THE IRREDUCIBLE REPRESENTATIONS OF A SEMIGROUP
RELATED TO THE SYMMETRIC GROUP

BY EbDWIN HEwiTr aAND HERBERT S. ZUCKERMAN!
1. Introduction

A. H. Clifford [2] has studied the representations of a class of semigroups.
His results lead to a complete classification of the representations of a par-
ticular class of semigroups having considerable independent interest. These
semigroups are the semigroups ¥, defined as follows.

Consider a finite set consisting of say » elements; for the sake of definite-
ness we may consider the set {1, 2, ---, n}. Let T, be the set of all single-
valued mappings of this set onto or into itself. For f, g ¢ T, let fg be the
element of ¥, such that fg(?) = f(g(?)) (¢ = 1, .-+, n). With this definition
of multiplication, T, is obviously an associative system, 7.e., a semigroup.
The order of T, is n”; T, contains the symmetric group &, , properly if
n > 1; T, is noncommutative if n > 1.

By the term (@, 8) matrix, we shall mean a matrix with « rows-and g8 col-
umns and complex entries. A representation of a semigroup @ is a homo-
morphism M of G into the multiplicative semigroup of all (¢, &) matrices
(a an arbitrary positive integer) such that M(x) # O for some z e G. If the
set {M(x)}scq is an irreducible set of matrices (z.e., if every (@, «) matrix is
a linear combination of matrices M (z)), then M is said to be an irreducible
representation of G. The identity representation is the mapping that carries
every z e (7 into the identity matrix.

In the present paper we give an explicit determination of all irreducible
representations of T, . The idea of studying ¥, was suggested to us by D. D.
Miller (oral communication). The problem of obtaining representations of
semigroups as distincet from groups seems to have been first studied by Suske-
vi¢ [6]. A. H. Clifford [2] has, as noted above, given a construction of all
representations of a class of semigroups closely connected with T,. Poni-
zovskii: [5] has pointed out some simple properties of ¥, . In the present
paper we also relate the irreducible representations of ¥, to the semigroup
algebra £,(T,) (notation as in [3]).

2. Definitions

Let f be an element of ¥,. Then f splits the set {1, 2, ---, n} into a
number, p, of nonvoid, disjoint subsets, each of the form {z:f(z) = a} for
some a in the range of f. Obviously f is determined by these sets and the
corresponding a’s. We will set down a unique notation for the elements
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of T,. For a nonvoid subset s of {1, 2, ---, n}, let s* be the least element

of s, Now write the sets {z:f(z) = a} in the order s;, sz, -+, 8, , Where

st < sy < --- <8y Wecanrepresent f by the symbol <Zl ZZ o ;” , mean-
(e G

ing by this that every element of s; is mapped by finto a; (¢ = 1,2, - -+, p).
It is easy to see that every element f of T, occurs once and only once among

the '2';22 2’>,Where 1< 9p=n,thesetss, -, s, are a decomposition
P

of {1, 2, ---, n} of the kind described, and a, a., - -+, a, are any distinct

integers lying between 1 and n. From now on, the expression sy, Sz, « -, 8

will always mean a decomposition of {1, 2, ---, n} into nonvoid, disjoint

subsets with sT < sy < -+ < s5. The letters ¢ and w will be used similarly.

Also a1, a2, + -+, a, will always mean any ordered sequence of distinct inte-

gers from 1 to n; the letters ¢ and d will be used similarly
Forp = 1,2, .-, n, let B, be the set of all elements of &, whose range

Sud e s”) for a fixed p. Strictly
ayagz -+ Gp

speaking, 8, depends upon n as well as p. However, only one value of n
will be treated at any one time, unless otherwise specified. The set B, is
obviously the symmetric group ©,. The set By is a semigroup with the
trivial multiplication fg = f. No other 9B, is a subsemigroup of T,.. It

will be convenient to have the semigroup 8B, u {z}, where multiplication is
defined by

contains just p elements: that is, all <

2z =fz=2z =2z forall feB,,
_ {fg asin T, if fg € B,
B zif fg non € B, .
3. Preliminary theorems

We make a first reduction of our problem by showing that irreducible
representations of T, must behave in certain special ways.

3.1. THEOREM. The two-sided ideals of T, are exactly the sets
f=1%i (p=172)'°"n)°

Proof. Let & be a two-sided ideal in T, , that is, T, u T, F C &, and
0 # & c .. Let p be the largest integer such that I n B, # 0, and let

= <81 Sp cv 31») be in §. Let (tl by -- tq) be any element of T, with

a1 0y - ** Op C1Co - * " Cq
g = p. Let wi, wa, -+, w, be the sets {a}, {a2}, -+, {ae},
{a1,ag, + -+, ag1}’ (’ denotes complement in {1, 2, - -+ , n}), ordered as pre-

scribed in §2. Finally, let d; (1 = 1, 2, ---, ¢q) be defined as ¢; , where j is
such that a; e w; . Then we have

tltz”'tq — Wy We *** Wq 8182"‘81,) b oty - tq>
C1Cy v+ Cq dydy + - do\G1as -+ a/\st 83 -+ s5)"
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(Recall that the product fg of transformations f and ¢ is the transformation
obtained by carrying out g and then f.) Conversely, it is clear that every set
U7 1 9B, is a two-sided ideal in T, .

3.2 TaeorEM. Let M be an drreducible representation of T,. The set
{f:if eZ., M(f) = 0} is either void or one of the sets

219, (p=1,-,n—1).

Proof. 1If the set {f:f ¢ T, , M(f) = 0} is not void, then clearly it is a two-
sided ideal in T, . The result now follows from Theorem 3.1.

3.3 TueoREM. Let M be an irreducible representation of %, , and let p be
the least integer such that M(f) # O for some f ¢ B, . Then the set of matrices
{M(f)}sen, is irreducible.

Proof. Let m be the degree of M. Since M is irreducible, the set of all
matrices Y s, asM(f) (the a; are arbitrary complex numbers) is the algebra
of all (m, m) matrices. Since U2, B;is a two-sided ideal in T, , the set A
of all matrices Y, a;M(f), summed over all f in UZ; B;, is a. two-sided ideal
in the algebra of all (m, m) matrices. Since M (f) is different from 0 for some
feB,, A is not the zero ideal. Since the algebra of all (m, m) matrices is
simple, A is the algebra of all (m, m) matrices, and this proves the theorem.

