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Introduction

This is study of when nd where the Stone-Cech compctifiction of
completely regular space may be locally connected. As to when, Bana-
schewski [1] has given strong necessary conditions for X to be locally con-
nected, and Wallace [19] has given necessary and sufficient conditions in
case X is normal. We show below that Banaschewski’s necessary conditions
are also sufficient and may be restated as follows" X is locally connected if
and only if X is locally connected and pseudo-compact (Corollary 2.5).
Moreover, the requirement that fiX be locally connected is so strong that it
implies that every completely regular space containing X as a dense sub-
space is locally connected (Corollary 2.6).
As to where fiX is locally connected, we note first (1.15) that the comple-

tion aX) of X in its finest uniformity is a subspace of X. Then X is
never locally connected at any point not in (aX) (Theorem 2.2) and is locally
connected at a point of X if and only if X is locally connected there (Corol-
lary 1.5). In the remaining case, we have only that if X is locally connected,
then fiX is locally connected at every point of (aX) (Theorem 2.1).

These results, together with some lemmas, are given in the first two sec-
tions. Two lemmas worthy of independent mention are Lemma 1.4" An
open subset U of fiX is connected if and only if U X is connected, and
Lemma 1.14" X is locally connected if and only if every normal covering
has a normal refinement consisting of connected sets. (The first of these
was obtained by Wallace in [19] for normal spaces.)

In our last section we discuss Wallace’s conditions which are stated in
terms of Property S, a name which is given in the literature to three related
but different concepts. We show that Property S in the sense of Wallace
is equivalent to local connectedness and countable compactness; then our
Corollary 2.5 appears as a direct generalization of Wallace’s result.

1. The lemmas

In this pper, we re concerned lmost exclusively with subspces of com-
pact, Hausdorff spaces. These are the completely regular spaces, and through-
out the paper "space" will abbreviate "completely regular space" unless an ex-
ception is made explicitly.

For any space X, let C(X) denote the set of all continuous real-valued
functions on X, and let C*(X) denote the set of all bounded functions in C(X).
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1.1. Every completely regular space is a subspace of an essentially unique
compact space fiX such that every f C*(X) has a (unique) extension
] e C(X) C*(X). The space X, which is usually called the Stone-(ech
compactification of X, is unique in the sense that if Y is any compact space
containing X as a dense subspace and such that every f C*(X) has a con-
tinuous extension over Y, then there is a homeomorphism of /X onto Y
keeping X pointwise fixed [3, 16].

If A c X, we use As to denote the closure of A in fiX. Two subsets
A, B of X are said to be completely separated if there is an f C*(X) such that
f[A] 0 and f[B] 1. Two subsets of X have disjoint closures in X if
and only if they are completely separated [3].

1.2. We denote by vX the subspace of fiX consisting of all p e fiX over
which every f C(X) has a continuous real-valued extension. If X vX,
then X is called a Q-space. The space vX is unique in the sense that if X
is dense in a Q-space Y such that every f C(X) has a (unique) extension

C(Y), then there is a homeomorphism of vX upon Y keeping X pointwise
fixed [5, 8]. By a theorem of M. H. Stone [16, Theorem 88], every f C(X)
has a (unique) continuous extension over/X into the one point compactifi-
cation R u 0 of the real line R. A point q of )X fails to be in vX if and
only if there is an f C(X) such that ](q) o [5].

1.3. In [1], Banaschewski showed that if fix is locally connected (i.e., every
point has a base of connected open neighborhoods), then (i) X is locally con-
nected, and (ii) X cannot have an infinite family of open subsets whose
closures are pairwise disjoint and have a closed union. In [6], it was noted
that (ii) is equivalent to X being pseudo-compact (i.e., every f e C(X) is
bounded). Equivalently, vX fiX.
Below (Corollary 1.5 and Lemma 1.6), we improve Banaschewski’s result

by making it local in character. In particular, we show that X cannot be
locally connected at any point x of X unless X is locally connected there,
and that fiX fails to be locally connected at any point not in vX. Moreover,
the converse of Banaschewski’s theorem is true. Indeed if X is locally con-
nected and pseudo-compact, and X is dense in a completely regular space Y,
then Y is locally connected (Theorem 2.4).
The following lemma was obtained by Wallace for normal spaces [19].

