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AN EXACT SEQUENCE OF WEIGHTED NASH COMPLEXES

LAURA TAALMAN

Abstract. Given a three-dimensional complex algebraic variety
with isolated singular point and a sufficiently fine complete reso-
lution of the singularity, we can make a careful choice of hyper-
plane that allows us to construct an exact sequence of weighted
Nash complexes.

1. Introduction

Suppose (V, v) is an n-dimensional complex algebraic variety V with iso-
lated singular point v, and U ⊂ V is a neighborhood of v with an embedding
(U,v) ↪→ (CN ,0). The Nash blowup Û of U is the closure of the image of the
section σ : U − v → Grn(TCN ) that sends each point of U − v to its tangent
space, or equivalently, the blowup of the sheaf of 1-forms Ω1

U (see [2], [4], and
[6]). The Nash bundle ν : N → Û over the Nash blowup Û is the restriction
of the universal subbundle of Grn(TCN ) to Û , and the Nash sheaf N is the
sheaf of sections of the dual of the Nash bundle. Equivalently, thinking of Û as
the blowup of Ω1

U , we can define the Nash sheaf N to be the locally free sheaf
N := π̂∗Ω1

U/Torsion(π̂∗Ω1
U ) ≈ γ∗ Q, where Q is the universal quotient sheaf

on Gr(N − n,N) and γ : Û ↪→ Gr(N − n,N) is the canonical map. A sheaf N
on a blowup π : Ũ → U is a generalized Nash sheaf (although, we will often
say simply “Nash sheaf”) if Ũ factors through the Nash blowup Û of U and
N is the pullback of the Nash sheaf on Û (see the Appendix (A3) in [3]).

This paper will primarily concern the case where n = 3, although we will
suggest conjectures for the general case. Given a 3-dimensional variety V
with isolated singular point v and neighborhood U ⊂ V , and a resolution
π : (Ũ ,E) → (U,v) of the singularity v with exceptional divisor E, consider the
following three sheaves: the sheaf-theoretic inverse image m of the maximal
ideal sheaf mv , the generalized Nash sheaf N on Ũ , and the second Fitting
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ideal F of the Nash sheaf. We say that π is a complete resolution if m and F
are locally principal and N is locally free over Ũ . If the neighborhood U is
sufficiently small, then such a complete resolution will exist (see [4]).

Given a complete resolution π : (Ũ ,E) → (U,v), and a point e ∈ E, let W

be an analytic neighborhood of e in Ũ . If e is a triple point of E, then
we can choose coordinates {u, v,w} on W for which the components of the
exceptional divisor passing through e are E1 = {u = 0}, E2 = {v = 0}, and
E3 = {w = 0}. Similarly, if e is a double point, we can choose coordinates so
that E1 and E2 are given by the vanishing of u and v, and if e is a simple
point, we can choose coordinates so that E1 is given by the vanishing of u. In
each case, we will call such coordinates divisor coordinates.

The following theorem from [4] shows that some choice of divisor coordi-
nates will define so-called monomial generators for the Nash sheaf.

Theorem 1.1. Given a complete resolution π : (Ũ ,E) → (U,v) of a three-
dimensional complex algebraic variety V with isolated singular point v, and
a point e ∈ E with analytic neighborhood W ⊂ Ũ , there exists a set of divisor
coordinates {u, v,w} on W so that the Nash sheaf N is locally generated by
the differentials dφ, dψ, dρ of monomial functions of the form

φ = um1vm2wm3 , ψ = un1vn2wn3 , ρ = up1vp2wp3

whose exponents {(m1,m2,m3), (n1, n2, n3), (p1, p2, p3)} are a Hsiang–Pati or-
dered set in the sense that:
(1) If e is a double point, then either m3 = n3 = 0 and p3 = 1, or m3 = p3 = 0

and n3 = 1, and if e is a simple point, then m2 = m3 = 0, n2 = 1, p2 = 0,
n3 = 0, and p3 = 1;

(2) 0 < ml ≤ nl ≤ pl for l = 1,2,3 if e is a triple point, for l = 1,2 if e is a
double point, or for l = 1 if e is a simple point; and

(3)
∣∣∣∣m1 n1 p1
m2 n2 p2
m3 n3 p3

∣∣∣∣ �= 0.

