PAIRS OF MATRICES OF ORDER TWO WHICH GENERATE
FREE GROUPS'

BY K. GOLDBERG AND M. NEWMAN

Throughout this paper A = (as;) and B = (b;) will denote rational integral
unimodular matrices of order two which are not of finite period.

Let us say that an element of a matrix is dominant if it is larger in absolute
value than any other element of the matrix.

Our object is to prove the following theorem:

THEOREM. If aiy is dominant tn A and by is dominant in B, then A and B
generate a free group.

The first result in this direction was due to I. N. Sanov [1] who proved that
A = <(1) ?) and A” generate a free group. The methods used in this paper
are derived from Sanov’s proof of his result.

More recently J. L. Brenner [2] has shown that A = <(1) 1

m> and A" gen-

erate a free group for all real m = 2.
These results were brought to our attention by Professor Brenner and a
generalization was suggested by O. Taussky-Todd.

1. Two lemmas

We find it convenient to separate the proof of the theorem into two parts
which are described by the lemmas below.
We define A" = (a{’) and B" = (b{}’) where n is an integer.

n)

LemMa 1. If oy’ isdominantin A™ and bsY is dominant in B™ for all n # 0,
then A and B generate a free group.

LeMMA 2. If ai is dominant in A, then o'y’ is dominant in A" for alln # 0.

If A has trace ¢ and determinant d, then the fact that A is not of finite

period is used only to imply that ¢t ¢ O ford = —l and |¢| = 2ford = 1.
The fact that @, is dominant in A implies |a| —2, |anax| —1,
|an| — |axu| and | @ — au| — | @ — ax | are all nonnegative: | ai, | is

at least 2 because at least one other element is not 0, neither diagonal element
vanishes because then | a1 | > 1 would divide the determinant d = +1, ay is
the least element because | @11 @ — @2 an | = 1 and |an| — |au| = 1, and
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the last inequality follows from | au(ae — @u) — aun(az — aun) | = 1 when
| an | > 1,and for | au | = 1 by an enumeration of cases.

2. Proof of Lemma 1
Suppose |z | = |y |,z # 0, and set

1) @yd = (@ y).

We shall show that |y’ | = |z | and |y | = |2’ |.
First we have

|y | = |aee + any| = || — |any| = (|| — |ax]2z] = |2].

Second we may choose z, a11 , and ai» positive while retaining the dominance
of a1z This may be done constructively by premultiplying equation (1) by
sgnz = z/| 2 | and postmultiplying by the matrix diag(sgn a1 , sgn az).

Then 2/ = au 2 + any = 0 since ay = |aun| and z = |y |, and 3’ =
a2 % +tany > 0since aip > |an|andz = |y|. Thus

|y | = 2| =9 — 2 = (a2 — auw)x + (a2 — an)y
2 (2 — au — |G —an|)|y| 2

0.

Similarly, suppose |y | = |z | and set (xy)B = (2’ y’). Then |2’ | = |y|
and [2' | 2 |y |.

These remarks are based solely on the dominance of a2 in A and by in B.
Therefore if we assume that a{3’ is dominant in A™ and b5} is dominant in B"
for all n 5 0, the same inequalities will hold when A is replaced by A" in
equation (1) and B is similarly replaced by B”.

Now consider an arbitrary product of powers of A and B:

T = A B A% ... with s, # 0forn = 1,2, --- .
We may assume that s = 0. Write

(1 0)A% = (z0Yo), (X2n Yon) B = (®ant1 Yon1)
and
(902n—1 ?jzn—l)As“ = (xzn yzn)~

By our comments above, if | 22,1 | = | yan—1 |, We will have | yon | = | Zan—1 |
and | yan | = | @2n |, 50 that | Zewr1 | = | Yon | a0d | Zanga | = | Y2nsa | and so on.
Since we begin with the vector (1 0) we have by induction

lyo ] S| S vl = S |2 S Y| S 20| S -0

But |7 | = |a3” | = 2 so that either | 2. | or |y, | is greater than 1 for
every n. It follows that (x. y.) # (1 0) for every n, and therefore T' 5~ I.

Thus no nontrivial product of the powers of A and B can reduce to the
identity which proves that A and B generate a free group.
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3. Proof of Lemma 2

Let t be the trace and d the determinant of A. We may assume ¢ = 0,
since otherwise A may be replaced by —A. We may assume a,, = 0, since
for ¢ = 41 the similarity

e 0\ a(¢ 0\ _ [ au eap
0 1 0 1/ \ean am
takes a1z into £a;2 and leaves ¢ unchanged. Suppose that x = =+1 is fixed

but arbitrary. Set

(n) )
A, = al; - ﬂaﬁl .

(The discussion is the same for the three remaining cases). Then

0) (0)
Ao = a1 — po1y = —up,

[¢Y) L
Ay = @12 — Mol = Q12 — MO,
and

Appr = thy — dBuy, n = 1.
We see that always Ay = 1. Assume first that ¢ = 2. Then
Ay = tA] — dAy = 2A1 +du = Ay
Thusif A,—; > 0 and A, = A, , then A, > 0 and
Ay = tAy — AAuy = 28y — Ay = A,

Therefore A, > 0 forn = 1 and so

1%

@) ais’ > |ail’ |, nzl1
Ift < 1,sothat t = 1, thend = —1. Here

Ay = tA — dAg = Ay + Ag = Ay — p.
If Ay = 2, then A, = 1, and A, is clearly positive forn =z 1. If p = —1,

then A, = 2, and here also A, is positive for n = 1. Thus we need only con-
sider o = 1 and A; = 1. This however leads to a contradiction; a;» can not
be dominant in this case, and so (2) is always true. If we note in addition
that aiT™ = da$y, a3™ = —da$y’, afi™ = —da$l’, afs™ = dail’, then the
proof of Lemma 2 is complete, and so the theorem is proved.
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