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A CHARACTERIZATION OF C(K) AMONG FUNCTION
ALGEBRAS ON A RIEMANN SURFACE

LYNETTE J. BOOS

Abstract. For a compact subset K of a Riemann surface, nec-
essary and sufficient conditions are given for a function algebra

containing A(K) to be all of C(K). Using these results, several

conditions are given on a complex-valued function f so that the

algebra generated by A(K) and f is all of C(K). In particular,

the results are applied to a harmonic function f to give sufficient

conditions for the algebra generated by A(K) and f to be all of

C(K). Also, sufficient conditions are given for the algebra A(K)
to be a maximal subalgebra of C(K).

1. Introduction

Let R be an open Riemann surface. Throughout this paper, K will denote
a compact subset of R and ∂K will denote the boundary of K. Let C(K) be
the algebra of continuous complex-valued functions on K. For a function f
that is in C(K) but not in the algebra A, we let A[f ] denote the uniformly
closed subalgebra of C(K) generated by A and f . Let A(K) be the algebra of
functions in C(K) that are holomorphic on Int(K), the interior of K, and let
M(K) consist of the functions in C(K) that can be approximated uniformly
by meromorphic functions on R with poles off K. The containments M(K) ⊂
A(K) ⊂ C(K) are apparent. We give necessary and sufficient conditions for
an algebra B containing A(K) to satisfy B = C(K).

In Section 2, we state preliminary theorems that will be used throughout
the paper.

For K ⊂ C, let R(K) be the algebra given by the rational functions in C

with poles off K. In the case where K = D, the closed unit disc in the complex
plane, Wermer [23] found necessary and sufficient conditions for a continuously
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differentiable function f ∈ C(D) to satisfy A(D)[f ] = C(D). In particular,
Wermer showed that when f is continuously differentiable on a neighborhood
of the closed unit disc D in the complex plane, then A(D)[f ] = C(D) if and
only if the graph of f is polynomially convex in C

2 and R(E) = C(E), where E
is the zero set of ∂f . Izzo [15] generalized Wermer’s result to any compact
subset of the complex plane. His approach is based on Wermer’s original
proof. In Section 3, we generalize Izzo’s results to a compact subset of an open
Riemann surface. The technique we use follows closely Izzo’s approach in [15]
while using some ideas from [16]; similar ideas were first used by Freeman
in [7].

In 1969, Čirka [6] used Wermer’s technique to obtain a generalization of
Wermer’s result. In particular, Čirka showed the following.

Theorem 1.1 ([6]). Let K be a compact set in the complex plane and
suppose that every point of ∂K is a peak point for R(K). Let f ∈ C(K) be
harmonic on the interior of K, but nonholomorphic on each component of the
interior of K. Then R(K)[f ] = C(K).

In 1987, Axler and Shields [2] used completely different methods to prove
the following case where the function to be adjoined is real-valued. Because
of the restrictions placed on K, their theorem is actually a special case of
Čirka’s result.

Theorem 1.2 ([2]). Let K be a compact subset of C, and suppose that there
is a positive number d such that each component of the complement of K has
a diameter greater than d. Let u ∈ C(K) be real-valued and harmonic in the
interior of K but nonconstant on each component of the interior of K. Then
A(K)[u] = C(K).

In 1993, Izzo [14] obtained the following result, which Jiang [17] extended
to a compact subset of a Riemann surface in 2003.

Theorem 1.3 ([14]). Let K be a compact subset of the complex plane. Let
u ∈ C(K) be real-valued and harmonic on the interior of K, but nonconstant
on each component of the interior of K. Then A(K)[u] = C(K).

Without some restrictions on the compact set K, it is not known whether
the analogous result is true for complex-valued functions. In 1997, Izzo [15]
showed, without any restrictions on K, that if f is in the uniform closure of
log |A(K)−1| and nonholomorphic on each component of the interior of K,
then A(K)[f ] = C(K). He also gave various conditions on K and f which
imply that A(K)[f ] = C(K). In Section 4, we generalize Izzo’s results to a
compact subset of a Riemann surface.

Finally, in Section 5 we apply the results from Sections 3 and 4 to obtain
two results about maximal subalgebras.
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2. Preliminaries

To fix an atlas on R, we use a result by Gunning and Narasimhan from
1967.

Theorem 2.1 ([12, Theorem 1.1]). There exists a globally defined holo-
morphic function ρ : R → C that is locally a homeomorphism.

Unless stated otherwise, we use such a global parametrization ρ to define
all of our local coordinate charts. For a function f defined on R, we denote
∂
∂z̄ (f ◦ ρ−1) with ∂f/∂ρ and sometimes simply ∂f .

A parametric disc Δ for ρ on R is an open connected set on R on which
ρ is one-to-one and such that ρ(Δ) = {z ∈ C : |z − z0| < r} is a disc in C. If
ρ(p) = z0, then we call p the center and r the radius of Δ.

Using ρ, Scheinberg [21] and Gauthier [13] constructed a Cauchy kernel F
on R in the following way: If (p0, q0) ∈ R × R, let U(p0, q0) = Δ(p0) × Δ(q0)
be a neighborhood of (p0, q0), where Δ(p0) and Δ(q0) are parametric discs
centered at p0 and q0 respectively. Define the Cousin data H : R × R → C by

HU(p0,q0)(p, q) =

{
1

ρ(p)−ρ(q) if Δ(p0) ∩ Δ(q0) �= ∅,

0 otherwise.

Then there exists a function G meromorphic on R × R such that

G|U(p0,q0) − HU(p0,q0)

is holomorphic in U . Define

F (p, q) =
1
2
(
G(p, q) − G(q, p)

)
.

Then F (p, q) = −F (q, p) and the only singularities of F are the simple poles
with residues ±1 on the diagonal.

Definition 2.2. If μ is a finite complex Borel measure on R with compact
support, then the Cauchy transform μ̂ of μ is defined by

μ̂(q) =
∫

F (p, q)dμ(p).