3.4 LemMA. Let q be an integer such that 2 £ ¢ = n — 1, and let g be any
element of By—1. Then there are elements f and h in B, such that hf = g.

Proof. Let the range of ¢ be {ay, -+, a,1}, so written that ¢ (@)
contains more than one element: g '(a,1) = {b} U s, where s # 0 and b
non es. Let f be defined by

((J ifweg(a), =j=g¢—2
Sf(x) =3Lq— lifx =0,
q ifzes.
Let h be defined by

A

IIA
A

c ifg+1=2a =n,

where ¢ is different from a;, - -+, a,.1and 1 £ ¢ £ n. Then g = hf.

a fl2x=2qg-1,
h(x) = yae1if x = ¢,

3.5 TueorEM. Let M’ be an irreducible representation of the semigroup
B, u {z} (1 = p < n) that is not the identity representation. Then there is one
and only one representation M of T, such that M(f) = M'(f) for f ¢B,. Fur-
thermore, M(g) = O for g e UZS' B;.

Proof. Suppose that M is such a representation. If g ¢ 8,_;, then, by
Lemma 3.4, g = hf, where b, f ¢ 8,. Hence

M(g) = MMM () = M'(WM'(f) = M'(hf) = M'(z) = 0,
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since it is clear that M'(z) must be 0. Repeated applications of Lemma 3.4
show that M(g) = O forall g e UPS' B, .

Since M’ is irreducible and M’(z) = 0, there is a linear combination
Zfessp a;M'(f) equal to the identity matrix I. Let g be any element of T, .
Then fg e U2, B; if f ¢DB,, and M(g) = IM(g) = D sex, a;M(fg). Since we
have just shown that M is completely determined by M’ on U_, B;, it follows
that M is unique if it exists at all.

We now show that there is an M of the kind required. Let M”(f) =
M'(f) for f €8, and M”(f) = 0 for f e U5 8,. Obviously M” is a repre-
sentation of the semigroup Uj-, B;. Choose a fixed linear combination
Zfeﬁp asM”(f) that is equal to I. Now let M(g) = ZM;,, asM” (fg), for
all geZT,. Since fgeU; B for feB, and geT,, M(g) is well defined.
To show that M is a representation of T, , we need to know that

3.5.1 M(g) = Zeeﬁp (2 ”(96) ge Iﬂ .
To prove this, take e in B, . Then

M@M"(e) = 2ses, s M" (f)M" () = 2 sen, asM" (fge)
= 2w, aM" (NM” (ge) = IM”(ge) = M”(ge).

From this it follows that D .w, aM(g)M”(e) = D eew, 2M”(ge). Since
Zee’lﬂ‘, aM”(e) = I, we have 3.5.1.
Now let g, h be any elements of T, . Using 3.5.1, we have

MM () = 3 sev, asM” (fg) 2 ece, " (he)
= 2rew, 2iecn, s (fghe)
= D sew, ayM” (fgh) D cen, aM” (€)
= M(gh).

Ir

Hence M is a representation of T, . Finally, if g ¢ B, , then

M(g) = 2 sen, asM”(fg) = 2sew, asM”()M”(g) = IM”(g) = M'(g).
This completes the proof.
The next theorem is not strictly necessary but may be of some interest.

3.6 TueEoREM. Let M be any representation of T, , and let f, g be in B, ,
1 = p = n. Then rank M(f) = rank M(g).

Proof. We may suppose without loss of generality that M(p) is non-
singular for ¢ €¢®B,. Let {ai, as, ---, a,} be the range of f, and let

fur, us, -+, up} be elements of {1, 2,---, n} such that f(u,)) =
a; (1 =1,2,---,p). Let {aps1, -+, a.} be {a1, az, -+, a,}’, and simi-
larly {wp41, -+, wa} = {wr, wa, -+, up}’. Let ¢ be the element of B,

such that ¢(7) = u, (¢ = 1, 2, ---, n) and ¢ the element of B, such that
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Y(a,) =<1 (@ =1,2,---,n). Let f/ = Yyfo. Then
76) ={z‘if1 =i=<p,

J,forsome j(0), 1 = j < p,ifp+1 =217 = n
We define a ¢’ for the element g in the same way. The equalities f'¢’ = ¢/,
g'f’ = f" are easy to verify. Hence rank M(g’) < rank M(f') and rank M (f")
=< rank M(g’), and so we have rank M(f’) = rank M(g’). The matrices
M(p) and M (y) are nonsingular, since ¢ and ¥ are in the symmetric group
B, . Therefore rank M(f) = rank M(f’) and rank M(g9) = rank M(g).
This completes the proof.

3.6.1 Note. Theorem 3.6, Lemma 3.4, and Theorem 3.5 show that if M is
any representation of ¥, as in 3.5, then all matrices M(f) are singular for
feB, 1 < p < n).

We now summarize the results of this section.

3.7 THEOREM. Let M be an trreducible representation of .. Then there is a
B, (1 = p =< n) such that M(f) = 0 for all f e UL B; (U)=y B; is void) and
M(f) # 0 for some f € B, . The matrices {M(f)}sen, are an irreducible set, and
all have the same nonzero rank. If 1 < p < n, all M(f) for f € B, are singular.
Setting M (z) = 0, we obtain from M an irreducible representation of B, u {z}.
Conversely, every irreducible representation of B, u {2} that is not the identity
represeﬁztatz'on determines a unique irreducible representation of T, that is 0
on U}: 58,' .

3.8 The semigroups B, u {z} are completely simple, and Clifford [2] has
given a general method for obtaining the representations of such semigroups.
Since we wish to write the irreducible representations of B, u {z} as explicitly
as possible, it seems advisable to write out all of the details.

4. Necessary conditions for an irreducible representation of B, u {z}

Throughout this section, n and p are arbitrary but fixed. For general
n and p, B, is a complicated object. To render it tractable, we consider
elements of two special kinds.

