
CONDITIONS FOR A MINIMUM IN ABSTRACT SPACE

BY

H. H. GOLDSTINE

Introduction
In what follows we shall seek conditions that a point in a Banach space

should furnish a minimura to a functional defined on a region of that space
in the class of all points in the region satisfying an operator equation.
A partial solution to this general problem was given by the author [2].

The solution given there, however, is made possible by means of certain re-
strictive hypotheses that are in general not easy to verify in a given situa-
tion. More recently Graves has, in an as yet unpublished paper, succeeded
in removing most of these restrictions. However there remains one essential
restriction of an artificial sort. In what follows this restriction is removed
and a general solution is given.
More specifically, we give in Sections 1-3 an excursus into a theory of linear

dependence of linear, continuous operators. This is then used in Section 4 to
formulate and prove two necessary conditions: the multiplier rule, and
another condition related to the so-called second variation. In Section 5
these conditions, suitably strengthened, are combined to provide sufficient
conditions for a minimum. The proof is carried out by means of a Taylor’s
expansion in abstract space and does not require the assumption of "nor-
mality". In the last Section the meaning of "normality" is explored some-
what.

1. Formulation of the problem
In what follows we shall be concerned with a functional G defined on a

region of a Banach space U, and an operator F defined on the same region
but with values in another Banach space V. We assume that both F and G
are of class C" at each point of the region [3, p. 651]. A point u in this region
will be called admissible in case it satisfies the equation

(u) 0.

Our problem can then be defined as that of finding in the class of admissible
points one which furnishes G with a minimum. More precisely, it is to find
conditions on an admissible point u that are necessary for G to be a minimum
in the class of admissible points neighboring u. Also it is to find conditions
on u that are sufficient to ensure that G is a minimum in some neighborhood
of
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2. Linear dependence of operators
In the next three sections we shall put aside temporarily the main problem

just formulated and instead study certain linear relationships between linear,
continuous operators. To this end let R, S, T be Banach spaces, and let f
on R to S and g on R to T be linear, continuous operators. It will be con-
venient to consider the linear, closed manifolds R/, R of all points in R for
which

f(r) O, g(r) O,

respectively. We shall consider two cases, R R and R : R, and in
each case shall enquire whether or not there is a linear relationship between
f and g.
We consider first the case

(2.1) R R
this is equivalent to assuming that every zero of f is a zero of g. It is thus
natural to form the quotient space P R/R. Each element p in P is the
class of all r in R for which f(r) has a constant value, i.e. if r, r are both in
p, then f(r) f(r,). Thus the functions H, J defined as

(2.2) S(p) f(r), J(p) g(r)

are well-defined, linear operators on P, where r is a "representative" element
of p, i.e. r is in p; it is understood that p p., ap are the points in P de-
termined by r, r,., ar, with r, r, r in p, p, p, respectively.
The linear operator H is defined on all of P and has

(2.3) H(P) So f(R).

Further, H(p) 0 implies that p 0, since it is equivalent to f(r) vanishing
for every r in p. Thus H establishes a one-one mapping of P onto So, and
H has an inverse H- on So which is linear.

IEMMA 2.1. The operators H, J of relation (2.2) are linear, and the former
one has a linear inverse on the linear manifold So of (2.3).

Consider now the operator L, defined on So with values in T,
L =- JH-.

Clearly L is linear, and if s is in So,
Ls-- Lf(r) JH-H(p) Jp g(r),

where r is any one of the points in R which, according to (2.3), is such that
s f(r) and p is the class in P containing r. Thus

(2.4) g(r) Lf(r).
THeOReM 2.1. IfR R then there exists a linear operatorL on So f(R)

with values in T such that the relation (2.4) holds identically in R. This operator
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is unique. If the linear manifold So is closed, then L is continuous, closed, and
bounded.