The Cauchy transform of a measure μ is holomorphic off the closed support
of μ. We also use the following results.

Theorem 2.3 ([5, Theorem 2.1]). A measure μ on K is orthogonal to
M(K) if and only if μ̂ = 0 on R \ K.

Corollary 2.4 ([5, Corollary 2.3]). If f is continuously differentiable in
a neighborhood of K, and ∂f/∂ρ = 0 on K, then f ∈ M(K).

Corollary 2.5 ([5, Corollary 2.4]). If U is an open subset of R, and μ
is a measure with compact support satisfying μ̂ = 0 almost everywhere on U ,
then |μ|(U) = 0.
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Corollary 2.6. If μ̂ = 0 almost everywhere, then μ = 0.

The following theorem is known as the Kodama–Bishop Localization the-
orem. We say the function f is locally approximable on K by holomorphic
functions if each point of K is contained in a parametric disc Δ such that f
is the uniform limit on Δ ∩ K of functions that are holomorphic on Δ ∩ K.

Theorem 2.7 ([18]). Let f be a complex-valued function defined on a com-
pact subset K of an open Riemann surface R. Then f is the uniform limit
on K of meromorphic functions on R each of which has only finitely many
poles (all contained in R \ K) if and only if f is locally approximable on K
by holomorphic functions.

The following result by Sakai [20] is a generalization of the Bishop splitting
lemma to a Rieman surface.

Lemma 2.8 ([20, Lemma 7]). Let K be a compact subset of R. Let μ be a
measure on K that is orthogonal to M(K). Let {Uj }n

j=1 be a cover of K by
coordinate patches. Then there are measures μj such that μ =

∑n
j=1 μj , where

μj is orthogonal to M(U j) and the closed support of μj is contained in Uj .

In 1949, Behnke and Stein [3] proved the following theorem.

Theorem 2.9 ([3]). Let R be an open Riemann surface, and U an open
subset of R such that R \ U has no compact connected components. Any
function holomorphic on U can be approximated uniformly on compact subsets
of U by functions holomorphic on all of R.

As a corollary to Theorem 2.9, we have the following.

Corollary 2.10 ([19, Theorem 3.10.13]). Let R be an open Riemann sur-
face. The functions holomorphic on R separate the points of R. In particular,
the functions in M(K) separate the points of K.

In the case where R = C and M(X) = R(X), the next result is known as
Alexander’s theorem. The proof given below follows the proof of Alexander’s
theorem appearing in [22].

Theorem 2.11. Let {Xn} be a sequence of compact sets in R with compact
union X. If M(Xn) = C(Xn) for all n, then M(X) = C(X).

Proof. Suppose, by way of contradiction, that μ is a measure on X that
annihilates M(X) and μ is not the zero measure. Let S be the closed support
of μ, so S is the minimal closed set of R with the property that |μ|(X \ S) = 0.
The sets Xn have no interior, so by the Baire category theorem, X has no
interior. We claim that μ ∈ M(S)⊥. To see this, note that μ̂ vanishes on
R \ X , by Theorem 2.4, and each point of R \ S is in the closure of R \ X .
Thus, μ̂ vanishes on R \ S and Theorem 2.3 gives that μ ∈ M(S)⊥.
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Now S =
⋃

(S ∩ Xn), so by category there is a parametric disc D that
meets S and satisfies S ∩ D = (S ∩ Xn) ∩ D for some n. If D′ ⊂ D′ ⊂ D,
where D′ is a parametric disc that meets S, then there is a function f ∈
C(R) with f |D′ identically 1 and f identically zero on a neighborhood of
R \ D. It follows from Theorem 2.7 that the function f |S belongs to M(S)
since M(S ∩ Xn) = C(S ∩ Xn). But then fμ ∈ M(S)⊥, and this measure is
supported in S ∩ Xn. Since M(S ∩ Xn) = C(S ∩ Xn), the measure fμ must
be the zero measure. This implies that |μ|(D′ ∩ S) = 0, which contradicts the
minimality of S. �

Following is a generalization of Bishop’s peak point criterion to a Riemann
surface.

Theorem 2.12. Let K be a compact subset of R, and let PM be the set of
peak points of M(K). If K \ PM has measure zero, then M(K) = C(K).

Proof. Let μ be a measure on K orthogonal to M(K). Suppose p0 is such
that

∫
|F (q, p0)| d|μ|(q) < ∞, and μ̂(p0) �= 0. Then p0 ∈ K by Theorem 2.3. If

f is a meromorphic function with poles off K, then p 
→ F (p, p0)[f(p) − f(p0)]
is also a meromorphic function with poles off K. So∫

F (p, p0)[f(p) − f(p0)]dμ(p) = 0.

Consequently, for all f ∈ M(K),

f(p0) =
1

μ̂(p0)

∫
F (p, p0)f(p)dμ(p).

Hence, 1
μ̂(p0)

F (p, p0)μ is a complex representing measure for p0. Since
μ{p0} = 0, this representing measure has no mass at p0. Then p0 is not a
peak point of M(K) (see [8, Theorem II.11.3], for example). We conclude
that μ̂ is nonzero only for points in K \ PM . Since K \ PM has zero area, μ̂
vanishes almost everywhere. By Corollary 2.6, then μ = 0. �

We use the following Lemma in the proof of Theorem 2.14 below.

Lemma 2.13. Let E be a closed subset of the the open unit disc Δ ⊂ C with
empty interior. Let h1, . . . , hn be holomorphic functions on a neighborhood
of the closed unit disc Δ with hk(0) = 0 for k = 1, . . . , n. Let iC denote the
identity function on C. Then for some ε > 0 the set

{α : |α| < ε and α /∈ (iC + αh1)(E) ∪ · · · ∪ (iC + αhn)(E)}
is a dense open subset of the disc Δε = {α ∈ C : |α| < ε}.