4.1 DerFINTION. Let

w(an, az, -+, 0,) = ;

ay Qg * Ap—1 ap
and let
S1 8 ¢ sp
0(81,82,"',8p)= .
1 2---p
Thus u(a: , az, - - - , a,) is an element of B, that depends only on the numbers
1, Q, -, ,and v(s;, s, -+, Sp) is an element of B, that depends only

on the sets s1, 82, **+, Sp.
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4.2 We now have:

S1 Sg t* Sp
4.2.1 u(alya27 e ,a,,)v(sl,s2, )Sp) = ’

@ as e ap

422 (@, ag, -, a)u(l, 2, -+ p) = ular, az, *+, Gp);

423 w(l,2, -+, p)? =w(l,2, -, Dp);

424 wu(l, 2, «- ,p(s1, 82, -, 8) = V(S1, 82, ", S);

425 o(si, 8, ,su(l, 2, -+, p) = { w2, it =,
2 if s5 > p.

Equalities 4.2.1-4.2.5 can be checked directly from 4.1.

4.3 We now suppose that we are given a fixed but arbitrary representation
M of B,u {z}. Irreducibility will not be assumed until needed. The repre-
sentation M may have many equivalent forms. Since u(1, 2, ---, p) is
idempotent (4.2.3), M(u(1, 2, ---, p)) is an idempotent matrix, and hence
can be put into the form

I 0
43.1 < .
00

Without loss of generality, we may suppose that M(u(l, 2, ---, p)) has
this form. Let & be the degree of the identity matrix I in 4.3.1, and let I
be such that the matrix 4.3.1 has degree &k 4+ . We now write

A(a,a,...,a,) B(a,a’...,a)
43.2 M(u(al,@,...,ap))=< 1, Q2 D 1,02 > ,
Clay,as, -++,ap) Dlai,as, -+, ap)

where A is a (k, k) matrix, B is a (k, [) matrix, C isan (I, k) matrix, and Disan
(1, )) matrix. From 4.2.2, we see that M(u(as, -+, ap))Mu(1,2, --- ,p)) =
M(u(ay, -+, ap)). Since

A B\/I 0 A 0
¢ D/\0 o ¢ o)’
it follows that B(ay, ---, ap) = 0 and D(ay, -+, a,) = 0. We next write

<A(81, -+ 8) Bsy, -+ sp)>
433 M®w(sy, -+ sp) = ;
C(Sl,"'sp) D(sl,"'sp)

where the sizes of the blocks in 4.3.3 are just as in 4.3.2. From 4.2.4, we
find that C(s;, -+, sp) = 0 and that D(s;, -+, 8p) = 0. Equality 4.2.5
shows that

434 A(st, * - . 8p) = bz I,
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where 8,3, is the Kronecker é-function. From 4.3.1, we see that
4.3.5. C(l’ 2, - 1p) =0, B({l}: {2}7 ) {p - 1} ’ {p; ,’I’L}) = 0.

44 1If ¢ and ¢ are 1-to-1 mappings of the set {1, ---, p} onto itself
(i.e., elements of &,), then 4.1 implies that

441 ule(l), -, e(PuED), -+, ¥(p)) = wle®@)), -+, @(P))).

Then, as in 4.3, we see that

442 ApQ), -+, o(@NAWQD), -+, ¥(@) = Ale@(1)), - -, e@(P))).

Thus the matrices A(as, -+, ap) for which {a1, ---, a,} = {1, -, p}
produce a representation of &, .
TFor a positive integer a, let ¢’ = min (a, p). Then, for 1 £ a £ n,

u(l, - -+, p) carries a into a’. From this it is easy to see that
u(a{7 ,alp)ifa;’ 7a;7
443  u@, -, pula, -, ap) = are all different,
z otherwise.

In the usual way, 4.4.3 implies that
444 Ada a,) — {A(a{, v, ap)ifar, -+, ap are all different,
4. L, @) =
0

otherwise.

The matrices A(e:, - - - , €,) were defined in 4.3.2 only for sequencese; , -+ , ep
with no repetitions. We now define A(e1, -+, ¢,) as 0 if ¢; = ¢; for some
distinet 7 and 7. 'With this convention, 4.4.4 becomes
445 Aay, -+ ,a,) = Aar, -+, ap),
and 4.4.2 can be extended to
44.6 Alar, -, ap)Aler, -, ) = Alasy, -+, az).

4.5 We now discuss the matrices C(a: , - - - , ap) defined in 4.3.2. If ¢ is
a 1-to-1 mapping of {1, ---, p} onto itself, then
4.5.1 u(an, -+, ap)ule(1), -+, 0(@)) = @y, "+ A )-
This is easy to verify. Our usual steps give us
4.5.2 Clapay, "+ 8o ) = Clar, -+, ap)Ae(l), -+, o(p))
and equivalently
4.5.3 Clar, -+, ap) = Clapay, -+ i JA( (1), -+, 07 (D).
For each ordered sequence a = a1, as, - -+, ap, We define the function p.(¢)
(2=1,2,---, p) so that a,,0) < @py < *** < Apm - Since the a; are

all distinet, we can do this. Plainly p, is uniquely defined. Now we have

454 C(al » " ap) = C(apa(l) y 5 Qpg(p) )A(pzl(]-)y Tt p:l(p))’
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which follows immediately from 4.5.3. Thus, if the representation
A(e(l), - -, o(p)) of &, is known, and if C(a:, - - -, a,) is known for mono-

tonically increasing a;, - - -, a,, the matrices C(a1, - -+ , a,) are known for
allay, -+, ap.

4.6 We now discuss the matrices B(s;, ---, 8p) defined in 4.3.3. For
every family of sets s = s;, 82, - -+, Sp, We define the function
O'S(i) (Z= 1?2"")”)
so that 7 ess, 5 . The equality
u(os(ar), - - -, as(ayp)) if all o,(as)

461 v(s1, -, spula, -+, ay) = are different,
2 otherwise,

is not hard to verify. Forl £ b < by < --- < b, < n, 4.6.1 and our usual
steps give us

'B(Sl y T SIJ)C(bl y T bP)
= _as;‘,.pA(b{ y T b;’) + A(O'S(bl)y Tty as(bp))~

The condition that the sequence by, - - -, b, be monotonic increasing is not
required in 4.6.2. However this special case of 4.6.2 is all that will be needed.
We agree that by, ---, b, will always mean a monotone strictly increasing
sequence of integers lying between 1 and n.

