ON THE EXISTENCE OF THE STIELTJES MEAN σ -INTEGRAL

BY Pasquale Porcelli¹

The object of this paper is to establish a necessary and sufficient condition (Theorem 1) for the existence of the Stieltjes mean σ -integral $\int_a^b f dg$, where f is a bounded function on [a, b] and g is of bounded variation on [a, b]. We then use this condition to settle a question raised by T. H. Hildebrandt² (Corollary 1.1) and to show that the mean σ -integral is absolutely convergent³ (Corollary 1.2) when f and g satisfy the above condition and $\int_a^b f dg$ exists. We base our proof of Theorem 1 on an earlier existence theorem due to T. H. Hildebrandt.

We recall that the Stieltjes mean σ -integral is one of several limits introduced by H. L. Smith (cf. [2]) and is defined as follows: if each of f and g is a function on [a, b], then the statement that the number J (hereafter denoted by $\int_a^b f dg$) is the Stieltjes mean σ -integral of f with respect to g on [a, b] means that for each $\varepsilon > 0$, there exists a subdivision D of [a, b] such that if E is any refinement of D, then $|\int_a^b f dg - S_E(f, g; I)| < \varepsilon$, where

$$S_E(f, g; I) = \sum_{i=0}^{m} 2^{-1} [f(y_i + 1) + f(y_i)] [g(y_{i+1}) - g(y_i)],$$

 y_i , $i = 0, 1, \dots, m + 1$, are the terms of E, and I denotes the interval [a, b]. If for each subinterval I' of [a, b], we set

= LUB [|
$$S_{\mathcal{E}}(f, g; I') - S_{\mathcal{F}}(f, g; I')$$
 |; all subdivisions E and F of I'],

then, according to Hildebrandt (cf. [1], Theorem 2.13), $\int_a^b f dg$ exists if, and only if,

GLB
$$\left[\sum_{D} w(f, g; I_p); D\right] = 0$$
,

where D is a subdivision of [a, b] and I_p , $p = 0, 1, \dots, n$, are the subintervals formed by D.

We shall need the following definitions and lemmas.

DEFINITION 1.1. If f is a bounded function on [a, b] and k a positive number, then M(f, k+) denotes a subset of [a, b] such that x is in M(f, k+) if, and only if, $x \neq b$ and for each y > x there exist points t and t' in the segment (x, y) such that t < b, t' < b, and $|f(t) - f(t')| \geq k$. M(f, k-) denotes a subset of [a, b] such that x is in M(k, k-) if, and only if, $x \neq a$ and for each y < x

Received March 23, 1957; received in revised form May 22, 1957.

¹ Presented to the American Mathematical Society, December 27, 1956. I am pleased to acknowledge my indebtedness to the referee for his suggestions in revising the paper.

² Cf. [1], p. 274.

³ H. S. Wall, private communication.

there exist points t and t' in the segment (y, x) such that a < t, a < t', and $|f(t) - f(t')| \ge k$. M(f, k) denotes the logical sum M(f, k+) + M(f, k-).

DEFINITION 1.2. If f is a bounded function on [a, b], g a nondecreasing function on [a, b], and k > 0, then the statement that M(f, k) has directed content $C_g M(f, k)$ means that $C_g M(f, k)$ is the largest nonnegative number S such that if $\{[a_p, b_p]\}_{p=1}^n$ is a finite collection of nonoverlapping subintervals of [a, b] satisfying

(i) a_p is not in M(f, k-) and b_p is not in M(f, k+) for $p = 1, \dots, n$, and (ii) $\{[a_p, b_p]\}_{p=1}^n$ covers M(f, k), then $\sum_{p=1}^n [g(b_p) - g(a_p)] \ge S$.

LEMMA 1. If f is a bounded function on [a, b], g of bounded variation on [a, b], k > 0, and [c, d] a subinterval of [a, b] such that, either c is in M(f, k+), d is in M(f, k-), or there exists a point t common to the segment (c, d) and M(f, k), then

$$w(f, g; [c, d]) \ge 2^{-1}k | g(d) - g(c) |$$
.