Proof. First, we show that for each value of k = 1, . . . , n we can choose
an εk so that the set {α : |α| < εk and α /∈ (iC + αhk)(E)} is a dense open
subset of the disc Δεk

. To see this, note that for α small enough, iC + αhk

is one-to-one on Δ (see [11, Stability Theorem]). Define a function wk by
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wk(z) =
z

1 − hk(z)
. Notice that wk is defined and holomorphic on a neighbor-

hood of 0, that wk(0) = 0, and that w′
k(0) = 1. Restrict the domain and range

of wk so that wk is a biholomorphic map of a neighborhood of 0 onto another
neighborhood of 0. For z and α in the domain and range of wk, respectively,
the following equations are equivalent

α = wk(z),

α =
z

1 − hk(z)
,

z = α − αhk(z),
α = (iC + αhk)(z).

Choose εk > 0 small enough so that iC + αhk is one-to-one on Δ whenever
|α| < εk, and such that the disc Δεk

is contained in the range of wk. For
α ∈ Δεk

, we have α = wk(z) for some z, and then from above we get that
α = (iC + αhk)(z). Since iC + αhk is one-to-one on Δ, we can conclude that
for α ∈ Δεk

, we have α ∈ (iC + αhk)(E) if and only if α ∈ wk(E). Since E is
a closed set in Δ with empty interior and wk is holomorphic, it follows that
{α : |α| < εk and α /∈ (iC + αh)(E)} is a dense open subset of the disc Δεk

.
Set ε = min{ε1, . . . , εn}. Then for each k = 1, . . . , n the set {α : |α| < ε and

α /∈ (iC + αhk)(E)} is a dense open subset of Δε. Thus, the intersection of
these sets, {α /∈ (iC + αh1)(E) ∪ · · · ∪ (iC + αhn)(E)}, is also a dense open
subset of Δε, and the lemma is proved. �

Theorem 2.14. Let K be a compact subset of an open Riemann surface R,
and suppose F is a subset of K such that the closure F of F has no interior
in R. Let a ∈ Int(K) \ F . There exists a globally defined holomorphic function
φ : R → C that gives local coordinates on all of K and satisfies φ(a) /∈ φ(F ).
That is, φ separates the point a from the closure of the set F .

Proof. Let ρ be a globally defined holomorphic function that gives local
coordinates on R. Without loss of generality, we can assume ρ(a) = 0. Since F
is compact, the set ρ−1(ρ(a)) ∩ F is a finite set of points. Denote the points of
this set by b1, . . . , bn. Since the holomorphic functions on R separate points,
we can find a holomorphic function h on R such that h(a) = 1 and h(bk) = 0
for k = 1, . . . , n.

For each point a, b1, . . . , bn, choose a parametric disc for ρ centered at that
point. Let Δ0 be the disc centered at a and Δk be the disc centered at bk

for k = 1, . . . , n. Shrink some of the discs, if necessary, so that they all have
the same radius r. Let ψk be the inverse of ρ restricted to Δk. So ψk maps
the disc Δr = {z ∈ C : |z| < r} diffeomorphically onto Δk and sends 0 to a for
k = 0 and to bk for k = 1, . . . , n.

For α ∈ C, define φα : R → C by φα = ρ + αh. Then φα is holomorphic on
all of R, and for all α small enough we have that dφα

dρ �= 0 on K, so φα gives
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local coordinates about each point of K. Thus, the proof will be complete once
we show the existence of arbitrarily small values of α satisfying φα(a) /∈ φα(F ).
Note that φα(a) = α, so we want to find an α such that α /∈ φα(F ).

Since ρ never takes the value 0 on F \ (Δ1 ∪ · · · ∪ Δn) and h is bounded
on K, for small enough values of α we have that α /∈ φα(F \ (Δ1 ∪ · · · ∪ Δn)).
Thus, it suffices to consider φα on Δ1, . . . ,Δn. For k = 1, . . . , n, let ρk

α =
φα ◦ ψk : Δr → C. Observe that ρk

α = iC + α(h ◦ ψk) and that ρk
α is defined

on a neighborhood of Δr. Now, we can apply the above lemma to conclude
that for all j = 1, . . . , n, there are arbitrarily small values of α such that
α /∈ ρj

α(
⋃n

j=1 ρ(Δj ∩ F )). But then α /∈ φα(Δj ∩ F ) for all j, and the proof is
complete. �

The last three lemmas in this section will simplify the proofs of Theo-
rems 3.1 and 3.2.

Lemma 2.15 ([17, Lemma 2.9]). If μ is a measure on K that annihilates
A(K), then μ̂ = 0 almost everywhere off Int(K).

Lemma 2.16. If a subset E of K has measure zero, then φ−1(φ(E)) ∩ K
has measure zero for any function φ that gives local coordinates on K.

Proof. Since K is compact, we can cover φ(K) with finitely many open
connected sets Vj , j = 1, . . . , n, where each connected set in φ−1(Vj) that has
nonempty intersection with K is mapped diffeomorphically by φ onto Vj .
Then for j = 1, . . . , n, φ−1(Vj) ∩ K is a disjoint union of finitely many sets
Uj1 , . . . ,Ujm in K, each of which is mapped diffeomorphically into Vj .

Fix one set, say Vt. Because φ(E) ∩ Vt has measure zero, and φ is a
diffeomorphism on each Uti , we have that φ−1(φ(E)) ∩ Uti has measure zero for
each i = 1, . . . ,m. It follows that φ−1(φ(E) ∩ Vt) ∩ K =

⋃m
i=1(φ

−1(φ(E)) ∩ Uti)
has measure zero.