The uniqueness of L is clear. For, if there were two operators satisfying
(2.4), then their difference would vanish identically, and they would then be
identical on So. If So is closed, it is a Banach space. Thus if s. is a se-
quence of points in So converging to an so in So, then by a result of Banach
[1, p. 40] there is a sequence r. of points in R converging to an r0 in R such
that s f(r,), so f(ro). Thus by (2.4)

(2.5) iso g(ro) lira g(rn) lira Ls, lim Lf(r,,).

Thus (2.5) implies that L is both closed and continuous and hence, of course,
bounded as well.

It is of course important to consider what obtains when So is not closed.
Let us examine some special cases to see the consequences of this assumption.
irst, choose the spaces R, S, and T to be the space of functions defined and
continuous on the closed interval -1, -t-1 and vanishing at -1. Let

(2.6) f(r) r(t’) dr’, g(r) r.

Then both f and g are linear and continuous and have R/ Rg [0(x)], the
class containing only the zero function. Thus R c Rg. So now consists
of all continuous functions possessing a continuous first derivative. This set
is clearly not closed. The transformation L is seen to be

(2.7) Ls ds/dt

and is defined on S0. This operator L is certainly not continuous as can be
seen at once; it is, however, closed.

Second, choose S and T to be the space L() and R to be C, the space of
continuous functions. As before, define f and g with the help of the relations
(2.6), and L with (2.7). Again So f(R) is not closed. We show that L is
not now a closed operator. Let

s,,(x) exp[--(x+ 1/n)1/], s(x) exp(--Ixl), --1 -< x_-< 1.

Then s --+ s, and Ls,, -x(x - 1/n)-s,,(x)--> -sgn x.s(x), where
sgnx= -lforx>0, =0forx =0,= -lforx<:0. But

sgn x. s(x) ds(x)/dx

for x in -1, 1. Thus L is not closed [6, p. 75]. In fact we notice that s has
no derivative at x 0.

These examples serve to emphasize the somewhat unsatisfactory state of
the result contained in Theorem 2.1. In the case when S0 is not closed, so
far no continuity criteria have been stated for L, although it is obvious that
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for chosen arbitrarily as a linear operator, the function

g’(r) Lf(r)
is not necessarily continuous.

Let R be the unit sphere in R, and let

(2.8) Ng =- lub [! g(r) I1 r e R,], S,. lub[I Ls s e f(R,)].

Then

Conversely, if B is finite, then

V(r) L/(r)
is a linear, continuous operator on R with values in T. Another, but equiva-
lent, way to view the situation is to introduce into S a new metric in the
following way: For each s in S let R, be the set of all r in R for which f(r) s.
Then

(2.9) is I glb [I r re R].

Note that for Ill 0, we have

>=
It is evident that (So, [) is a normed, linear space.
We go to show that L is continuous relative to the norm just introduced,

i.e. if s is a Cauchy sequence in S, then Ls,, is such a sequence in T. Actu-
ally it is easier to show that L is a bounded operator. We have

Lsl ILf(r) g(r)] <-_ Ng.lr] (reR).
Thus

and we have shown that NL <- Ng. We summarize in

THEOREM 2.2. The unique linear operator L whose existence is asserted in
Theorem 2.1 is continuous and bounded when it is considered as being defined
on the set So with the norm defined in (2.9). If the bound ofL is N(L), then

N(L) B Ng,

where B,. and Ng are defined in (2.8) and

NL lub [! Ls s e S],

S, being the unit sphere in So relative to

We show first that N(L) >= N(g). To this end we note that

g(r) Ls[ <= N(L).I s ] <= N(L).I r l, r eR, s So
implies the desired conclusion.
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In what follows we shall always consider the space R with its original norm,
but with regard to the subspace So of S we shall have occasion to use not only
the original norm but also the new one, i].
THEOREM 2.3. If L is an arbitrary operator which is defined on So, has

values in T, and is linear and continuous relative to the norm Is of relation
(2.9), then the operator

g’(r) =---- Lf(r)

is defined on R and is linear and continuous.