Moreover, we can assume that the functions φ, ψ, and ρ in Theorem 1.1 are
Nash-minimal, in the sense that:
(4) φ is a generator for m(W ); and
(5) dφdψ is a minimal element of Λ2N (W ).

One consequence of Theorem 1.1 is that the exponents mi, ni, pi of the
Hsiang–Pati coordinates φ, ψ, and ρ give rise to three divisors supported
on E, denoted Z, N , and P , respectively. We will refer to these divisors
(and the corresponding multiplicities) as resolution data, because they are
invariants of the resolution used.

Given a two-dimensional complex algebraic variety with isolated singular
point and a sufficiently fine resolution, Pardon and Stern constructed an exact
sequence of sheaves that expresses the Nash sheaf in terms of the resolution
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data, and used this sequence to describe the cohomological Hodge structure
on the L2-cohomology of an algebraic surface in terms of local cohomology
groups obtained from a resolution of the surface [3]. In this paper, we con-
struct a generalization of this exact sequence to the three-dimensional case.
Specifically, we show that if π : Ũ → U is a complete resolution, then there is
a short exact sequence of the form

0 → Ω̃1�Ñ 1 ↪→ Ω̃2�Ñ 2 � Ω̃3�Ñ 3 → 0(1.1)

where Ñ k = Λk N ⊗ O(Z − E) and Ω̃k = Ωk(logE) ⊗ O(−(k − 1)Z − E) are
complexes of sheaves over Ũ . The maps in both complexes are given by
∧ dh̃

h̃
, where h̃ = h ◦ π and h : CN → C is a linear function defining a generic

hyperplane whose proper transform satisfies certain conditions (see Section 2).
The form of this sequence suggests a possible further generalization to n

dimensions, namely an exact sequence of the form

0 → Ω̃1�Ñ 1 ↪→ Ω̃2�Ñ 2 → Ω̃3�Ñ 3 → · · · � Ω̃n�Ñ n → 0

where the first three maps are defined exactly as those for sequence in the
3-dimensional case (see Section 4), and the remaining maps are induced by
the map ∧ dh̃

h̃
.

In [4], it was shown that a complete resolution always exists in the n = 3
case. The proof of this fact in the general case is nontrivial and is an open
problem. The definition of complete in the general case is similar to the n = 3
case, but with the requirement that the Fitting invariants Fittj(α1)OŨ =
Fittn−1(αn−j) are locally principal ideal sheaves on Ũ for 1 ≤ j ≤ n − 2, where
αn−j : Λn−j NŨ ↪→ Ωn−j

Ũ
(logE). There exists an analogue of Hsiang–Pati co-

ordinates (and thus, monomial generators for the Nash sheaf), that Hironaka’s
resolution theorem can be used to make a careful choice of generic hyperplane,
and that the conjectured sequence in the n-dimensional case is well defined
and exact are results in progress that may appear in a future paper.

In Section 2 of this paper, we use genericity and a theorem from Hironaka [1]
to make a careful choice of transverse hyperplane that will define the maps
of our exact sequence. In Section 3, we establish some further notation and
use the properties of the monomial generators of the Nash sheaf to construct
a local basis for a certain sheaf of logarithmic 1-forms. Finally, in Section 4,
we prove that the sequence given in (1.1) that relates the Nash sheaf to the
resolution data is well defined and exact.

2. A careful choice of hyperplane

The two lemmas in Sections 2.1 and 2.2 will show that in a sufficiently
fine resolution, we can find a generic hyperplane passing through v in CN
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whose proper transform intersects the exceptional divisor transversely at sim-
ple points. In Section 2.3, we will show that such a hyperplane will help us
make certain choices for the monomial generators φ, ψ, and ρ referred to in
Theorem 1.1. This careful choice of hyperplane will enable us to construct
the exact sequence in Section 4.

2.1. Finding a nice hyperplane. Given a resolution π : (Ũ ,E) → (U,v),
and a hyperplane H ∈ Cn, the proper transform H̃ of H is the closure in Ũ
of π−1(H ∩ (U − v)), and the total transform of H is simply π−1(H ∩ U).
The following theorem allows us to generically choose a hyperplane with nice
properties.

