] such that, etther c is in M(f, k+),
d is in M(f, k—), or there exists a point t common to the segment (c, d) and
M(f, k), then

w(f, g; le, d)) = 27% | g(d) — g(c) | -

Proof. Suppose k > ¢ > 0. There exist points ¢’ and ¢’ in the segment
(¢, d) such that,

[f@&) —f@&) | 2k — e
) — FfE))-lgd) — 9] = |fE) — ") -] g(d) — g(o) |,

lgt) — g(t")| £ eN 7,

where N is an upper bound of | f| on [a, b]. If E and D are subdivisions of
[c, d] consisting of just theterms ¢ < ¢’ < dand ¢ < " < d respectively, then

|8x(f, g; I, dl — Su(f, g5 le, d) | = 27" | [f(#) — F")lg(d) — g(c)]
+ [fle) — f@lg) — gt | 2 27k — &) | g(d) — g(c) | — &.
Since this holds for all £ > 0, we get

w(f, g; le, d)) = 27% | g(d) — g(0) |.

LemMma 2. If f is a bounded function on [a, bl, g of bounded variation on
[a, b], & > 0, and [c, d] a subinterval of [a, b] such that,

(1) ¢ is notin M(f, k+),

(2) disnotin M(f, k—), and

(38") for each x in the segment (c, d), = is not tn M(f, k),
then there exists a finite collection {[yii1, yi]}im of nonoverlapping subintervals
of [c, d] covering [c, d] such that

2 w(f, g5 e, yi) = 6klg*(d) — g*(@)),

where g* is the variation function of g.

and

Proof. Suppose the lemma is false and ¢’ denotes the midpoint of [c, d].
In view of (3’), we see that each one of the intervals [¢, ¢’] and [¢/, d] satisfies
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1", (2, and (3’). Consequently, let {I,}7=1, I1 = [c, d], be a sequence of
nested intervals having just one point, say ¢, in common such that, for each
n, I, satisfies the hypotheses of the lemma, but for which the conclusion is
false. Suppose t < d. There exists a point s’ such that ¢ < s’ < d and for
any point s in the segment (¢, 8'), |f(x) — f(y)| £ kfort < z £ s and
t <y =s. Let N bean upper bound of |f| on [a, b] and v a nonnegative
number such that vy < k(2N)'[g*(s) — g*(£)]. There exists a point z in the
segment (¢, s) such that | g(u) — g(v) | <vfort < u S zandt <v £ 2.
If A and B are subdivisions of [¢, 2], then

| Salfy g5 [t 2) — Ss(f, g5 [t 2D) | = 2Elg*(z) — g*@)];
if D and E are subdivisions of [z, s], then

| So(f, g5 [z, ) — 8x(f, g5 2, ) | = (B)-[g*(s) — ¢g*(@)].

Similarly, if ¢ < ¢, then there exists a point 7’ in the segment (c, {) such that
for any point r in the segment, there exists a point y in the segment (r, f)
which has the same properties as the point z has in the segment (¢, s).

Suppose, now, I, is an interval in the nested sequence which is also a sub-
interval of [r’, '] such that ¢ is an interior point of I, , which is the worst case.
If we pick the r and s so that [r, s] = I, then [r, 3}, [y, ¢, [t, 2], and [z, s] is
a collection of nonoverlapping subintervals of I, satisfying the conclusion of
the lemma. This contradiction completes the proof of Lemma 2.

TueorEM 1. If f 4s a bounded function on [a, b] and g is of bounded variation
on [a, b], then a necessary and suffictent condition that the mean o-integral ffl fdg
exist 18 that for each positive number k, Cye M(f, k) = 0, where g* is the variation
Sfunction of g on [a, b).