To establish this result we notice that g’ is linear since both f and L are.
The continuity property of g’ is equally easy. If r - 0, then the
are such that

as one sees directly from (2.9). Thus s -- 0 in the sense of the norm

TEOEM 2.4. The operator L of Theorem 2.2 vanishes exactly on the set
f(Rg). Iff and g vanish on exactly the same set, i.e. if R] Rg then L vanishes
only at the origin. In this case it has a linear inverse L-1 for which the relations

g(r) Lf(r), f(r) L-lg(r)

hold identically in R. Iffurthermore So f(R) is closed, then L is continuous,
and if To g(R) is closed, L-1 is continuous. Also if So is closed, 5-1 is closed,
and if To is closed, L is closed.

To prove the first part we notice that, by definition, Ls 0 implies

JH-ls O.

Let p H-is; then J(p) 0. But if r is in p, this becomes

0 J(p) g(r,),

i.e. r is in R, the set of zeros of g. However p H-is implies that

s H(p) f(r),

i.e. that s is in f(R). Since s is an arbitrary zero of L, the conclusion follows.
If now R] R, then

f(R) f(R]) [0],
and thus L vanishes exactly at the origin. In this case it establishes a one-
one correspondence between So and To g(R). Thus L has a linear inverse,
as stated. If S0 is closed, then So is a Banach space, and thus L is continuous.
Similarly if To is closed, L-1 is continuous.

Finally, suppose So is closed, and consider a sequence t. of points in To
converging to a point in T such that s,, L-it,, converges to a value s in S.
Then s must be in S0, and L must be continuous. It follows at once that
t,, Ls,, converges to Ls. But by hypothesis t also converges to t, and
thus Ls t. Similarly, To closed implies L is closed.
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3. Linear dependence. Continuation
Having treated the case where Rf c Rg, we go now to consider the con-

trary one, namely where Rf = Rg. To do this we need first the following
result:

THEOREM 3.1. Given a linear manifold Uo in a Banach space U, another
Banach space V, and a point u* not in the closure of U0, there is a linear and
continuous operator h on U to V such that h is orthogonal to Uo but not to u*.

It is well-known that there is a linear and continuous functional m on U
which is orthogonal to U0 but not to u* [1, p. 57]. Let v* be any point in V
not the zero point, and let

h(u) v*.m(u)

for every u in U. Then h is effective in the theorem.
Let us now consider the linear, closed manifoldR determined (i.e. spanned)

by R and R. We suppose first that

(3.1) o R.

Then by the previous theorem we can find a linear, continuous operator h
on R to T such that h is orthogonal to R and is not identically zero. Then
we see that R, the manifold of zeros of h, contains R] and therefore also
Rf and Rg. We now apply Theorem 2.1 to the operators h and f and find
on So f(R) a linear, continuous operator L relative to ], with values in
T such that identically in R

(3.2) h(r) Lf(r).

This operator L is not identically zero on So, since h is not identically null.
Next we apply Theorem 2.1 to the operators h and g and find on To g(R)
a linear operator M, continuous relative to I, with values in T such that the
relation

(3.3) h(r) Mg(r)

holds identically in R. The operator M is not identically zero on To since h
is not identically zero. Combining the relations (3.2) and (3.3), we find

THEOREM 3.2. If the linear closed manifold spanned by R and R is not
the entire space R, there are linear operators L on So and M on To with values in
T such that the relation

(3.4) Lf(r) Mg(r)

holds identically on R. Neither L nor M is identically zero. Both have the
continuity, closure, and boundedness properties described in Theorem 2.2 for
the operator L appearing there.

If Rg R, then the operator h appearing in relations (3.2) and (3.3) is
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identically zero. If either

(3.5) o f(R) S or o g(R) T,
then either L or M can be chosen not identically zero. Thus we have

COROLZRV 3.1. If the linear closed manifold spanned by Rs and Ro is R,
then the conclusion of Theorem (3.2) still holds provided (3.5) is valid and the
statement that neither L nor M is identically zero is amended to read not both are
identically zero.