Proof. Suppose $k > \varepsilon > 0$. There exist points t' and t'' in the segment (c, d) such that,

$$|f(t') - f(t'')| \ge k - \varepsilon,$$

$$[f(t') - f(t'')] \cdot [g(d) - g(c)] = |f(t') - f(t'')| \cdot |g(d) - g(c)|,$$

$$|g(t') - g(t'')| \le \varepsilon N^{-1}.$$

where N is an upper bound of |f| on [a, b]. If E and D are subdivisions of [c, d] consisting of just the terms c < t' < d and c < t'' < d respectively, then

$$|S_{E}(f, g; [c, d] - S_{D}(f, g; [c, d])| \ge 2^{-1} | [f(t') - f(t'')][g(d) - g(c)] + [f(c) - f(d)][g(t') - g(t'')] | \ge 2^{-1} (k - \varepsilon) | g(d) - g(c) | - \varepsilon.$$

Since this holds for all $\varepsilon > 0$, we get

and

$$w(f, g; [c, d]) \ge 2^{-1}k | g(d) - g(c) |.$$

LEMMA 2. If f is a bounded function on [a, b], g of bounded variation on [a, b], k > 0, and [c, d] a subinterval of [a, b] such that,

- (1') c is not in M(f, k+),
- (2') d is not in M(f, k-), and
- (3') for each x in the segment (c, d), x is not in M(f, k), then there exists a finite collection $\{[y_{i+1}, y_i]\}_{i=1}^m$ of nonoverlapping subintervals of [c, d] covering [c, d] such that

$$\sum_{i=1}^{m} w(f, g; [y_{i+1}, y_i]) \leq 6k[g^*(d) - g^*(c)],$$

where g^* is the variation function of g.

Proof. Suppose the lemma is false and c' denotes the midpoint of [c, d]. In view of (3'), we see that each one of the intervals [c, c'] and [c', d] satisfies

(1'), (2'), and (3'). Consequently, let $\{I_n\}_{n=1}^{\infty}$, $I_1 = [c, d]$, be a sequence of nested intervals having just one point, say t, in common such that, for each n, I_n satisfies the hypotheses of the lemma, but for which the conclusion is false. Suppose t < d. There exists a point s' such that t < s' < d and for any point s in the segment (t, s'), $|f(x) - f(y)| \le k$ for $t < x \le s$ and $t < y \le s$. Let N be an upper bound of |f| on [a, b] and γ a nonnegative number such that $\gamma \le k(2N)^{-1}[g^*(s) - g^*(t)]$. There exists a point z in the segment (t, s) such that $|g(u) - g(v)| < \gamma$ for $t < u \le z$ and $t < v \le z$.

If A and B are subdivisions of [t, z], then

$$|S_A(f, g; [t, z]) - S_B(f, g; [t, z])| \le 2k[g^*(z) - g^*(t)];$$

if D and E are subdivisions of [z, s], then

$$|S_D(f, g; [z, s]) - S_E(f, g; [z, s])| \le (k) \cdot [g^*(s) - g^*(z)].$$

Similarly, if c < t, then there exists a point r' in the segment (c, t) such that for any point r in the segment, there exists a point y in the segment (r, t) which has the same properties as the point z has in the segment (t, s).

Suppose, now, I_n is an interval in the nested sequence which is also a subinterval of [r', s'] such that t is an interior point of I_n , which is the worst case. If we pick the r and s so that $[r, s] = I_n$, then [r, y], [y, t], [t, z], and [z, s] is a collection of nonoverlapping subintervals of I_n satisfying the conclusion of the lemma. This contradiction completes the proof of Lemma 2.

THEOREM 1. If f is a bounded function on [a, b] and g is of bounded variation on [a, b], then a necessary and sufficient condition that the mean σ -integral $\int_a^b f dg$ exist is that for each positive number k, C_{g*} M(f, k) = 0, where g* is the variation function of g on [a, b].

Proof. In order to prove the necessity, let us suppose $\int_a^b fdg$ exists, k > 0, $C_{g^*}M(f,k) > 0$, and $\varepsilon > 0$. Let F be a subdivision of [a,b] and E a refinement of F such that, (1) $\left| \int_a^b fdg - S_E(f,g;[a,b]) \right| < \varepsilon$, and (2) if x_i , x = 0, 1, \cdots , n+1, denote the terms of E, then $\sum_{i=0}^n |g(x_{i+1}) - g(x_i)| > \sum_{i=0}^n [g^*(x_{i+1}) - g^*(x_i)] - \varepsilon$. There exists a finite collection $\{[a_p, b_p]\}_{p=1}^m$ of nonoverlapping intervals such that,