4.7 Combining formulas 4.2.1, 4.3.2, 4.3.3, 4.3.4, 44.5, and 4.5.4, one can
obtain the equality

S s DY s
471 M(1 T
ay ag * ap

BSB»PA(a;, ya;’) A(a; y " ya;)B(&’ 7311)

681*;,1’ C(apa(l) y T apa(p))A(le(l); R P;l(p))
C(a’Pa(l) y " apa(li))A (P;1(1)7 R PZI(P))B(Sl y T 'SP)

4.8 Suppose now that M is an irreducible representation of 8, u {z}. Since
every (K + I,k 4+ 1) matrix is in this case a linear combination of matrices
4.7.1, the form of 4.7.1 and 4.4.2 show that matrices A(ay, - - - , ayp), Where
{ar, -+, ap} = {1,2, ---, p}, produce an irreducible representation of &, .

4.6.2

5. Sufficient conditions for a representation

In this section, we will show that conditions 4.4.6, 4.6.2, and 4.3.5 are
sufficient for the mapping defined by 4.7.1, along with M(z) = 0, to be a
representation of B, u {z}.

5.1 We suppose that we have (k, k) matrices A(c;, -- - , ¢,) defined for all
integersc;, - -+ , ¢, between 1 and p. We suppose that we have (k, [) matrices
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B(si, -+, s,) defined for all s;, ---, s,. We suppose that we have (I, k)
matrices C(by, - - -, b,) defined for all monotone strictly increasing sequences
by, ---, by of integers between 1 and n. We will show that the mapping
M of B, u {z} defined by

S1 Sp ctt 8p
511 M
a1 Q2 Ap
5;;,,;14((1;, ’a;) A(a;’ ce :alp)B(SI) te ’SP)
= 68;,.1) C(apa(l) » T apa(p))A( —1(1) Tt P;I(p))
C@nacty » *** 5 Gou)Apa (1), -+, pa (P)B(s1, -+, 8p)
M@) = 0,

is a representation of B, u {z} provided that the following conditions are
satisfied. If ¢ and ¢ are 1-to-1 mappings of {1, 2, ---, p} onto itself, then

512 A(e(1), -~ , e(@NAW®), - -+, ¥(p)) = A(e@1)), - -+, eW¥(P)));

A is not identically zero; and if there are any repetitions among the numbers
€1, ,Cp, then

5.1.3 Aer, +++,¢p) = 0.
From 5.1.2 and 5.1.3, one can easily infer the equality
5.1.4 Aler, -+, e)A(fr, -+, fo) = Alers €05 0 5 €1),
which is valid for all allowable values of 1, ---, e, and fi, -+, fo.
Forsi, -+ ,s,and by, - -+, by, let the matrix function v4}..;2 be defined by
5.1.5 Vol = —bgpA (01, o, b5) + Ao, o, aulby)).

Then the matrices B and C are to satisfy the condition

5.1.6 B(si, ++,8)C(b1, -+, b)) = vo1 1%
forall s;, ---,sp,and by, -+, by, as well as

5.1.7 c1,2,---,p) =0

and

5.18 B({1}, {2}, ---, {p — 1}, {p, -+ ,n}) = 0.

The sufficiency proof that we wish to give will be simplified by being broken
up into a series of steps.

52 Lemma. Let ai,---, a, and s, -+, S, be gwen. Let by = @, ,
where p, is defined as in 4.5 (¢ = 1,2, -+, p). Leto,beasin 4.6. Then
’ -1
591 Sigp Alar, -+, ap) + 5 Ao (1), -+, pa (D))

= A(oi(a), -+ , 01(ay).
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Proof. Multiply both sides of 5.1.5 on the right by A(pa (1), - -+ , pa ()
and apply 5.1.4.

53 Lemma. Letay, ---,a,,¢1, - ,Cp,and 81, -+, 8 be given. Sup-
posethat the numbers o,(a;) are all distinct. Writed; = Coy@py G = 1,2, , D).
Then we have

5.3.1 dpatiy = Cpo(iy (f=1--,p)
and
5.3.2 pe (o5(a:)) = pa’ (%) @G=1,---,p).

Proof. Equality 5.3.1 follows from the definitions of d; and p. The
equality

5.3.3 pc(2) = ao(@pac)

follows at once from 5.3.1 and the definition of d;. Equality 5.3.2 becomes
obvious upon replacing % by pg'(z) in 5.3.3.
5.4 First step. From 5.1.1, and using 5.1.7, 5.1.8, and 5.1.2, we find that

M<81~--sp>M<{1} e fp =1 {p,---,n}>
1...p a - Ap—1 ap

5.4.1 =<’3"""’I Blaw, -+ ’3”)) .
0 0

< Afar, -+ ,ap) 0)
Clapaty > - » Gra)Aloa @A), -+, pa'(p) 0]

Multiply the two matrices on the right side of 5.4.1; apply 5.1.6; then apply
5.2.1. This gives

M<81 8p>M<{1} e {p—1} {p, -+ ,n}>
1...p a v Ap—1 ap
54.2
— <A(0'a(al) y © ’o's(ap)) 0>

0 0
5.5 Second step. Asin 5.4, it follows from 5.1.1 that

o e ey
C(cﬂcﬂ‘ » T cPc(P))A(pc (1)7 ftt Pe (p)) 0 1--- Y4
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Multiply both sides of 5.5.1 on the right by
1} ... — 1 NEEEIN ()
W <{ } {p—1} f{p }> ’
ay - ap—l ap
use 5.4.2, multiply the resulting matrices, and use 5.1.4. This yields
M<81 SP>M<{1} cop =1} gpy e ,n}>
CL " Cp ay - Ap-1 ap
_ ( A(c‘:a(al) ’ ) c;s(ap)) O>
C(cpc(l) y "t cpc(p))A (P:l(a's(al)): Tt P:l(a's(ap))) 0

If there are any repetitions among the o,(a;), then the right side of 5.5.2 is
zero. If not, we can apply Lemma 5.3 and find, in the notation of Lemma
5.3, that

M<81 3p>M<{1} e {p — 1}{P,’°',n}>
Ci+° Cp a - Gp1 ap
A(di, e 7d,1>) 0)

<C(dpd(1) PR} dﬂd(]’))A (PEI(I); Tty PEI(P)) 0
if the o,(a;) are all distinct,

5.5.3

0 otherwise.