It is possible to improve somewhat the result given in this corollary. We
do so by replacing the conditions (3.5) by

(3.6) f(R) S or g(Rs) T.

Consider now linear, continuous operators L on S to T and M on T to T
which are orthogonal to f(R) and g(Rs), respectively. If one or the other of
conditions (3.6) is valid, not both L and M are identically zero. Let r be an
arbitrary point in R. Then since Rs R, r is expressible in the form

r lim (r + r),

where r, is in R and r is in Ro. Then by the continuity of L, M, f, and g,

Lf(r) lim Lf(r, + rn) lim Lf(r) O,
(3.7)

Mg(r) lim Mg(r], + to,) lim Mg(rn) O,

since L, M are orthogonal to f(Ro), g(R), respectively. We clearly can com-
bine the relations (3.7) to obtain (3.4).

If neither of the conditions (3.6) is valid, then (3.4) is possible only for
L ------ 0, M 0. For, if s is an arbitrary point in S and an arbitrary point in
T, then they are expressible in the form

s lim f(rn), lim g(r]),

where r, r are points in Rs, R, respectively. Thus if L, M exist as linear,
continuous operators, we must have

Ls lim Lf(ro) lim Mg(ron) O.

Mt lira Mg(rn) lira Lf(r],) 0.

This implies L 0, M --- 0.

THEOREM 3.3. If the linear closed manifold spanned by R and Ro is the
entire space R, there are linear, continuous operators L on S and M on T with
values in T such that the relation (3.4) is valid on R. The operators L, M
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may be chosen not both identically zero if and only if either of the conditions
(3.6) obtains.

COROLLARY 3.2.
g(R]), respectively.

The operators L, M are orthogonal to the sets f(Rg) and

We shall be concerned in this section with an application of some of our
previously obtained results, notably Theorems 2.1, 3.2, 3.3, to the minimum
problem formulated in Section 1. In what follows, the space T, the contra-
domain of g, is the set of real numbers. Then g is a linear, continuous func-
tional, and the operators L of Theorems 2.1, 2.2, 2.4, 3.2, 3.3 are linear func-
tionals; the operators M of Theorems 3.2, 3.3 are real numbers.

LEMMA 4.1. The relation R c Rg is valid if and only if R R or g is
identically zero.

Suppose RI c R. Then RI R. Now if Rg R, then g vanishes
identically. Conversely, if g --- 0, thenR R R. IfRg R and g 0,
then by Theorem 3.2 there are a linear functional L on So and a constant
such that

(4.1) lg(r) - L(r) 0;

neither nor L is identically zero. But then (4.1) implies that R c R,.

COROLLAnY 4.1. IfR - Rg then g(R) is the space of real numbers.

This follows at once from the fact that if f(r) 0 and g(r) O, then ag(r)
is in g(R) for every real a.

LEMMA 4.2. IfR R, then o S is equivalent to f(R) S.

If f(R) were not S, then by Corollary 3.2 the operator L would be orthog-
onal to f(R) and not identically zero. Moreover, with the help of the rela-
tions (3.7) derived in the proof of Theorem 3.3, we see that L would be or-
thogonal to 0 and L 0; thus 0 would be properly contained in S.

Conversely, we have
S f(Rg) f(R),

and thus S0 S.
In what follows it is convenient to introduce certain notations and defini-

tions. They are these"
At each admissible point let

(4.2) f(r) dF(; r), g(r) dG(; r).

An admissible point satisfies the multiplier rule in case there are a constant
and a linear functional L defined on some linear manifold in R such that the

relation

(4.3) 0 lg(r) + Lf(r) /dG(; r) + LdF(?; r)
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holds identically on R with l, L not both identically zero. An admissible
point is normal in case So f(R) S and Rs c Rg. In the contrary case,

is abnormal.