Lemma 2.1. Suppose π : (Ũ ,E) → (U,v) is a complete resolution. A gener-
ic hyperplane H ⊂ Cn is nice, in the sense that:
(1) H ∩ (U − v) is smooth;
(2) H ∩ U is reduced; and
(3) the total transform of H vanishes to minimum order along E.

Proof. Parts (1) and (2) follow from Lemma 1.1 in Teissier’s paper [5],
which states that in a small enough neighborhood of v, there exists an open,
Zariski dense set G ⊂ Gr(N − 1,N) of hyperplanes in CN passing through v
such that for each H ∈ G we have (H ∩ U)sing = H ∩ Using (and thus the
singular set of H ∩ (U − v) is empty). In fact, the proof of Lemma 1.1 from [5]
shows that a generic H will meet U − v transversely.

Now, let h : Cn → C be the linear function defining H . To prove part (3),
we must show that the total transform π−1(H ∪ U) of H ∪ U in Ũ vanishes
to minimum order along E, i.e., that the linear function h ◦ π vanishes to
minimum order along E. It suffices to show that there is some perturbation h′

of h so that h′ ◦ π vanishes to the minimum order along E. Since Ũ is a
complete resolution, π∗(mv) is a locally principal sheaf of ideals on Ũ ; let φ
be the local generator. If h vanishes to more than the order of φ, we can write
h ◦ π = λφ for some holomorphic function λ. Since φ is an element of π∗mv ,
there is an f ∈ mv with φ = π∗f = f ◦ π. Note that since f is an element of
the maximal ideal for v, it defines a hyperplane passing through v. Now, let
h′ := h + εf ; then

h′ ◦ π = (h + εf) ◦ π = (h ◦ π) + ε(f ◦ π) = λφ + εφ = (λ + ε)φ.

Since λ + ε is a local unit, h′ vanishes to minimum order along E. �

2.2. Finding a transverse hyperplane. Given a complete resolution π

from (Ũ ,E) to (U,v) and a “nice” hyperplane H with proper transform H̃ , we
would like to be able to say that E ∪ H̃ is a divisor with normal crossings in Ũ ,
but this is not in general the case. However, we can find a finer resolution
over which this is true, with the following lemma.
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Lemma 2.2. Suppose π : (Ũ ,E) → (U,v) is a complete resolution, and H ⊂
Cn is a “nice” hyperplane in the sense of Lemma 2.1. Then there exists a
further resolution Ū of Ũ in which the proper transform H̄ is reduced and
meets Ē transversely at smooth points of H̄.

We will prove Lemma 2.2 by putting our notation in the context of Hiron-
aka’s paper [1] and applying his Theorem IN,n

2 . This theorem involves per-
missible resolutions of resolution datum with open restriction; we will present
these concepts here only in the cases that we need. We start with the defi-
nition of a resolution datum (i.e., an object that we wish to resolve in some
fashion) on Ũ (following Definition 3(I) from [1]).

Definition 2.3. A resolution datum on a dimension n space X is a triple
R

n,m
I = (D;V ;W ) where

(1) D is reduced and codimension 1 in X with normal crossings;
(2) V is a subvariety of X with V ⊃ W ; and
(3) W is a reduced subvariety of X of dimension m.

We will also call a pair R
n,m
I (D;W ) a resolution datum if it satisfies condi-

tions (1) and (3) above.

Clearly, the pair (E; H̃) is a resolution datum of type R
n,n−1
I on Ũ be-

cause E is reduced and codimension 1 in Ũ with normal crossings, and H̃
is reduced and dimension n − 1. We will denote R

n,m
I simply by R when

convenient.
We now state what it means for such a datum to be resolved at a point

of W (see Definition 4(I) in [1]).

Definition 2.4. The datum R = (D;V ;W ) (and similarly, the datum R =
(D;W )) is said to be resolved at x ∈ W if:

(1) x is a smooth point of W ; and
(2) D has only normal crossings with W at x.

We define a datum with open restriction to be a resolution datum that is
resolved on a dense open subset (see Definition 5(I.2) of [1]) as follows.

Definition 2.5. Given a resolution datum R = (D;V ;W ) (similarly, a
datum (D;W )), a pair (R, Y ) is a resolution datum with open restriction
on X if

(1) Y is a dense open subset of W ; and
(2) R is resolved at every point of Y .