- (i) for each $p \leq m$, there exists $i \leq n$ such that $a_p = x_i$ and $b_p = x_{i+1}$,
- (ii) $b_m \notin M(f, k+)$ and $a_1 \notin M(f, k-)$,
- (iii) if, for some p < m, $b_p \in M(f, k+)$, then $b_p = a_{p+1}$ and there exists x such that $a_p \le x < b_p$ and $x \in M(f, k+)$, or $a_p < x < b_p$ and $x \in M(f, k)$,
- (iv) if for some p > 1, $a_p \in M(f, k-)$, then $a_p = b_{p-1}$ and there exists a point x such that $a_p < x \leq b_p$ and $x \in M(f, k-)$, or $a_p < x < b_p$ and $x \in M(f, k)$, and
 - (v) for each p, $[a_p, b_p]$ contains a point of M(f, k). Upon applying Lemma 1 to the intervals $\{[a_p, b_p]\}_{p=1}^m$, we get

$$\sum_{E} w(f, g; [x_{i+1}, x_{i}]) \geq \sum_{p=1}^{m} w(f, g; [a_{p}, b_{p}])$$

$$\geq 2^{-1}k \sum_{p=1}^{m} |g(b_{p}) - g(a_{p})| \geq 2^{-1}k[C_{g^{*}}M(f, k) - \varepsilon].$$

This implies that GLB $[\sum_{D} w(f, g; I); D] \ge 2^{-1}k C_{g^*} M(f, k) > 0$, which is a contradiction. This completes the proof of the necessity.

In order to prove the sufficiency, suppose k > 0, $\varepsilon > 0$, and $\{[a_p, b_p]\}_{p=1}^m$ is a collection of pair-wise mutually exclusive subintervals of [a, b] satisfying conditions (i) and (ii) of Definition 1.2 such that

$$\sum_{p=1}^{n} [g^*(b_p) - g^*(a_p)] < \varepsilon N^{-1},$$

where N is an upper bound of |f| on [a, b]. Consequently,

(A)
$$\sum_{p=1}^{m} w(f, g; [a_p, b_p]) < 2\varepsilon.$$

There exists a finite collection $\{[c_g; d_g]\}_{g=1}^m$ of nonoverlapping subintervals of [a, b] such that,

- (i) except possibly for $c_1 = a$, each c_s is some b_p , and except possibly for $d_m = b$, each d_s is some a_p ,
- (ii) $(\{[a_p, b_p]\}_{p=1}^n + \{[c_s, d_s]\}_{s=1}^m)$ forms a nonoverlapping covering of [a, b], and
 - (iii) each $[c_s, d_s]$ satisfies the hypotheses of Lemma 2.

In view of this and (A) above, we see that the sufficiency part of Theorem 2.13 of [1] is satisfied, so that $\int_a^b f dg$ exists. This concludes the proof of Theorem 1. As a consequence of Theorem 1, we have:

COROLLARY 1.1. If f is a bounded function on [a, b] and g is of bounded variation on [a, b], then $\int_a^b f dg$ exists if, and only if, $\int_a^b f dg^*$ exists.

In view of the fact that $C_{g^*}M(f, k) = 0$ implies $C_{g^*}M(|f|, k) = 0$, we have:

COROLLARY 1.2. If f is a bounded function on [a, b], g of bounded variation on [a, b], and $\int_a^b f dg$ exists, then $\int_a^b |f| dg$ exists.

COROLLARY 1.3. If f is a bounded function on [a, b] and g is of bounded variation on [a, b] such that no discontinuity of g is in M(f, k) for every k > 0, then $\int_a^b f dg$ exists if, and only if, $l_{g^*} M(f) = 0$, where $l_{g^*} M(f)$ denotes the outer g^* -length of M(f) and M(f) denotes the logical sum $\sum_{n=1}^{\infty} M(f, n^{-1})$.

Proof. Since no point in M(f) is a discontinuity of g and M(f, k) is a closed point set for k > 0, $l_{g^*}M(f) = 0$ is equivalent to $C_{g^*}M(f, k) = 0$.

COROLLARY 1.4. If f is a bounded function on [a, b] and g is of bounded variation on [a, b] such that f and g have no common discontinuity and $\int_a^b f dg$ exists, then the Riemann-Stieltjes integral RS $\int_a^b f dg$ exists.

Proof. Suppose D denotes the set of discontinuities of f. If D_p , $p=1,2,\cdots$, is a subset of D such that x is in D_p if, and only if, x is in D, x is not in M(f), and the ordinary oscillation of f at x is greater than or equal to p^{-1} , then $D=M(f)+\sum_{p=1}^{\infty}D_p$. For each p, D_p is at most a countable set and $l_{g^*}D_p=0$, since f and g have no common discontinuity. It follows from this and Corollary 1.3 that $l_{g^*}D=0$; i.e. $\mathrm{RS}\int_a^b fdg$ exists.

REFERENCES

- T. H. HILDEBRANDT, Definitions of Stieltjes integrals of the Riemann type, Amer. Math. Monthly, vol. 45 (1938), pp. 265-278.
- 2. H. L. Smith, On the existence of the Stieltjes integral, Trans. Amer. Math. Soc., vol. 27 (1925), pp. 491-515.

ILLINOIS INSTITUTE OF TECHNOLOGY CHICAGO, ILLINOIS