Proof. 1In order to prove the necessity, let us suppose J2 fdg exists, k > 0,
Cope M(f, k) > 0,and ¢ > 0. Let F be a subdivision of [a, b] and E a refine-
ment of F such that, (1) | [>fdg — Sz(f, g; la, b)) | < &, and (2) if z:,2 =
0,1, ---, n + 1, denote the terms of E, then D iw|g(@ir) — g(xs) | >
> rolg*(@iz1) — g*(x)] — e. There exists a finite collection {[a,, bpl}'mm:
of nonoverlapping intervals such that,

(1) for each p = m, there exists ¢ = n such that a, = x; and b, = 244,
(i) bmeM(f, k+) and a; ¢ M(f, k—),

(i) if, for some p < m, b, e M(f, k+), then b, = a,41 and there exists
such that a, < v < b, and z e M(f, k+), or a, < < by and z e M(f, k),

(iv) iffor some p > 1, a, e M(f, k—), then a, = b,_; and there exists a
point z suchthata, <z < b,and 2 ¢ M(f,k—), ora, <z < byand z e M(f, k),
and

(v) for each p, [a,, b,] contains a point of M(f, k).

Upon applying Lemma 1 to the intervals {[a, , by]} =1, we get

Z;u,,w.(f,-y;’{xm cxl) 2 2 w(f, g5 lap, by
2 27 251 | g(bs) — g(ap) | 2 27K[Cos M(f, k) — £l.
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This implies that GLB [>_» w(f, g; I); D] = 27k C,» M(f, k) > 0, which is
a contradiction. This completes the proof of the necessity.

In order to prove the sufficiency, suppose &k > 0, ¢ > 0, and {[a,, bp)}'p=t
is a collection of pair-wise mutually exclusive subintervals of [a, b] satisfying
conditions (i) and (ii) of Definition 1.2 such that

225-lg*(by) — g*(ap)] < eN7,
where N is an upper bound of | f| on [a, b]. Consequently,
(A) 2= w(f, g5 lay , b)) < 26

There exists a finite collection {[c¢, ; dg]}g=1 of nonoverlapping subintervals

of [a, b] such that,
(1) except possibly for ¢; = a, each ¢, is some b, , and except possibly for

d. = b, each d, is some a, ,

(i) ({lap, bplip=t + {lcs, ds]}sm1) forms a nonoverlapping covering of
[a, b], and

(iii) each [c, , d;] satisfies the hypotheses of Lemma 2.
In view of this and (A) above, we see that the sufficiency part of Theorem 2.13
of [1] is satisfied, so that [2 fdg exists. This concludes the proof of Theorem 1.

As a consequence of Theorem 1, we have:

CoROLLARY 1.1. If f is a bounded function on [a, b] and g s of bounded vari-
ation on [a, b), then [5fdg exists if, and only if, [ b fdg* exists.

In view of the fact that Cp M(f, k) = 0 implies C,u M(|f|, k) = 0, we
have:

CoroLLARY 1.2. If f is a bounded function on [a, b], g of bounded variation
on [a, b), and [% fdg exists, then [5|f | dg exists.

CoroLLARY 1.3.  If f 7s a bounded funciion on [a, b] and g is of bounded vari-
ation on [a, b] such that no discontinuity of g vs in M(f, k) for every k > 0, then
I fdg exists if, and only if, I, M(f) = 0, where l,» M(f) denotes the outer g*-length
of M(f) and M(f) denotes the logical sum > oy M(f, ).

Proof. Since no point in M (f) is a discontinuity of g and M (f, k) is a closed
point set for £ > 0, I,» M(f) = 0 is equivalent to Cype M(f, k) = 0.

CoRrOLLARY 1.4. If f is a bounded function on [a, b] and ¢ is of bounded vari-
ation on [a, b] such that f and g have no common discontinuity and [2 fdg exists,
then the Riemann-Stieltjes integral RS[? fdg exists.

Proof. Suppose D denotes the set of discontinuities of f. If D,, p =
1,2, ---,is a subset of D such that z is in D, if, and only if, z isin D, x is
not in M(f), and the ordinary oscillation of f at z is greater than or equal to
p ", then D = M(f) + D>_ 5.1 D,. For each p, D, is at most a countable set
and l,» D, = 0, since f and g have no common discontinuity. It follows from
this and Corollary 1.3 that I, D = 0; i.e. RSJ? fdg exists.
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