The pair ((E; H̃), H̃ − E) is a resolution datum with open restriction: the
subset H̃ − E = H̃ − (H̃ ∩ E) is open and dense in H̃ since H̃ is the Zariski
closure of H̃ − E. The datum (E; H̃) is resolved along all of H̃ − E because H̃
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is smooth away from E (by our careful choice of H), and E vacuously has
only normal crossings with H̃ along H̃ − E since E ∩ (H̃ − E) = ∅.

Given a smooth, irreducible subset B ⊂ X , we say that a map f : X ′ → X
is the monoidal transformation with center B if it is the blowup of X along
the sheaf of ideals defining B. We now define (as in Definition 6 of [1]) what
is means for such a transformation to be permissible with respect to some
resolution datum.

Definition 2.6. A monoidal transformation f : X ′ → X with center B is
permissible for the resolution datum R = (D;V ;W ) (respectively, (D;W )) if
(1) (D;V ∩ W ;B) (respectively, (D;W ;B)) is a resolution datum on X ; and
(2) the datum (D;V ∩ W ;B) (respectively, (D;W ;B)) is resolved everywhere,

i.e., on all of B.
Such a monoidal transformation is permissible for a resolution datum with
open restriction (R, Y ) if it is permissible for R as defined above with B ⊂ Y .

In our case where R = (E; H̃), a monoidal transformation f : Ũ ′ → Ũ with
center B is permissible if the triple (E; H̃;B) is a resolution datum (and
thus B is reduced and contained in H̃) and E has only normal crossings
with B. If f with center B is permissible for the datum with open restriction
((E; H̃); H̃ − E), then in addition we have B ⊂ H̃ − (H̃ − E), i.e., B ⊂ H̃ ∩ E.

We now define what it means to pull back a resolution datum by a permis-
sible monoidal transformation f (as in Definition 7 of [1]). Given such an f ,
define

D′ = ptX′ (D),
V ′ = ptX′ (V ),
W ′ = ptX′ (W ),

where ptX′ (D) denotes the proper transform of D in X ′, et cetera, and

B′ = ttX′ (B),
Y ′ = ttX′ (Y ),

where ttX′ (B) denotes the total transform (i.e., the inverse image f −1(B))
of B in X ′. We can now define the pullback of a resolution datum R by f as
follows.

Definition 2.7. Given a resolution datum R and a monoidal transforma-
tion f as above (permissible with respect to R), the pullback of R by f is
defined to be the triple

f ∗(R) := (D′ ∪ B′;V ′;W ′)

(simply omit the V ′ if R is a pair rather than a triple). The pullback of the
resolution datum with open restriction (R, Y ) by such an f is defined to be
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the pair
f ∗(R, Y ) := (f ∗(R), Y ′).

By the discussion following Definition 7 in [1], the pullback f ∗(R) is itself
a resolution datum (of the same type, i.e., the same dimensions) on X (as
long as B does not contain any irreducible components of W ; in that case
the dimension m may be smaller). Let us investigate what this means in our
case, where (R, Y ) = ((E; H̃), H̃ − E). In this case, we have

f ∗(
(E; H̃), H̃ − E

)
=

(
(E′ ∪ B′; H̃ ′), H̃ ′ − (E′ ∪ B′)

)
,

since Y ′ = (H̃ − E)′ = f −1(H̃ − E) = H̃ ′ − (E′ ∪ B′). The fact that this is
a resolution datum (with open restriction) means that E′ ∪ B′ is reduced,
codimension 1 in Ũ ′, and has normal crossings; and moreover, that H̃ ′ is
reduced and dimension n − 1 (note that B cannot contain any irreducible
components of H because B ⊂ H̃ ∩ E).

Our final definition describes what it means for a series of monoidal trans-
formations to be permissible (following Definition 8 from [1]).

Definition 2.8. Given a resolution datum R on X , a series of monoidal
transformations f = {fi : Xi+1 → Xi}0≤i<s with centers Bi on Xi (where
X0 = X) is permissible if there exists, for 0 ≤ i < s, a resolution datum Ri

(with R0 = R) for Xi such that:

(1) fi is permissible with respect to Ri; and
(2) Ri+1 = f ∗

i (Ri).