THEOREM 4.1. Every normal point satisfies the multiplier rule with a set
l, L for which 1 and L is unique, defined, and continuous on S. Every ab-
normal point either satisfies the multiplier rule with a set l, L for which 0 or
is such that So S, Rs - Rg

The case where the point in question is normal follows almost at once from
the first part of Theorem 2.1. The continuity of L follows from the second
part of that theorem since So S. We examine now the case where the
point is abnormal. Then either So S, or R = R. We distinguish two
cases" So S, and So S together with R] R. In the former case choose
s* to be a point in S S0, and consider the set $1 of all s of the form So - as*,
where so is in S0 and a is an arbitrary real number. On $1 we define an L as
follows:

Ls L(so - as*) a, s e St.
This L is defined on S, is linear, is orthogonal to S0, but is not identically
zero. Then the set 0, L is effective in the theorem.
We come now to the remaining case" So S, R : R. In this case the

multiplier rule cannot be satisfied. If the multiplier rule were satisfied with
0, then clearly R c R. But in our case Rs = Rg and therefore 0.

Thus we would have

(4.4) Lf(r) O, r e R.

Since So S, L would be orthogonal to all of S and thus identically zero.
We go now to show that the last possibility stated in Theorem 4.1, namely

So S, Rs : R, cannot arise at a minimizing point . To do this we con-
sider the operator

g(r) (F( + r), G( - r) G()).

It is defined and of class C’t for r near to and has values in S X T, where T
is the space of reals; also H(0) 0. Now the set dH(0; R) cannot be the
entire space S X T. For if it were, the equation

H(r) (s, a)

would be solvable for all (s, a) near to (0, 0) [4, p. 112]. Then in particular
for s 0 and a < 0, there would be a solution. But then one would have

F(? -t- r) 0, G( - r) < G(?),

which is a contradiction of the minimizing properties of . Thus dH(0; R)
is not the entire space.

Grves used this technique to establish the multiplier rule in the case S0 is closed.
This result is contained in the as yet unpublished manuscript mentioned in footnote 1.
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Consider now the set dH(0; R) in our case: So S, R] R, g 0. Sup-
pose there is an r in R such that f(r) 0 and g(r’) O. Then for an arbi-
trary real number b, there is an r" in R such that

f(r’) 0 and g(r’) b;

this r" can be chosen as r’b/g(r’). Consider now any point (s, a) in the product
of Sand T. Then sincef(R) So S, there is an r such that f(r) s.
Now by what has just preceded, we can also find an r" such that

f(r’) O, g(r’) a g(r)

provided a g(r). Then s f(r - r’), a g(r + r’). Ira g(r), we
have f(r) s, g(r) a. Thus if there were an r’ in R such that

f(r’) O, g(r’) O,

then dH(0; R) (dF(?; R), dG(; R)) (f(R), g(R)) would be the entire
space S X T, which is a contradiction. Thus for every r such that f(r) O,
we must have g(r) 0. But this is equivalent to R R, which contra-
dictsR R,g 0. Thus

THEOnEM 4.2. At a minimizing point the case So S, R] R, g 0
cannot occur. Thus every minimizing point satisfies the multiplier rule.

This follows at once from Theorem 4.1 since the only exceptional case has
been shown to lead to a contradiction.

5. Sufficient conditions

Here we formulate conditions on an admissible point that re sufficient
to ensure that it is a minimizing point. To this end we have

THEOREM 5.1. Let be an admissible point satisfying the multiplier rule
with 1, L continuous and having the lower bound of

dH(; r, r) dG(; r, r) + LdF(; r, r),

for all r on the unit sphere for which dF(; r) O, positive. Then there is a
neighborhood of such that for every admissible r in this neighborhood

G(r) > G(?).

To establish this result we proceed with an expansion type proof. The
function dG(r’; r, r) - LdF(r; r, r) is continuous in r’ at r’ uniformly
for r in the unit sphere. Since its lower bound at r for r in the unit
sphere and satisfying dF(; r) 0 is positive, there is a neighborhood of ?
in which this bound stays positive, i.e. for r’ near to ?