Since Vt was arbitrary, φ−1(φ(E) ∩ Vj) ∩ K has measure zero for each
j = 1, . . . , n. Thus,

φ−1(φ(E)) ∩ K = φ−1

(
n⋃

j=1

φ(E) ∩ Vj

)
∩ K

=
n⋃

j=1

(
φ−1(φ(E) ∩ Vj) ∩ K

)
has measure zero. �

Lemma 2.17. Let E be a subset of Int(K) such that for each compact
subset E′ of E we have M(E′) = C(E′). Then for every point q in ρ−1(ρ(E)) ∩
Int(K), there is a parametric disc Δq centered at q whose closure is contained
in Int(K) and for which M(ρ−1(ρ(E)) ∩ Δq) = C(ρ−1(ρ(E)) ∩ Δq).
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Proof. Fix a point p0 in ρ−1(ρ(E)) ∩ Int(K). Since E is compact, there
are finitely many points p0, p1, . . . , pn in ρ−1(ρ(p0)) ∩ E ∩ Int(K). Choose
parametric discs Δ0,Δ1, . . . ,Δn centered at p0, p1, . . . , pn, respectively, so that
each disc is contained in Int(K) and mapped diffeomorphically by ρ onto
ρ(Δ0). Shrink the radius of the discs further to obtain discs Δ∗

0, . . . ,Δ
∗
n, that

are each mapped diffeomorphically onto ρ(Δ∗
0) and satisfy Δ

∗
j ⊂ Δj for all

j = 0, . . . , n.
For each j = 0,1, . . . , n, let φj be the diffeomorphism of Δj onto Δ0 given

by ρ. More specifically, φj = ψ ◦ (ρ|Δj ), where ψ : ρ(Δ0) → Δ0 is the inverse of
ρ restricted to Δ0. Denote the set φj(E ∩ Δ

∗
j ) by Ẽj . So Ẽj is a diffeomorphic

copy of E ∩ Δ
∗
j inside Δ

∗
0. Note furthermore, that ρ−1(ρ(E)) ∩ Δ

∗
0 =

⋃n
j=0 Ẽj .

Let f ∈ C(Ẽj). Then f ◦ φ−1
j is in C(E ∩ Δ

∗
j ) = M(E ∩ Δ

∗
j ). It follows that

f ◦ φ−1
j can be uniformly approximated on E ∩ Δ

∗
j by functions holomorphic

in a neighborhood of E ∩ Δ
∗
j . That is, f ◦ φ−1

j = limm→∞ gm on E ∩ Δ
∗
j , where

each gm is holomorphic in a neighborhood of E ∩ Δ
∗
j that is contained in Δj .

Now on Ẽj , we have f = f ◦ φ−1
j ◦ φj = lim(gm ◦ φj), where, for each m,

the function gm ◦ φj is holomorphic in a neighborhood of Ẽj that is contained
in Δ0. Thus, Theorem 2.7 gives that f ∈ M(Ẽj). It follows that M(Ẽj) =
C(Ẽj), and this is true for all j = 0, . . . , n. Then by Theorem 2.11, we have

M
(
ρ−1(ρ(E)) ∩ Δ

∗
0

)
= M

(
n⋃

j=0

Ẽj

)

= C

(
n⋃

j=0

Ẽj

)

= C
(
ρ−1(ρ(E)) ∩ Δ

∗
0

)
. �

3. Main theorems

Theorems 3.1 and 3.2 below are the main results of this paper. They
generalize results due to Izzo [15] to a compact subset of a Riemann surface.
(A function algebra on a set K is a uniformly closed subalgebra of C(K) that
contains the constants and separates the points of K.)

Theorem 3.1. Let K be a compact subset of an open Riemann surface R.
Suppose B is a function algebra on K that contains A(K). Then B = C(K)
if and only if both of the following conditions hold:

(i) the maximal ideal space of B is K, and
(ii) for almost every point a in Int(K) there is a function f in B that is

differentiable at a and such that (∂f/∂ρ)(a) �= 0.
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Theorem 3.2. Let K be a compact subset of an open Riemann surface R.
Suppose B is a function algebra on K that contains A(K). Let E = {ζ ∈
Int(K) : if f ∈ B, then either (∂f/∂ρ)(ζ) = 0 or f is not differentiable at ζ}.
Then B = C(K) if and only if both of the following conditions hold:
(i) the maximal ideal space of B is K, and
(ii) for each compact subset E′ of E ∩ Int(K) we have M(E′) = C(E′).

The major portion of the proofs of Theorems 3.1 and 3.2 will be accom-
plished with the following lemma. Notice that if a is any point in K, and
φ is a function that gives local coordinates on K, then since K is compact,
φ−1(φ(a)) ∩ K is a finite set of points. Also, if a is any point in Int(K), and
φ gives local coordinates on K and separates a from the boundary of K, then
each of the points in the finite set φ−1(φ(a)) ∩ K is in Int(K).

Lemma 3.3. Suppose B is a function algebra on K with maximal ideal space
K and such that M(K) ⊂ B. Let μ be a measure on K that annihilates B, and
let a be a point in Int(K). Let φ be a globally defined holomorphic function
that gives local coordinates on K and separates the point a from the boundary
of K, as given by Theorem 2.14. Let a1, . . . , ad denote the points in the finite
set φ−1(φ(a)) ∩ K. Suppose that

∫
|F (p, aj)| d|μ|(p) < ∞ for each j = 1, . . . , d.

If there are functions f1, . . . , fd in B such that fj is differentiable at aj and
(∂fj/∂φ)(aj) �= 0 for each j = 1, . . . , d, then μ̂(a) = 0.

Proof. Since the proof is long, we divide it into steps.
Step 1: Show there exist finitely many functions f0, f1, . . . , fm in B, a

neighborhood Ω of σ(φ, f0, f1, . . . , fm) (the joint spectrum of φ, f0, f1, . . . , fm)
in C

m+2, and holomorphic functions h and h1 on Ω such that:
(1) h = (z1 − φ(a))h1 where z1 is the first complex coordinate function on

C
m+2,

(2) the only zeros of h on σ(φ, f0, f1, . . . , fm) are at the points (φ(aj), f0(aj),
f1(aj), . . . , fm(aj)), j = 1, . . . , d,

(3) for some ε > 0 the circular sector T = {z ∈ C : − π
4 ≤ argz ≤ π

4 , |z| < ε}
satisfies h(σ(φ, f0, f1, . . . , fm)) ∩ T = {0}.