1.4. LEMMA. An open subset U of X is connected if and only i.f U r) X
is connected.

Proof. If U U1 u U2, where U1 and U2 are disjoint open subsets of fiX,
then U n X (U n X) u (U. n X), so U X is disconnected if U is dis-
connected.

If U X is disconnected, then there exist nonempty disjoint open subsets
V, V of X such that U X V u V. Since X is dense in /X,
(U X) Vlu V contains U. If V n V is empty, then

u o n u)
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is disconnected, and we are done. On the other hand, if there is a p e V n V,
construct a e C(X) such that (p) 0, and q[X U] 1. Define a
function f on X by letting f(x) (x) except where x e V. and (x) < 1/2,
and by. letting f(x) 1/2 otherwise. It is easily verified that f C*(X).
The continuous extension (1.1) ] of f over X coincides with q on V, so
](p) O. But ] _>_ 1/2 on V. This contradiction shows that U is discon-
nected, and completes the proof of the lemma.

Clearly {2, is a base of open neighborhoods of x e X if and only if {2, n X/
is a base of open neighborhoods of x in X. We may conclude"

1.5. COROLLARY. For each point x of X, X is locally connected at x and
only if X is locally connected at x.

1.6. LEMMA. X is never locally connected at any point not in vX.

Proof. If p X vX, there is an f C(X) such that (p) (1.2).
For i 0, 1, 2, 3, let Zi be the set of all x in X such that n

_
f(x) <= n - 1

for some integer n i (mod 4). The four sets Z cover X, so p is in one of
their closures in X, suy p e Z. Then p is not in Z, since Z1 and Z3 are
obviously completely separated (1.1). Hence there is a neighborhood U of p
disjoint from Z. If X is locally connected at p, then U contains a con-
nected open neighborhood U’ of p. By Lemma 1.4, U’ X is connected. So,
by the construction above, there is an integer n such that 4n __< f(x) <= 4n - 3
for all x U n X, contrary to the fact that (p) .

1.7. COROLLAn (Banaschewski).
locally connected and pseudo-compact.

X is not locally connected unless X is

For the remainder of the paper, we shall need some elementary facts about
normal coverings and uniformities in the sense of Tukey [18].

1.8. An open covering v of a space is said to be a refinement of a covering u
if every member of v is a subset of some member of u. The open covering
v {V} is said to be a star-refinement of the open covering u if every V is
contained in some member U of u in such a way that U contains every mem-
ber of v that meets Vs. An open covering u is normal if there is an infinite
sequence {u"} of open coverings beginning with u u, such that u"+ is
a star-refinement of u". A binary open covering {U, V} is normal if and
only if X U and X V are completely separated [18, V. 9.3].
Some insight into this concept may be gained by the following remark

which is given in [9, Corollary 2.2].

An open covering u of a space X is normal if and only if there exists a metrizable
space Y, an open covering v of Y, and a continuous function f on X onto Y such
that f-(v) is a refinement of u.

1.9. We presuppose a familiarity with Tukey’s development of uniform
spaces, but we will repeat some known facts about uniformities, primarily
those described with the aid of nonstandard terminology. The open cover-



STONE-ECH COMPACTIFICATION 577

ings of a uniform space that are members of its uniformity are called large
coverings. Every large covering is normal. A filter ff on a uniform space
X is called a Cauchy filter if every large covering contains a member of ft.
A uniform spaceX is complete if every Cauchy filter onX converges. Every
uniform space uX is a dense subspace of a unique complete uniform space
called the completion of X, such that every Cauchy filter on X converges
to a point in (#X). A uniform space is called precompact if its completion is
compact. There is a finest uniformity on a space X compatible with its
topology. It consists of all normal (open) coverings of X. The associated
uniform space is denoted by aX.
The next two lemmas are due essentially to Tukey and Doss.