(5.1) dG(r; r, r) + idF(r’; r, r) > 0

for r in the unit sphere and dF(; r) O.
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By Taylor’s theorem [3, p. 650] we have for r near to

G(r) G() dG(; r )

+ In dG( - t(r );r , r )(1 t) dr,
(5.2)

F(r) F() dF(; r -)- Jo d2F( + t(r ?);r-- ),r-- )(1 t) dt.

But since r and are admissible, the second relation becomes

(5.3) 0 dF(;r ) - Jo dF( - t(r );r- ,r- )(1 t) dt.

Combining (5.2) and (5.3), we find

G(r) G(?) dH(; r )- dH( - t(r ); r , r )(1 t) dt.

But since satisfies the multiplier rule, the first term on the right-hand side
of (5.4) vanishes, and finally

G(r) G() d’H( - t(r );r , r ?)(1 t) dt.

But by (5.1) the integrand is positive for r near to . Thus G(r) > G(?).

6. Normal points

In what follows we shall need to add a restriction to the problem as formu-
lated in Section 1. We shall assume that if ? is the admissible point being
examined, then we have

I. There is a decomposition of R into the cartesian product of S and
another Banach space U such that"

(a) the region in which F and G are defined and of class C" is the product
of a region in S and one in U with (, ) having in the former and
in the latter region;

(b) the partial differential d, F(; s), which is defined on S with values in
the same space, has an inverse.

IEMMA 6.1. Under the assumption just made, every normal point (, )
is a limit point of admissible points. Further, if r is an arbitrary point in Rs
there is a one-parameter family r(a) of admissible points for a near 0 of class C"
such that

(6.1) r(0) , r’(0) r.
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Notice that the first part of the lemma is a consequence of the second. To
establish that, let r (s, u), and set

(6.2) u(a) -t- au.

Then the equation

(6.3) H(s, a) E(s, u(a)) 0

has an initial solution (s, a) (, 0) at which the differential of H with respect
to s, d, H(, 0; s) d F(; s), hs an inverse. Thus it is known [5, p. 100]
from implicit function theory that the equation has a solution s s(a) for
a near 0, passing through (, 0), and that this solution is of class C since F is.
Substitute this solution into (5.3), and differentiate. This yields at a 0 the
result

0 d,F(;s’(O)) - d,F(;u’(O)) dF(;s’(O)) - dF(;u);

but for r (s, u) in R] we have

0 f(r) dF(; r) d, F(; s) + d F(; u).

Subtracting one of these from the other, we find

0 d F(; s s’(O)),
which is equivalent to

s ’(0),

since d, F vanishes only at the origin. Thus we have s(0) , u(0) ,
s’(0) s, u’(0) u, as was to be proved.

THEOE 6.1. Let be a normal point which minimizes G. Then there is
a unique linear and continuous functional L defined on S such that the function

g(r) G(r) + LF(r)

has the following two properties: the functional dH(; r) vanishes at every r; and
the lower bound of dH(P; r, r), on the set of all r on the unit sphere for which
dF(; r) O, is nonnegative.

To prove this result we notice first that as consequence of assumption
I(b), the operator f(r) dF(; r) d, F(; s) - d F(; u) is such that

f(R) So= S.

Thus So is closed. Next the function K(a) G(r(a)) has a minimum at a 0,
and F(r(a)) 0 where r(a) is the function whose existence is assertedin Lemma
6.1; both these are consequences of Lemma 5.1. Thus

0 g’(o) dG(; r’(0)) g(r) 0

for all r in R, i.e. R R. Thus by Theorem 2.1 there exists a linear, con-
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tinuous L on S such that g(r) Lf(r) 0 for all r. Then the function

H(r) G(r) + LF(r)
is defined and of class C". Further, since dH(; r) g(r) Lf(r), we have

dH(; r) 0

for r in Rf. Also since K is a minimum,

d d
0 <- K" (0) - [G(r(a))]- da

[U(r(a))]-- dH(; r, r),

since F(r(a)) 0, for r in R. Finally we recall that r in Rf means that

dF(?; r) O.
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