It is easy to see that
(81 sp> <{1} -+ {p — 1}{p, '",n})
cl...cp ay *°- ap—l ap

1t ... —1 NEERI /)
554 J<{ } tp Hp }> if the o,(a;) are all distinct,

dy oo dpa dp

[ 2 otherwise.

Equalities 5.5.3 and 5.5.4, together with 5.1.1 and 5.1.8, show that

M<81 S”>M<{1} e dp = 1}{p,---,n}>
C1**° Cp ap °-°- ap—1 ap
55.5
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5.6 Third step. TFrom 5.1.1 and direct multiplication of matrices, we find

that
M<tl---tp>=< Al - ) o>
ap - ap C(aﬂa(l) y "7 aPa(P))A (pzl(]-)’ ) p;:l(p) 0

<6t;,pl B(t17 e 7tp)
0 0 '

The first matrix on the right side of 5.6.1 is clearly equal to
1 ... — 1¥{p, - ,n
o <{ oo {p = 1}ip }>.

ap - Ap1 ap

5.6.1

We therefore have

562 =M(81"°SP>M<{1}"'{p*l}{p,"',n}>.
C1L Cp a - Ap_1 ap

<6t;.?1 B(tly cec 7t1-7)
0 0 )

Formula 5.5.3 now shows that the right side of 5.6.2 is equal to
S A(dL, -+, dp) Ay, -+, dp)Bt, -+ , 1)
563 | 8.5 C(paty , **+ 5 Doam) Al (1), -+, pa (D))
Cdpay s *** 5 oa) Aoy ), -+ 5 o3 (PIBy, -+, 1)

if all the o,(a;) are distinct and is zero otherwise. We also have

b o-ee 1
s 8\ [t b ") it all ou(ad) are distinet,
5.6.4 ={\dy -+~ d,
¥4

cloo-cp al...aj) 3
otherwise.

Formula 5.1.1 shows that 5.6.3 is equal to

w <t1 cee ty ) .
dy -+ dy
Therefore 5.6.4 and 5.6.2 imply that M is a representation of B, u {z}.
We now summarize the results of this section.
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5.7 TaeoreEM. Let A, B, C be matrix functions as described in 5.1 that
satisfy conditions 5.1.2, 5.1.3, 5.1.6, 5.1.7, and 5.1.8. Then the mapping M
defined in 5.1.1 7s a representation of B, u {z}.

6. Construction of certain representations

In this section, we will exhibit a class of representations of B, u {z}. These
representations are in general reducible. They will be used in §7 to find all
of the irreducible representations of 8, u {z}. Throughout this section, we
suppose that we have a matrix function 4 satisfying the conditions of Theo-
rem 5.7. We will obtain matrix functions B and C satisfying the conditions
of Theorem 5.7.

6.1 In order to write condition 5.1.6 in compact form, it is convenient to
order all of the sequences b, , - -+ , b, and all of the families of sets sy, -+, s, .
Let there be « + 1 families of sets 81, - - - , s, and v 4 1 sequences by , -+, b, .
Let {1}, {2}, ---, {p — 1}, {p, - - -, n} correspond to the index 0, and order
all remaining s, -+ -, 8, in any way at all in a sequence with indices from 1
to u. Write B; = B(s1, -+, 8p) if s1,-++, s, hasindex 7 (0 £ j £ u).
Similarly, let the sequence 1, -- -, p correspond to the index 0, and order all
remaining sequences by, - - -, b, in any way at all in a sequence with indices
from 1 tov. Write C; = C(b1, -+ ,b,)if by, -+, b, hasindex ¢ (0 < 7 = v).
Yinally, write vi for vsy. %% if s1, -+, s, has index j and by, -+, b, has
index7 (0 =j = wu,0=1¢=v). Condition 5.1.6 in this notation is

6.1.1 B;C: = ! 0O=j=<u0=<1i=0).
6.2 We first prove
6.2.1 =0 =0 (0=j=<u0=i<=<no).

If 7 = 0, then clearly o, (b)) = by, (1 < h < p). Formula 5.1.5 shows at once
thaty; = 0. If¢ = 0,thenb, = b, = h' = h (1 £ h < p). Thenif s3 = p,
itis clear that sy = h (1 < h < p),and hence oo(by) = h (1 £ h < p). Itis
clear from 5.1.5 that v4 = 0 in this case. If s& s p, then o3, = 0 and
Alay(by), - -, 0s(by)) = O because there is necessarily a repetition among
the numbers a;(by), - -+ , o5(by).

6.3 We now define By = 0 and Cy = 0. (This choice is of course dictated
by 5.1.8 and 5.1.7.) Equalities 6.2.1 show that condition 6.1.1 is satisfied
if 2 = 0o0rj= 0. The matrices By, ---, B, and Cy, ---, C, are now to
satisfy the condition

BiCy --+ BC, i T
631 e e .
Bu Cl et Bu Ov 'Y;‘ et 'Y:f

We write T for the matrix on the right side of 6.3.1. It is a (ku, kv) matrix.
6.4 Let r be the rank of I'. Let o and 8 be any positive integers greater
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than or equal to r. (Note that r is positive.) Let J(a, 8) be the (o, 8)
matrix

10 0
01 0 0
6.4.1 00 1o ,
0 0

having 1’s in the first r places of the main diagonal and 0’s elsewhere. We
write J(ku, kv) as J, J(ku, r) as J1, and J(r, kv) as Jo. Obviously

6.4.2 J = Jid,.

It is a familiar fact that there exist a nonsingular (ku, ku) matrix P and a
nonsingular (kv, kv) matrix @ such that

6.4.3 PTQ = J.
If we define the (k, r) matrices B; by
B,
6.44 Bf = P7J,
B.
and the (r, k) matrices C; by
6.4.5 (CiCy -+ C) = J2Q7,
we see that
B,
6.4.6 1552 (C1Cy --+ C,) = P JoQ = PJQ™ =T

B.,
Condition 6.3.1 is then obviously satisfied. By Theorem 5.7, we have ob-
tained a representation of B, u{z} for which [ = r.
6.5 For use in §7, we need two facts. Let Y be an arbitrary (k, r) matrix.
Then there are (k, k) matrices M, , -+, M, such that ¥ = > i, M,B;.
To see this, we note that
B,
B,

6.5.1 YI(r,kw)P| ™2 | =7,
B,

and that the left side of 6.5.1 has the form »_j—y M,;B;. Similarly, let Z
be an arbitrary (r, k) matrix. Then we have

6.5.2 (CLCy - - CQJ (v, 1VZ = Z,
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and it follows that every (r, k) matrix can be written in the form > i—; C; N,
where the N; are (k, k) matrices.