It follows from Corollary 2.10 that there is a function f0 in B such that
f0(aj) = j for j = 1, . . . , d. Also there is a η > 0 such that {z ∈ K : |φ(z) −
φ(a)| < η} is a disjoint union N1 ∪ · · · ∪ Nd with φ forming a local coordinate
system on each Nj and

Nj = {z ∈ K : |φ(z) − φ(a)| < η} ∩ {z ∈ K : |f0(z) − j| < 1/3}.

For each aj , choose a function fj ∈ B such that (∂fj/∂φ)(aj) �= 0. Now
for z in K, we have

fj(z) = fj(aj) +
∂fj

∂φ
(aj)

(
φ(z) − φ(a)

)
+

∂fj

∂φ
(aj)

(
φ(z) − φ(a)

)
+ r(z),

where r(z) satisfies r(z)/|φ(z) − φ(a)| → 0 as z → aj , or equivalently
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(4)
(φ(z) − φ(a))(fj(z) − fj(aj) − ∂fj

∂φ (aj)(φ(z) − φ(a)))
∂fj

∂φ
(aj)

= |φ(z) − φ(a)|2 + s(z),

where s(z) = r(z)(φ(z) − φ(a))/∂fj

∂φ
(aj) satisfies s(z)/|φ(z) − φ(a)|2 → 0 as

z → aj . Let gj be the function defined on C
d+2 by

gj(z1, . . . , zd+2) =
−(z1 − φ(a))(zj+2 − fj(aj) − ∂fj

∂φ (aj)(z1 − φ(a)))
∂fj

∂φ

(aj).

Then for z ∈ K we have by (4) that

gj(φ(z), f0(z), f1(z), . . . , fd(z)) = −|φ(z) − φ(a)|2 − s(z).

Thus, for each j = 1, . . . , d, there is a δj > 0 with δj < η such that if U ′
j =

{(z1, . . . , zd+2) ∈ C
d+2 : |z1 − φ(a)| < δj and |z2 − j| < 1/3}, then the real part

Regj(x) of gj(x) satisfies Regj(x) < 0 for

x ∈
{
(φ(z), f0(z), f1(z), . . . , fd(z)) : z ∈ K \ {aj }d

j=1

}
∩ U ′

j ,

while gj(φ(aj), f0(aj), f1(aj), . . . , fd(aj)) = 0 for j = 1, . . . , d. Choose a num-
ber δ such that 0 < δ < min{δ1, . . . , δd} and let Uj = {(z1, . . . , zd+2) ∈ C

d+2 :
|z1 − φ(a)| < δ and |z2 − j| < 1/3}. Let U = U1 ∪ · · · ∪ Ud and let

V = {(z1, . . . , zd+2) ∈ C
d+2 : |z1 − φ(a)| > δ}

∪
(

d⋃
j=1

({Regj < 0} ∩ { |z2 − j| < 1/3})

)
.

Notice that U ∩ V = (U1 ∩ V ) ∪ · · · ∪ (Ud ∩ V ) and that on Uj ∩ V we have
Regj < 0. Thus, if we define g on U by setting g = gj on Uj , then Reg < 0
on U ∩ V . Since the maximal ideal space of B is K, we have that

U ∪ V ⊃ {(φ(z), f0(z), f1(z), . . . , fd(z)) : z ∈ K} = σ(φ, f0, f1, . . . , fd).

Hence, [8, Lemma III.5.2] (the Arens–Calderón lemma) shows that there exist
functions fd+1, . . . , fm ∈ B such that

π(σ̂(φ, f0, f1, . . . , fm)) ⊂ U ∪ V,

where σ̂(φ, f0, f1, . . . , fm) is the polynomially convex hull of the joint spec-
trum σ(φ, f0, f1, . . . , fm) and π : Cm+2 → Cd+2 is the projection onto the first
d + 2 coordinates. Extend g to π−1(U) by making it independent of the last
m − d variables. The open sets π−1(U) and π−1(V ) cover σ̂(φ, f0, f1, . . . , fm)
and Reg < 0 on π−1(U) ∩ π−1(V ). By [1, Theorem 9.4], there exist a neigh-
borhood W of σ̂(φ, f0, f1, . . . , fm) and holomorphic functions ϕ and ψ on
π−1(U) ∩ W and π−1(V ) ∩ W , respectively, with

log(g) = ψ − ϕ on π−1(U) ∩ π−1(V ) ∩ W.
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Then geϕ = eψ on π−1(U) ∩ π−1(V ) ∩ W . The left-hand side is holomorphic on
π−1(U) ∩ W , and the right-hand side is holomorphic on π−1(V ) ∩ W . Hence,
the function h defined by

h =

{
geϕ on π−1(U) ∩ W,

eψ on π−1(V ) ∩ W,

is holomorphic on (π−1(U) ∪ π−1(V )) ∩ W .
Let

h1 =
h

z1 − φ(a)
.

Since z1 − φ(a) never vanishes on V , h1 is holomorphic on π−1(V ) ∩ W .
Moreover, g/(z1 − φ(a)) is a polynomial on each Uj , so h1 is also holomorphic
on π−1(U) ∩ W . Thus, h1 is holomorphic on (π−1(U) ∪ π−1(U)) ∩ W .

Letting Ω = (π−1(U) ∪ π−1(U)) ∩ W , we can see that (1) and (2) hold.
Let yj = (φ(aj), f0(aj), f1(aj), . . . , fm(aj)) and let s = eϕ. Then h = sg on

π−1(U) ∩ W . Since we can replace h by the product of h with any entire func-
tion on C

m+2 having no zeros, we may assume that s(yj) = 1 for j = 1, . . . , d.
Choose a neighborhood U ′ of {y1, . . . , yd} with U ′ contained in π−1(U) and
|s − 1| < 1/

√
2 on U ′. Suppose x is a point in σ(φ, f0, f1, . . . , fm) ∩ U ′ with

x �= yj for j = 1, . . . , d. Then

|h(x) − g(x)| = |s(x) − 1| |g(x)| <
1√
2

|g(x)|.