1.10. IEMMA. For every point x of a space X and every open neighborhood
U of x, there is a closed neighborhood V of x such that U, X V is a normal
covering.

Proof. There is an f C(X) such that f(x) 0 and fiX U] 1. Let
V {x X: f(x) _-< 1/2}. Then it is easily seen that X U and V are com-
pletely separated. So, as noted in 1.8, U, X V} is normal.

1.11. LEMMA. The space X is pseudo-compact if and only if every normal
(open) covering of X has a finite normal subcovering.

Proof. In [4], Doss has shown that X is precompact in all its uniformities
if and only if X is pseudo-compact. Tukey [10, p. 60] has shown that a uni-
form space is precompact if and only if every large covering has a finite large
subcovering. (Tukey uses "largely compact" for our "precompact".) But
then X is precompact in all its uniformities if and only if aX is precompact,
so we have the lemma.
The next lemma is due to A. H. Stone. Although a weaker statement is

made in [15, p. 979], the.following is actually proved therein.

1.12. LEMMX (A. H. Stone). Every normal covering has a normal refine-
ment that can be written as the union of countably many collections
n 1, 2, such that for each fixed n, the V,’s have pairwise disjoint closures.

1.13. Recall that a space X is locally connected (connected im kleinen) at a
point x if every neighborhood of x contains a connected open neighborhood
(connected neighborhood). Locally, im kleinen connectedness is a weaker
property; but in the large the two are equivalent [10, p. 94]. Therefore, to
show that a space is locally connected, it suffices to show that it is connected
im kleinen at each of its points.
A space is locally connected if and only if components of open sets are open.

The union of a family of connected sets that meet a given connected set.is
connected [21, p. 10, p. 45].

1.14. LEMMA. A space X is locally connected if and only if every normal
covering has a normal refinement consisting of connected sets.
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Proof. Let U be any open neighborhood of a point x of X. By Lemma
1.10, there is a closed neighborhood V of x such that U, X VI is a normal
covering Of X. Hence the sufficiency follows.
To prove the necessity, we will show that if U,/ u is a normal covering

of a locally connected space X, then the covering v consisting of all of the
components of the elements of u is normal.

Since u is normal, there is a sequence of (normal) coverings [u’l with
u u and such that un+l is a star-refinement of un. If v denotes the set of
all components of elements of u, then since X is locally connected, v" is an

vn+lopen covering (1.13). Moreover, if V e then V is a component of some
U e u+1, and therefore V is a subset of some U’ u" which contains every
member of u+ meeting U. Afortiori, U contains all the elements of vn+l

that meet V. But, as noted in 1.13, this latter is a connected set, and thus
is a subset of a component of Up. Therefore v+ is a star-refinement of v,
and hence v is normal.

Next, we will make some remarks comparing vX with (aX).
1.15. The completion (aX) of X in its finest uniform structure is a subspace

of ,X.

Proof. As was shown by Tukey [18, VI. 5.5], every f C(X) is uniformly
continuous on aX and hence has a continuous extension over (aX}, which in
turn has an extension over v(aX}. Thus X is dense in the Q-space v(aX},
and every f C(X) is extensible over it. From (1.2), there is a homeo-
morphism of v(aX) upon vX keeping X pointwise fixed, which serves to
embed (aX} in vX.

1.16. Actually, under very weak hypotheses on X, we may identify vX
with (aX}. More precisely, Shirota showed in [13] that if X has a base of
open sets whose cardinal number is not strongly inaccessible from R0 in the
sense of Tarski and Ulam, then X is a Q-space if (and only if) it admits a
uniformity in which it is complete. Actually this hypothesis may be weak-
ened a bit further, but we shall not dwell on the matter since we do not use
Shirota’s theorem explicitly in the sequel. Moreover, Tarski [17] has shown
that it is consistent with the axioms of set theory to reject the existence of
strongly inaccessible cardinals.
To see that vX and (aX} coincide under the hypothesis stated above, it

suffices to note that Shirota’s theorem yields that (aX} is a Q-space, and that
(aX} contains X as a dense subspace so that every f e C(X) has a continuous
extension over (aX} (1.2).
The next lemma, which we will need explicitly below, is also due to Shi-

rota 13].