7. The irreducible representations

Condition 5.1.2 implies that the matrices A appearing in 5.1.1 yield a
representation of ©,. We will establish in this section a 1-to-1 correspond-
ence between the irreducible representations of &, and those representations
5.1.1 of B, u {z} that are irreducible.

7.1 A glance at 5.1.1 shows that if the representation M of B, u {z} is
irreducible, then the representation A of &, must be irreducible. Con-
versely, suppose that A is an irreducible representation of &, . From 5.1.1,
we have

7.1.1 M<{1}"'fp“l}{p,---,n}>=<1 0>.

If X is any (k, k) matrix, then X can be written as a linear combination
> B -ap Aar, -+, ap). Then

I 0 {1}"'{1’—1}{1’:"’,”} X 0
7.1. S = .
1.2 (0 O>ZB< ,»M<OL1 e . > <0 0)

Since M is a representation, the left side of 7.1.2 is a linear combination of
matrices 5.1.1.

Next, consider an arbitrary b, , -+ -, b,, and let ¢ be a 1-to-1 mapping of
{1, ---, p} onto itself. Then 5.1.1 shows that

1} oo {p — L}p, -+ ,n
M<{ b {p — 1p }>
713 boy ++* botr-1 bec)

- . )
OOy, - b AG), e) 0)

where H is some (k, k) matrix. Since A is irreducible, we can, for every
(k, k) matrix N, find a linear combination of matrices 7.1.3 that has the form

H’ 0
7.14 .
C(y, - ,bp))N 0

Then 6.5 shows that for an arbitrary (r, k) matrix Z, there is a linear combina-
tion of matrices 5.1.1 that has the form

123 0
7.15 .
Z 0
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Next consider an arbitrary s., - - -, s, , and let ¢ be as above. Then 5.1.1
and 5.1.7 show that

716 M<81 Sp>=<H"' A(SO(I),"'AO(I)))B(SI,...’sp)>.
o) - o@)  \ o o

As before, we apply 6.5 and see that, for an arbitrary (k, r) matrix Y, there
is a linear combination of matrices 5.1.1 having the form

HIIII Y
717 ()
0 0

From 7.1.2, 7.1.5, and 7.1.7, it is clear that linear combinations of the matrices
5.1.1 give arbitrary matrices

X Y
718 C )
Z 0

Let E;j(a, B) be an («, 8) matrix with 1 in the " row and ;™ column and
0’s elsewhere. Then

< 0 0> <0 Ey(k, r)) <0 0 >
7.19 = )
Ea(r,k) 0/ \0 0 0 E;(r, )

From 7.1.8, 7.1.9, and the fact that M is a representation, we now see that
M is irreducible.

7.2 We next show that equivalent irreducible representations of &, pro-
duce equivalent representations of B, u {z}. If A and A are equivalent irre-
ducible representations of &, by (k, k) matrices, then there is a nonsingular
(k, k) matrix R such that A(e(1), -+ -, o(p)) = RA(e(1), - -+, o(p)R™ for
all ¢ asin 5.1.2. Let M and M be the irreducible representations of 8, u {2}
obtained from A4 and A respectively by applying 5.1.1 and 5.1.3. Writing
A;; for the entry in the ¢¢h row and j*® column of 4, and similarly for A, M,
and M, we now have

721 Aule(l), -+, o) = 2o mii Aiile(1), -+, o(p))

for all 1-to-1 mappings ¢ of {1, ---, p} onto itself. Condition 5.1.3 shows
that

722 Anler, -+, ¢p) = 2iimizdijler, -+, o)

for all integers ¢;, ++ -, ¢, lying between 1 and p. Now 5.1.1 and 7.2.2 show
that

_ St v S , ,
M11< > = 8pp 2o Ty Auar, oo, ap)

81 . o Sp
= 2 ii i .
al DY ap

7.23
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Also
724 Mu(z) = 0 = > i riiMij(2).

Consequently the function My is a linear combination of the functions
M;;(1 =171=k1=j=k). Theorem 5.18 of [3] implies that the repre-
sentations M and M are equivalent.

7.3 We will now show that inequivalent irreducible representations of &,
produce inequivalent representations of 8, u {z}. Suppose that A and A
are irreducible representations of &, by (k, k) and (&, k) matrices, respectively,
and that M and M are the corresponding representations of 8, u {z} ob-
tained by 5.1.3 and 5.1.1. We may obviously suppose that & = k. Let I,
denote the (s, s) identity matrix (s = 1, 2, 3, --- ). Now suppose that M
and M are equivalent. There exist (k -+ r, k + r) matrices

<S T < A i

U v v v

(written in (k, k), (k, r), (r, k) and (r, r) blocks) that are inverses of each
other and have the property that

S T 81 / T’ _[8 -+ s
73.1 )M(‘ s”>< (" ">
U v a - ap) \U V' ap -+

for all

Putting
<sl~-sp>_<{1}-~-{p—1} {p,---,n}>
ap -+ Qp 1 . o p__.l P
in 7.3.1, and using 5.1.1, we have
S T\/I, O LT Iz 0O
7.3.2 = .
U V/\0 0/\U V 0 O
We also have

S T\ (S8 T
733 = Ik_|.r .
v v/\u VvV’

From 7.3.2, we have

734 S8 =1,, US =0 ST

Il
e

Hence

73.5 U =0, T" = 0.
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From 7.3.5 and 7.3.3, we infer in turn
7.3.6 Vv =1,, U =0, T =0.
The left side of 7.3.2 is therefore equal to

I, 0
0 o)
and this implies that k¥ = k. Let ¢ be a 1-to-1 mapping of {1, --- , p} onto

itself. Consider 7.3.1 for sy, -+, s, = {1}, ---, {p — 1}, {p, ---, n} and
A, ~ 5 0p = §0(1)7 e 7¢(p)' We obtain

<S 0><A(¢(1),"',¢(p)) 0><S“1 0 >
0V 0 o/\0 V!