Since Reg(x) < 0, this implies that argh(x) lies outside [− π
4 , π

4 ], and hence
h(x) is outside the sector T .

On the other hand, σ(φ, f0, f1, . . . , fm) \ U ′ is a compact subset of the
joint spectrum σ(φ, f0, f1, . . . , fm) that does not intersect {y1, . . . , yd}, and by
(2) the only zeros of h on σ(φ, f0, f1, . . . , fm) are at {y1, . . . , yd}. Hence, the
modulus of h is bounded away from zero on σ(φ, f0, f1, . . . , fm) \ U ′. Therefore,
for some ε > 0, we have that everywhere on σ(φ, f0, f1, . . . , fm) \ {y1, . . . , yd}
the value of h lies outside the sector T . So (3) holds.

Step 2: Show there exists a sequence of functions {αn} in B and a positive
constant c such that

(5) lim
n→∞

αn(z) =
1

φ(z) − φ(a)
for z ∈K\ {a1, . . . , ad}, and

(6) |αn(z)| ≤ c

|φ(z) − φ(a)| for all z ∈ K and all n large.

With h and h1 as in Step 1, let

ψn(x) =
h1(x)

h(x) − 1/n
.

By (3), for each n large, there is a neighborhood of σ(φ, f0, f1, . . . , fm) on
which h never takes the value 1/n. Then since h and h1 are holomorphic
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on a neighborhood of σ(φ, f0, f1, . . . , fm), we see that ψn is holomorphic on
a neighborhood of σ(φ, f0, f1, . . . , fm) for n large. Let G : K → C

m+2 be
given by G(z) = (φ(z), f0(z), f1(z), . . . , fm(z)). The functional calculus (see
[8], Chapter III, for further information) shows that ψn ◦ G is in B. Let
αn = ψn ◦ G. For z ∈ K \ {a1, . . . , ad}, we have

lim
n→∞

αn(z) = lim
n→∞

h1(G(z))
h(G(z)) − 1/n

=
h1(G(z))
h(G(z))

=
1

φ(z) − φ(a)
.

So (5) holds.
There is a positive constant c1 such that for all n large and all w outside

the sector T we have ∣∣∣∣1 − 1
nw

∣∣∣∣ ≥ c1,

or equivalently, ∣∣∣∣w − 1
n

∣∣∣∣ ≥ c1|w|.

Thus, by (3), we have for all z ∈ K and n large,∣∣∣∣h(G(z)) − 1
n

∣∣∣∣ ≥ c1|h(G(z))|,

or equivalently, ∣∣∣∣h(G(z)) − 1
n

∣∣∣∣ ≥ c1|φ(z) − φ(a)| |h1(G(z))|.

Rearranging the last inequality and using the definition of αn gives

|αn(z)| ≤ 1
c1|φ(z) − φ(a)| ,

so (6) holds with c = 1/c1.
Step 3: Since by hypothesis

∫
|F (p, aj)| d|μ|(p) < ∞, j = 1, . . . , d, we can

see that |μ| has no mass at aj for j = 1, . . . , d. Also, by (6), the functions
an(z)(φ(z) − φ(a))F (z, a) are dominated by the L1 function c|F (z, a)|.

Notice that F (z, a) has a simple pole at a, and (φ(z) − φ(a))F (z, a) has a
removable singularity at a. Thus, (φ(z) − φ(a))F (z, a) is in B. Now, since
the αn are also in B, and μ annihilates B, Lebesgue’s dominated convergence
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theorem gives that

μ̂(a) =
∫

F (z, a)dμ(z)

= lim
n→∞

∫
αn(z)

(
φ(z) − φ(a)

)
F (z, a)dμ(z)

= 0. �

We are now ready to give the proofs of the two main theorems.

Proof of Theorem 3.1. Necessity is clear. To prove sufficiency, suppose μ
is a measure on K that annihilates B. It suffices to show that μ̂ = 0 almost
everywhere since this implies that μ = 0. Since B ⊃ A(K), Lemma 2.15 shows
that μ̂ = 0 almost everywhere off Int(K).

Let ρ be a globally defined holomorphic function that gives local coordi-
nates on K, and let E = {p ∈ Int(K) : if f ∈ B, then either (∂f/∂ρ)(p) = 0
or f is not differentiable at p}. Condition (ii) in Theorem 3.1 implies that
E has measure zero. Note that if ∂f(p) = 0 with respect to ρ at a point
p, then ∂f(p) = 0 with respect to any analytic local coordinate defined in a
neighborhood of p.

By Theorem 2.14, we know that for every point a ∈ Int(K) there is a glob-
ally defined holomorphic function φa that gives local coordinates on all of K
and satisfies φa(a) /∈ φa(∂K). Since ∂K is closed, we can find a neighbor-
hood Ua around each point a ∈ Int(K) such that φa(b) /∈ φa(∂K) for every
b ∈ Ua. Then there is a countable cover {Uai } ∞

i=1 of Int(K), such that for
each i = 1,2, . . . , we have φai(b) /∈ φai(∂K) for every b ∈ Uai .