1.17. LEMMA (Shirota). vX is the completion of X relative to the uniformity
defined by all countable normal coverings.

Our last lemma, which is due to M:orita, gives us way of passing from
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normal coverings of X to normal coverings of (aX}. For any subset A of X,
we let A denote the closure of X in (aX}, and we let A* denote the interior
(in (aX}) of i. The proof of this lemma may be obtained by reading in the
order given [11, Theorem 3], [12, Lemma 1], [11, Lemma 9] and by recalling
that every large covering is normal (1.9).

1.18. LEMMA (1V[orita). For any normal covering lUg} of X, {U*} is a
normal covering of (aX}.

2. The theorems
2.1. THEOREM. If X is locally connected, then (aX} is locally connected,

and fiX is locally connected at each point of (aX}.

Proof. Let u {U} be a normal covering of (aX}, and let u be a de-
scending sequence of star-refinements. Let v denote the restriction of u to X.
Obviously v+1 is a star-refinement of u", so v is normalmas is v. By Lemma
1.14, v has a normal refinement w [We} consisting of connected open sets.
By Lemma 1.18, W$} is a normal covering of (aX}. Each We is contained
in a member U of u which contains every member of u meeting We a for-
tiori U contains We and hence W. Finally, each We w is connected and
dense in W$, so W$ is connected. By Lemma 1.14 again, (aX} is locally
connected. The second part of the theorem follows from the above, Corol-
lary 1.5, and the fact that (aX} fix (1.15).

2.2. THEOREM. fiX is not locally connected at any point not in (aX).

Proof. By Lemma 1.6, we need only consider points of vX. Suppose that
p is in vX, but not in (aX}. Let denote the filter of all U n X, where U
is a neighborhood in X of p. Since p is not in (aX}, is not a Cauchy filter
on (aX}, so there is a normal covering U} of X(= large covering of aX) no
element of which is in . By Lemma 1.12 (and the definition of normal cover-
ing) we may replace [U] by a normal star-refinement [V}, n 1, 2,
where for each fixed n, the V’s have pairwise disjoint closures. Since
is a filter containing no U, it contains no . However, if for n 1, 2,
we put V. UV, then {V} is a countable normal covering. But by
Lemma 1.17, vX is the completion in the uniformity on X defined by all
countable normal coverings, so is a Cauchy filter relative to this uniformity,
whence must contain some V.. This means that for this n, V U n X
for some neighborhood U of p. Since X is dense in X, V contains U, and
hence is a neighborhood of p. If X is locally connected at p, then there is
a connected open neighborhood U contained in V By Lemma 1.4, U’ X
is connected and hence is contained in one of the sets . But U’ X is
in , and by the above no can be in . Hence tX cannot be locally con-
nected at p.
From Theorem 2.1, Theorem 2.2, Corollary 1.5, and the fact that (aX) X,

we obtain the following.
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2.3. COROLLAaV. X is locally connected if and only if (aX) is locally con-
nected.

Note that in the corollary above, we cannot replace (aX) by vX without
some cardinality restriction on X as in 1.16. For if there exists a discrete
space X that is not a Q-space, then X is locally connected, but vX is not
locally connected.

2.4. THEOREM. If X is locally connected and pseudo-compact, then any
(completely regular) space Y containing X as a dense subspace is locally con-
nected.

Proof. Let X be dense in Y. For any y e Y, and any open neighborhood
U of y, by Lemma 1.10, there is a closed neighborhood V of y such that
U, Y- V} is a normal covering of Y. Then /UnX, X- V} formsan

open covering of X which is clearly normal. Since X is locally connected,
by Lemma 1.14, this open covering has a normal refinement consisting of
connected (open) subsets of X. Since X is pseudo-compact, the latter has
a finite subfamily {Fi} that covers X. Let G denote the closed subset of Y
which consists of the union of the closures in. Y of all those Fi such that y
is a limit point of F. None of these F can be contained in X V; hence
they are all in U n X, so G is a subset of the closure in Y of U. Now, since
Y is regular, the closed neighborhoods of y form a basis at y. Moreover,
Y G is a subset of the union of the closures in Y of all those Fi of which y
is not a limit point, so G is a neighborhood of y. Finally, G is a union o con-
nected sets having a point in common, and hence is connected (1.13). Hence,
Y is connected im kleinen at each of its points, so Y is locally connected (1.13).
The next two corollaries follow from Theorem 2.4 and Corollary 1.5.