739 -
(A, -+ e(p) 0
- < 0 0>’
so that
738 SA(e(1), -+, o(P)NS™ = A(e(1), - -+, o(p)).

Hence the representation A of &, is equivalent to the representation A of &, .
We have therefore proved the following.

7.4 TuroreM. Let the representation A of ©,, as described in 5.1.2, run
through a complete set of inequivalent irreducible representations of ©,. The
corresponding representations M of B, u{z} defined by 5.1.3 and 5.1.1 are all
irreducible and inequivalent. Furthermore, every irreducible representation of
B, u {2} is obtained in this way.

7.5 Theorems 7.4 and 3.7 show that we have a method for obtaining all
irreducible representations of £,. To write down any of these representa-
tions, begin with an irreducible representation of &,. These representa-
tions are well known, and a method for their construction can be found, for
example, in Ch. IV of [1]. The construction in §6 gives the matrices B;
and ;. Formula 5.1.1 gives the associated irreducible representation of
B, u{z}. Theorem 3.5 shows how to extend this representation over all of
T.. A numerical example is given in 8.6.

8. Special results

We here give the special forms of the irreducible representations of ¥, that
correspond to certain special values of p and A. We also work out some
numerical examples.

8.1 The case p = 1. The semigroup B; has the simple multiplication rule
fg = f. The only irreducible representation of 9 is the 1-dimensional iden-
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tity representation. By Theorem 3.5, the only irreducible representation of
T, not zero on By is the 1-dimensional identity representation. This also
fits into the general theory of §§5-7, since u + 1 = 1if p = 1, and the matrix
T does not appear at all. Note also that 2 is an adjoined zero in the semi-
group B, u {z}.

8.2 The case p = n. It is clear that an irreducible representation of T,
that is zero on U= B; must be an irreducible representation on the group
B, = &,. Conversely, every irreducible representation of 8B, can be ex-
tended to an irreducible representation of T, by being defined as 0 onU /=' B; .
Thus we know all irreducible representations of ¥, that vanish on U }:11 B,
in terms of the irreducible representations of the symmetric group 8B, . This
fits into the general theory of §§5-7: for p = n, wehaveu +1 =0+ 1 = 1,
and the matrix I' does not appear.

8.3 The case in which A s the identity. If the representation A of S, ap-
pearing in 5.1.2 is the 1-dimensional identity representation, then the cor-
responding irreducible representation of T, can be written in a simple form.
Suppose that 1 < p < n. Consider the semigroup algebra £;(B,u {z}) as
defined in [3]. We may think of £;(B,u{z}) as consisting of all formal
complex linear combinations Z asf, the sum being taken over all
FeByu iz}, with (27 af) (20 B:9) = 227 224 asBafg.  For every sequence
by, -, by (recall that 1 < by < --- < b, = n), let Fy,..., be the element
of £(B,u {z})

1 2 PR — 1 AR
831 Foyy = v, <{ b2y fp =1} {p e, }> e
by be " bepyy becny

The elements Fs,...s, are linearly independent, and span an (n) -dimensional

subspace 8 of £1(B,u {z}). For every feZ,, let
Z(pe@p f < - p‘z
e

boy ++* beep-y

832 T Fns, = |
if f(by) , <+, f(bp) are all distinet:

\\ 0 otherwise.

It is easy to see that Ty Fy,...4, = Fe,...., , Where ¢;, - -+, ¢, is the sequence
j(by), - - -, f(by) arranged in increasing order, if f(by), - - -, f(b,) are all dis-
tinct. Extend the transformations 7'y over $ by linearity. It is easy to see
that they form a representation of <, by linear transformations on §. The
set {T'}see, of linear transformations can be shown to be irreducible on §.
Choose a new basis for §:

{Fio..0} U{F1a.. p10 — Fra.. p}p<osn U {Foy.ot,}opm1>01 -

Consider the matrices N(f) corresponding to the linear transformations 7'y in
this particular basis (f e B,). It is easy to see that the upper left corners of
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these matrices are the same as the upper left corners of the matrices 5.1.1
for A the identity. Hence the irreducible representation of 8B, u {z} de-
fined by

f—=N({) for feB,,
z—0,

is equivalent to the representation 5.1.1 with A the identity. This follows
from Theorem 5.18 of [3]. Formula 8.3.2 thus defines in one step the irre-
ducible representation of ¥, corresponding to 4 the identity and any fixed
value of p, 1 < p < n. We see that the representation is by means

of ((Z) , (;)) matrices. KFurthermore it is easy to show that the rank of the

matrix corresponding to 1'; for f e B,.; is (p ;— ‘7> G=20,1,---,n — p).

8.4 The case p = 2. In view of 8.1, 8.2, and the general theory, we have
ony one more irreducible representation of ¥, not vanishing on B, : the
representation 5.1.1 for p = 2 and A the alternating representation of &, .
Consider the semigroup algebra £:(<,), and let Hy, € £1(Z,.) be defined by

{1,2,"',%} {1,2,"',"}
84.1 H, = . — . , b=23, - ,n.

For every f e T, , let

8.4.2 U;H, = fH, .
Clearly
8.4.3 UsHy = Hypy — Hjyoy.

Just as in 8.3, one can show that the U, produce linear transformations (also
written as U;) on the linear subspace of £,(%,) spanned by H., ---, H,.
These linear transformations yield an irreducible representation of ¥, which
on B, u {z} is equivalent to the representation 5.1.1 withp = 2 and A the
alternating representation of @, . Hence the matrices M of 5.1.1 are in this
case (n — 1, n — 1) matrices. It is not hard to see that the rank of the
matrix corresponding to Usisp — 1 forfeB, (p = 1,2, ---, n).

8.5 The case p = m — 1. Carefully chosen transformations of the matrix
T lead to the following results for p = n — 1. Let the degree k of the repre-
sentation A of &,_; be greater than 1. Then the rank of I' is k(n — 1),
and hence the degree of the corresponding representation of T, is kn. If
k = 1 and A is the alternating representation of &,_;, then the rank of T
is n — 2. Thus the degree of the corresponding representation of <, is
n — 1. If A is the identity representation of &,_;, then the rank of T is
n — 1, and the degree of the corresponding representation of T, is n. (This
last follows also from 8.3.) The calculations are long, and we omit them.