Since φai gives local coordinates on K, it follows from Lemma 2.16 that
φ−1

ai
(φai(E)) ∩ K has measure zero for each i = 1,2, . . . , and consequently⋃∞

i=1 φ−1
ai

(φai(E)) ∩ K has measure zero. Then for almost every point b ∈
Int(K) there is a function φaj with φaj (b) /∈ φaj (∂K) and φaj (b) /∈ φaj (E).
So for almost every point b ∈ Int(K), there is a local coordinate φaj that
separates the point b from the boundary of K and satisfies the following:
if we let b1, . . . , bd denote the points in the finite set φ−1

aj
(φaj (b)) ∩ K, then

there are functions f1, . . . , fd in B, such that fk is differentiable at bk and
(∂fk/∂ρ)(bk) �= 0 for each k = 1, . . . , d. In addition, for almost every b ∈
Int(K), letting b1, . . . , bd denote the same points as above, we have that∫

|F (p, bk)| d|μ|(p) < ∞ for each k = 1, . . . , d. Then by Lemma 3.3, μ̂ = 0 al-
most everywhere on Int(K). Thus, μ̂ = 0 almost everywhere, and so μ = 0. �

Proof of Theorem 3.2. Necessity is clear. To prove sufficiency, suppose μ
is a measure on K that annihilates B. It suffices to show that μ̂ = 0 almost
everywhere since this implies that μ = 0. Since B ⊃ A(K), Lemma 2.15 shows
that μ̂ = 0 almost everywhere off Int(K). Moreover, Lemmas 2.16 and 3.3
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show that μ̂ = 0 almost everywhere on Int(K) \ ρ−1(ρ(E)). Thus, we need
only show that μ̂ = 0 almost everywhere on ρ−1(ρ(E)) ∩ Int(K).

Since we have already noted that μ̂ = 0 almost everywhere off ρ−1(ρ(E)),
the measure μ is supported on ρ−1(ρ(E)) (by Corollary 2.5), and since the
Cauchy transform of a measure is holomorphic off its closed support, μ̂ = 0
everywhere off ρ−1(ρ(E)) also. For each q ∈ ρ−1(ρ(E)) ∩ Int(K), choose a
parametric disc Δq centered at q whose closure is contained in Int(K) and
such that M(ρ−1(ρ(E)) ∩ Δq) = C(ρ−1(ρ(E)) ∩ Δq) as given by Lemma 2.17.
Let Δ′

q be the disc centered at q with radius half that of Δq .
Now fix w ∈ ρ−1(ρ(E)) ∩ Int(K). Let U1 = ρ−1(ρ(E)) ∩ Δw and let {Uj }n

j=2

be a cover of ρ−1(ρ(E)) ∩ (K \ Δw) by coordinate patches with U j ∩ Δ′
w = ∅

for all j = 2, . . . , n. Since μ̂ = 0 off ρ−1(ρ(E)), Theorem 2.3 gives that μ ⊥
M(ρ−1(ρ(E))). Hence, by Lemma 2.8, there exist measures μ1, . . . , μn such
that μ =

∑n
i=1 μi with μi ⊥ M(U i) and the closed support of μi is contained in

Ui (i = 1, . . . , n). Now μ1 ⊥ M(U1) = M(ρ−1(ρ(E)) ∩ Δw) = C(ρ−1(ρ(E)) ∩
Δw), so μ1 = 0. Moreover, μ̂j = 0 off U j for all j = 2, . . . , n (since μj ⊥
M(U j)), so μ̂j = 0 on Δ′

w for all j. Thus, μ̂ =
∑n

j=2 μ̂j = 0 on Δ′
w. We

conclude that μ̂ = 0 on ρ−1(ρ(E)) ∩ Int(K). �

The next theorem is a consequence of Theorem 3.2. This theorem is a
characterization of the continuously differentiable complex-valued functions f
such that A(K)[f ] = C(K).

Theorem 3.4. Let K be a compact subset of an open Riemann surface R.
Suppose f ∈ C(K) is continuously differentiable on Int(K). Then A(K)[f ] =
C(K) if and only if:
(i) the maximal ideal space of A(K)[f ] is K, and
(ii) for each compact subset E′ of the set {ζ ∈ Int(K) : (∂f/∂ρ)(ζ) = 0} we

have M(E′) = C(E′).

Proof. The “if” part is an immediate consequence of Theorem 3.2. Con-
versely, if A(K)[f ] = C(K), then the maximal ideal space of A(K)[f ] is K.
Moreover, if there were a compact set E′ contained in Int(K) on which ∂f/∂ρ
were identically zero for which M(E′) �= C(E′), then the restriction of every
member of the set A(K) ∪ {f } to E′ would be in M(E′) by Corollary 2.4, and
hence the same would be true of every member of A(K)[f ]. Thus, we would
have A(K)[f ] �= C(K). �

The following is a consequence of Theorem 3.1 and also a special case of
Theorem 3.4. This corollary will be used in the next section to obtain results
about harmonic functions.

Corollary 3.5. Suppose f ∈ C(K) is continuously differentiable on
Int(K) and such that:
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(i) the maximal ideal space of A(K)[f ] is K, and
(ii) ∂f/∂ρ is nonzero almost everywhere on Int(K).
Then A(K)[f ] = C(K).

4. Harmonic functions

In this section, we generalize some of Izzo’s results in [15] for harmonic
functions to an open Riemann surface. Following Izzo’s approach, we use
the notion of subharmonicity with respect to a function algebra as defined
by Gamelin and Sibony in [9]. Let A be a function algebra with maximal
ideal space MA, and let u be an upper semicontinuous function on MA. The
function u is said to be subharmonic with respect to A if u(x) ≤

∫
udσ for

every x ∈ MA and every Jensen measure σ for x. A real-valued function u on
MA is called harmonic with respect to A if both u and −u are subharmonic
with respect to A. A complex-valued function on MA is called harmonic
with respect to A if its real and imaginary parts are harmonic with respect
to A. Notice that a continuous complex-valued function f on MA is harmonic
with respect to A if and only if

∫
fdσ = f(x) for every x ∈ MA and every

Jensen measure σ for x. Lemma 4.2 shows that harmonicity with respect to
an algebra is related to ordinary harmonicity.

The harmonic measure for a point p ∈ Int(K) is the unique representing
measure for p on ∂K with respect to the functions continuous on K and
harmonic on Int(K).