Given such a permissible series f : X ′ → X of monoidal transformations (with
X ′ = Xs), we will define the pullback f ∗(R) of R under f to be the final
resolution datum Rs.

We can now state the theorem of Hironaka that we wish to apply (Theo-
rem IN,n

2 in [1]).

Theorem 2.9. There exists a finite succession of monoidal transformations
f : X ′ → X which is permissible for the resolution datum with open restriction
(R, Y ) such that the resolution datum f ∗(R) is resolved everywhere.

Now, we can finally prove Lemma 2.2.

Proof of Lemma 2.2. If (R, Y ) = ((E; H̃), H̃ − E), then Theorem 2.9 says
that we can find a series of monoidal transformations f : Ū → Ũ (here Ū = Ũ ′

from the above), with centers Bi contained in E1 ∩ H̃i at each level, so that
in Ū , H̄ ∪ Ē is a divisor with normal crossings and H̄ is smooth (where H̄ is
H̃ ′ = H̃s in the notation above, and Ē is the union of the proper transform
of E with the total transforms of the centers Bi). �
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2.3. Using a generic hyperplane to choose a monomial generator.
The following theorem will allow us to use a generic hyperplane to define one
of the monomial functions φ, ψ, or ρ that appear in Theorem 1.1.

Theorem 2.10. Suppose π : (Ũ ,E) → (U,v) is a sufficiently fine complete
resolution and H ⊂ Cn is a “nice” hyperplane in the sense of Lemmas 2.1
and 2.2. Let Z :=

∑
miEi be the divisor on E corresponding to the pull-

back π∗(mv). If h is the linear function that defines H , and H̃ is the proper
transform of H , then:

(1) div(h ◦ π) = Z + H̃ ;
(2) H̃ meets E only at double or simple points of E;
(3) near a point e /∈ H̃ we can choose φ to be h ◦ π;
(4) near a double point e ∈ H̃ ∩ E1 ∩ E2 we have mi = ni and mj = nj , and

we can choose ψ to be h ◦ π.
(5) near a simple point e ∈ H̃ ∩ E1 we have mi = ni = pi and we can choose

either ψ or ρ to be h ◦ π.

Proof. Part (1) follows directly from Lemma 2.2, which ensures that H̃ ∪ E

is a divisor with normal crossings in Ũ , and the fact that H is a “nice”
hyperplane, and thus that h ◦ π vanishes to minimum order along E.

Part (2) follows from Theorem 2.9, which guarantees that H̃ ∪ E is a divisor
with normal crossings, and thus that we can choose h, so that H̃ misses the
triple points of E.

To prove part (3), suppose e is a point that is not contained in H̃ , and
let W be an analytic neighborhood of e in Ũ . By part (1), we have h ◦ π =
um1vm2wm3 near e (at a triple point; at double or simple points simply set
m2 = 0 or m2 = m3 = 0, respectively), and thus, h ◦ π = φ.

To prove part (4), suppose e ∈ H̃ ∩ E1 ∩ E2 is a double point contained
in H . By Lemma 2.2 and part (1), we can choose coordinates {u, v,w} on Ũ

so that E1 = {u = 0}, E2 = {v = 0}, and H̃ = {w = 0}; then by the definition
of m1 and m2 we have (after possibly rechoosing coordinates by multiplying w
by a local unit) h ◦ π = um1vm2w. There exists a perturbation g of h so
that g ◦ π = δum1vm2 near e, where δ is a local unit (this corresponds to
a hyperplane G̃ ⊂ Ũ that is shifted away from e, off of {w = 0}, but still
transverse to E). The exponents {n1, n2} and {p1, p2} are minimal in the
sense that we have either m1 = p1 and m2 = p2, or m1 = n1 and m2 = n2.
Suppose first that we have m1 = p1 and m2 = p2. Then since m1 ≤ n1 ≤ p1

and m2 ≤ n2 ≤ p2, we must have m1 = n1 and m2 = n2. But, we must also
have m1n2 − m2n1 �= 0, and thus we have a contradiction. Therefore, we must
have m1 = n1 and m2 = n2, and thus h ◦ π = um1vm2w = un1vn2w = ψ.