8.6 As an example of the general theory, we consider the case n = 4, p = 3.
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We order the s, sz, s3 and the by, by, bs :

(1} {2} {34} 123
(1} {23} {4} 124
861 {12} {3} {4}, 13 4.
(1} {24} {3} 234
{14} {2} {3}
{13} {2} {4}
Using 5.1.5 and the definition of T in 6.3, we find
(T I 0
0 I I
= |—-I A(Q,3,2) 0

I 0 A(2,3,1)
I 0 A(2,1,3)
where the A’s form an irreducible (k, k) matrix representation of &; and I is
the (k, k) identity matrix. We have used the equalities 4(1, 2, 3) = I and
A(cr, c2, c3) = 0if there is a duplication among the ¢’s.
Now if we take
(

J/

I 0 0 00
0 I 0 00
P, = I —I — AQ1,3,2) I 00
I —I 0 I0
A(2,1,3) —A@2,1,3) — A2,3,1) A(2,1,3) I I
and
I —1 —1iI
=0 I 3],
0 0 —iI
we obtain )
I0 0
0 I 0
PrQ, = |0 0 3(I+ A(1,3,2) |,
0 0 (I — A(2,3,1))
00 0

/

where we have used the equality 4(2, 1, 3)A(1, 3, 2) = A(2, 3, 1).
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There are two nonequivalent irreducible representations of &; by (1, 1)
matrices and one by (2, 2) matrices. Now &; is generated by the elements
corresponding to A(1, 3, 2) and 4(2, 1, 3), so we need list only these two
matrices. We have the three cases

(1) A(1,3,2) = A2, 1, 3) = (1),
(i) A(1, 3,2) = 4(2, 1, 3) = (=1),

”'A132—<1 _1> 42, 1,3 —(0 !
(111) (”)—0_17 (,,)—10.

In case (i), we have k = 1 and

1 00

010
PTQ=|0 0 1|, P=P, Q=66, r=3.

0 00

0 0O

In case (ii), we have & = 1 and

1 00

010
PiTQi=1{0 0 0|, P=P, Q=G@, r=2

000

tO 0 0}

In case (iii), we have k = 2 and

(1 000 0 0)
0100 0 0
0010 0 0
0001 0 0
0000 1 —1}
PI=10 000 0 o]
0000 3 1
0000 —% 1
0000 0 0
0000 0 0]



210 EDWIN HEWITT AND HERBERT S. ZUCKERMAN

To bring this matrix to our standard form, we multiply on the left by

(1 00000 0 0O0O
010 00 0 000
001000 O 0O0O0
000100 O 0O0°O
000020 % 000
B o 00000 2 200
0000O0T1 O 0O0O
00000O0O O 010
0000O0O0O O O0°O0°1
000010 —1 10 0]
(1.0 0 000
010000
001000
000100
P,PiTQ, = 000010, P=PP, Q=@q,
000001
000000
000000
000000
000 0 0
In all three cases, we have
I I 0
Q=@ =|0 1 I |,
0 0 —2I
(1 0 0 0 0
0 I 0 0 0
Pt = |—1 I+ A(1,3,2) I 0 o0,
~T I 0 I 0
I —1I —42,1,3) -1 I




IRREDUCIBLE REPRESENTATIONS OF A SEMIGROUP 211

1000 0 0 000 O
0100 0 0 000 0
0010 0 0 000 0
0001 0 0 000 O

o000 1 1000 3

"“10000 0 0 100 0
0000 4 L1 000 —1%
0000 -5 1 000 3
000 0 0 010 0
0000 0 0 001 0

In cases (i) and (ii), we have P~ = P{’ and in case (iii) we have P~ = P{'P7’.
The irreducible representations of 8; u {z} can be obtained from the matrices
P and Q7', and they can be then extended over T,. We will not do this,
but we will carry one case a little further.

In case (ii), we have k = 1, r = 2,

10 0 0 0
0 1 0 0 0
P'=|-1 0 1 0 o0f,
-1 1 0 1 0
1T =1 1 =1 1]
and
11 0
Q' = 11
0 0 —2
From this we find
Bi=(U 0) 0, = ((1)>
B, = (0 1)
By = (=1 0), ¢, = (i)
Bi= (=1 1) ' 0
By=(1 -1 oo (1)

using the ordering 8.6.1. 'These matrices can be used in 5.1.1 to find the
corresponding irreducible representations of B;u {z}. For example, we find



212 EDWIN HEWITT AND HERBERT S. ZUCKERMAN

{1} {23} {4} 0090 000
M< >= 0 =10 1 0],
1 3 4 C:B,;
01
. 5 0 0
M({} (23) {4}>= ) |
2 3 4 C3By

{12} {3} (4 000 0
M( 3} {}>= 0 >= 0
2 3 4 0 C3B;

We also have

1 0
M<{1} (2} {34})2 . ’
1 2 3
0 0
and hence
M<{1} {2} {34}>_|_M<{1} {23} {4}>
1 2 3 1 3 4
1 23 4 4 oo
_M<{}{}{}>+M<{12} {3}{}>=010,
2 3 4 2 3 4
0 0 1

from which we can read off the values of the «; for use in Theorem 3.5.
8.7 The matrix I has ku rows and kv columns. The number v is obviously

()

The number u is not as easy to find. We write v = u(n, p) — 1. Consider
the set of all sy, -+, s, counted by u(n — 1, p). If we replace any s; by
s;u {n}, we obtain an s, -+, s, counted by u(n, p). We will also get an
$1, -+, Sp counted by u(n, p) if we take an s, -, $p—1 counted by
u(n — 1, p — 1) and change it to s;, - -+, Sp_1, Sp With s, = {n}. Itiseasy
to see that there are no duplicates and that this enumeration is exhaustive.
Thus we have

u(n, p) = pu(n — 1,p) + uln — 1,p — 1), 2=ps=n-—1
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Since u(n, 1) = u(n, n) = 1, we obtain the following table.

b4
”
1 2 3 4 5 6
1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1
It can be shown that .
(=)"%"
uln, p) = i —
P ST -
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