2.5. CooL,. fiX is locally connected if and only if X is locally con-
nected and pseudo-compact.

2.6. COIOLA. X is locally connected if and only if every (completely
regular) space Y containing X as a dense subspace is locally connected.

We conclude this section by remarking that under the added assumption
that Y is compact, Corollary 2.6 can be obtained more simply. For, Whyburn
[20] has shown that every closed continuous image of a locally connected
space is locally connected, and by a theorem of Cech [3], every compact
space containing X as a dense subspace is a continuous (closed) image of X.
(We are indebted to E. Michael for the reference to Whyburn’s paper.)

3. Property S
The term Property S has two definitions in the literature which are not

seriously liable to be confused. In each case, the idea is that a set having
Property S should be locally connected and "smooth". The original formu-
lation of Sierpifiski [14] is metric" for every real > 0, the space is a union of
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finitely many connected sets of diameter less than . This definition is used
e.g. in Bing’s solution of the convex metric problem [2], and in a textbook [7].
However, in the theory of generalized manifolds [21], it seems to be con-
venient to use a related property that is topological and relative; a subspace Y
of a regular space X has Property S if every open covering of X can be re-
fined on Y by a finite family of connected sets.
Wallace has introduced a third property of the same name, and has given

some applications of it in the theory of extension spaces [19]. He says that
a topological space X has Property S provided every finite open covering of
X has a finite refinement consisting of connected sets. We shall show below
that this use of the terminology is unnecessary, at least for regular spaces.

3.1. THEOREM. The following properties of a regular space X are equivalent:

(a) X has Property S in the sense of Wallace.

(b) Every finite open covering has a finite refinement consisting of connected
open sets.

(c) X is locally connected and countably compact.

Proof. (a) implies (c). Suppose that X has Property S. For any point
x of X, let U denote an arbitrary open neighborhood of x and let V be any
closed neighborhood of x contained in U. Then {U, X V} has a finite
refinement {F} consisting of connected sets. By the argument given in the
proof of Theorem 2.4, the union of the closures of those F of which x is a
limit point is a connected neighborhood of x contained in U. Thus X is
connected im kleinen at each of its points, and hence is locally connected
(1.13).
Suppose next that X is not countably compact, and let D {d} denote

a countably ,infinite closed discrete subset of X. Since X is regular, u sim-
ple induction yields a sequence {UI of pairwise disjoint open sets such that
each U is a neighborhood of d. Clearly, /X D, (J U} has no finite
refinement consisting of connected sets.

(c) implies (b). Suppose that X is locally connected, so that components
of open sets are open (1.13). We shall assume that (b) does not hold and
construct an infinite closed discrete subset of X. Let IVy} denote a finite
open covering of X that has no finite connected open refinement.

Consider the open components C,} of the sets V/. Successively for
each j, delete those C., which are contained in the union of (1) all V for
> j, and (2) all C,, < j, such that C, was not deleted at the ]t step.

The remaining C. still form an open covering refining {V.}, so there are
infinitely many of them. Hence there are infinitely many of them in some
one set V-. For this j, each C., contains a, point p, not in any other un-
deleted component C.. But, the infinite set {p,} has no limit point in any
of the open sets C which form a covering of X. Hence {P-/ is closed and
discrete, so X is not countably compact.
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Clearly (b) implies (a).
In [19], Wallace showed that if X is a normal space, then X has Property S

if nd only if fix hus Property S, and noted that for compact spaces Property S
is equivalent to local connectedness. Since countably compact (completely
regular) spaces are pseudo-compact, Walluce’s characterization follows from
our Corollary 2.5 and Theorem 3.1.
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