Lemma 4.1 ([10, Lemma 7.3]). Let K be a compact subset of an open Rie-
mann surface R. If p ∈ Int(K), then harmonic measure is a Jensen measure
for p with respect to A(K).

Lemma 4.2. If h is harmonic with respect to A(K), then h is harmonic on
Int(K).

Proof. Suppose h is harmonic with respect to A(K). Notice that since h
and −h are upper semicontinuous on MA, the function h is continuous on K.
Let ρ be a globally defined holomorphic function that gives local coordinates
on K. Let Δ ⊂ Int(K) be a parametric disc for ρ with center p0 and radius r,
and set z0 = ρ(p0). For any function u harmonic in Δ and continuous on Δ,
we have

(∗) u(p0) =
1
2π

∫ 2π

0

u
(
ρ−1(z0 + reiθ)

)
dθ.

Then the measure μp0 defined by
∫

f dμp0 = 1
2π

∫ 2π

0
f(ρ−1(z0 + reiθ))dθ is the

unique harmonic measure for A(Δ). By Lemma 4.1, μp0 is a Jensen measure
for p0 with respect to A(Δ). Then since A(K) is contained in A(Δ), μp0 is
a Jensen measure for p0 with respect to A(K). Therefore, equation (∗) also
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holds with u replaced by the function h. Since Δ was an arbitrary parametric
disc in K, we get that h is a harmonic function on Int(K). �

We also need the following lemma to apply the results from the last section.

Lemma 4.3 ([15, Lemma 2.1]). If A is a function algebra on its maximal
ideal space X, and f is a complex-valued function on X that is harmonic with
respect to A, then the maximal ideal space of A[f ] is also X.

Theorem 4.4. Let K be a compact subset of an open Riemann surface R.
If f ∈ C(K) is harmonic with respect to A(K), and f is nonholomorphic on
each component of Int(K), then A(K)[f ] = C(K).

Proof. By Lemma 4.2, the functions harmonic with respect to A(K) are
harmonic on Int(K) in the ordinary sense. Thus, f is continuously differ-
entiable on Int(K) and ∂f/∂ρ has at most countably many zeros on Int(K).
Moreover, the preceding lemma shows that the maximal ideal space of A(K)[f ]
is K. Therefore, Corollary 3.5 shows that A(K)[f ] = C(K). �

Every function that is in the uniform closure of the complex-linear span of
log |A(K)−1| is harmonic with respect to A(K), so the following is a conse-
quence of Theorem 4.4.

Theorem 4.5. If f is in the uniform closure of the complex-linear span
of log |A(K)−1| and f is nonholomorphic on each component of Int(K), then
A(K)[f ] = C(K).

The following theorem was proved by Izzo [15, Theorem 2.6] in the case
where K is a compact subset of the complex plane. Since Izzo’s proof also
holds on a Riemann surface, we simply state the theorem here and refer the
reader to [15] for a proof. A Jensen boundary point for a function algebra A
on X is a point of X for which the only Jensen measure is the point mass.

Theorem 4.6. Suppose K is such that every point of ∂K is a Jensen bound-
ary point for A(K). If f ∈ C(K) is harmonic on Int(K) and nonholomorphic
on each component of Int(K), then A(K)[f ] = C(K).

Since every peak point is a Jensen boundary point, the following is a special
case of Theorem 4.6.

Corollary 4.7. Suppose K is such that every point of ∂K is a peak point
for A(K). If f ∈ C(K) is harmonic on Int(K) and nonholomorphic on each
component of Int(K), then A(K)[f ] = C(K).

Although in this section we considered only the algebra generated by A(K)
and a single harmonic function, we could just as easily have considered the
algebra generated by A(K) and a whole family of harmonic functions. To
see this, first observe that, as noted in [15], Lemma 4.3 remains valid if the
function f is replaced by a family of complex-valued functions on X each
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harmonic with respect to A. From this and Theorem 3.1, we obtain the
following generalization of Theorem 4.4.

Theorem 4.8. If {fα} is a family of functions in C(K) that are harmonic
with respect to A(K) and for each component U of Int(K) there is some fα

that is nonholomorphic on U, then the function algebra generated by A(K)
and {fα} is C(K).

Analogs for the remaining results of this section also hold.

5. Maximal subalgebras

By a theorem of Wermer [24], the disc algebra on the circle, A∂D, is a
maximal subalgebra of C(∂D). An open question is whether A(K)|∂K is a
maximal subalgebra of C(∂K) whenever K is a compact set in the plane with
connected interior. Various results, which put restrictions on the set K, can
be found in [4], [10], and [15]. In this section, we state two of the maximality
results from [15] that also hold on a Riemann surface.

Theorem 5.1. Let K be a compact subset of an open Riemann surface R.
Suppose K is regular for the Dirichlet problem and is such that every function
that is continuous on K and harmonic on Int(K) is harmonic with respect
to A(K). If Int(K) is connected, then A(K)|∂K is a maximal subalgebra of
C(∂K).

Izzo [15] has given two different proofs of the above theorem in the case
where K is a compact subset of the complex plane. The first proof given in [15,
Theorem 3.1], with Theorem 2.2 in [15] replaced by Theorem 4.4 in this paper,
also holds on a Riemann surface. Similarly, for the theorem below, Izzo’s first
proof [15, Theorem 3.2], with Lemma 1.3 in [15] replaced by Lemmas 2.16
and 3.3 in this paper, also holds for a Riemann surface.

Theorem 5.2. Let K be a compact subset of an open Riemann surface R.
Suppose K is regular for the Dirichlet problem and is such that every function
that is continuous on K and harmonic on Int(K) is harmonic with respect to
A(K). A function algebra B on ∂K that contains A(K)|∂K is maximal in
C(∂K) if and only if there is a component U of Int(K) such that B consists
of all the continuous functions on ∂K whose harmonic extension to K is
holomorphic on U .
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