Finally, we prove part (5). Given a simple point e ∈ H̃ ∩ E1, and an analytic
neighborhood W of e in Ũ , we can choose coordinates {u, v,w} on W so that
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E1 = {u = 0} and H̃ = {v = 0} (by Lemma 2.2; then by part (1) we have
h ◦ π = um1v near e. There exists a perturbation g of h so that g ◦ π = δum1

near e, where δ is a local unit (this corresponds to a hyperplane G̃ ⊂ Ũ that is
shifted away from e, off of {v = 0}, but still transverse to E). There also exists
a perturbation f of h so that f ◦ π = τum1 near e, where τ is a coordinate
independent of u and v (this corresponds to a hyperplane F̃ ⊂ Ũ that is
rotated off of {v = 0}, but still transverse to E). Rechoose coordinates by⎧⎪⎨

⎪⎩
u �→ uδ−1/m1 ,

v �→ vδ,

w �→ w;

with these coordinates we have h ◦ π = um1v, g ◦ π = um1 , and f ◦ π = τ ′um1 ,
where τ ′ is some coordinate independent of u and v. Finally, redefine w =
τ ′; then f ◦ π = um1w. By minimality, we now have m1 = n1 = p1 on this
component E1, and we can choose φ = g ◦ π, ψ = h ◦ π, and ρ = f ◦ π. We
clearly could have also changed coordinates to have ρ = h ◦ π. �

3. The logarithmic Nash frame

We first collect and extend our notation. Let π : (Ũ ,E) → (U,v) be a
sufficiently fine complete resolution, and let H ⊂ Cn be a “nice” hyperplane
in the sense of Theorem 2.10. Let W be an analytic neighborhood of e in Ũ ,
and choose divisor coordinates {u, v,w} on W so that φ, ψ, and ρ are Hsiang–
Pati coordinates as in Theorem 1.1. Let Z =

∑
miE1, N =

∑
niE1, and

P =
∑

piE1 be the divisors that represent the resolution data.
At a triple point e ∈ E1 ∩ E2 ∩ E3, we have

φ = um1vm2wm3 ,

ψ = un1vn2wn3 ,

ρ = up1vp2wp3 ,

where ml ≤ nl ≤ pl for l = 1,2,3. Similarly, at a double point e ∈ E1 ∩ E2, we
have either

φ = um1vm2 , φ = um1vm2 ,

ψ = un1vn2 , or ψ = un1vn2w,

ρ = up1vp2w ρ = up1vp2 ,

where ml ≤ nl ≤ pl for l = 1,2. When we have the situation on the above left,
we say that e is a case I double point, and when we have the situation on
the above right, we say that e is a case II double point. Finally, at a simple
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point e ∈ E1, we have

φ = um1 ,

ψ = un1v,

ρ = up1w

where m1 ≤ n1 ≤ p1.
Suppose h is the linear function that defines the hyperplane H . We will

denote the composition h ◦ π by h̃. By Theorem 2.10, we can choose φ, ψ,
and ρ such that h̃ = φ near any triple point (since H̃ cannot pass through such
points), and h̃ = ψ near any double or simple point. In addition, Theorem 2.10
tells us that near a double point e ∈ E1 ∩ E2 ∩ H̃ we have m1 = n1 and m2 = n2,
and thus in an analytic neighborhood of e we have Z = N . Similarly, near a
simple point e ∈ E1 ∩ H̃ we have Z = N = P . Moreover, since by Theorem 2.10
we have div(h̃) = Z + H̃ , multiplication by h̃ gives us an isomorphism O(H̃) ≈

O(−Z).
By Theorem 1.1, {dφ, dψ,dρ} is a basis for the Nash sheaf NŨ (W ). The

sheaf Ω1
W (logE) has as its standard basis over W the logarithmic frame{

du

u
,
dv

v
,
dw

w

}
, if e is a triple point;{

du

u
,
dv

v
, dw

}
, if e is a double point;{

du

u
,dv, dw

}
, if e is a simple point.

To clarify the relationship between NŨ (W ) and Ω1
W (logE)(W ) we will define

a logarithmic Nash frame for Ω1
W (logE)(W ). We begin by defining

ψ′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ, if e is a triple point,
ψ, if e is a “case I” double point,
ψw−1, if e is a “case II” double point,
ψv−1, if e is a simple point;

ρ′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ, if e is a triple point,
ρw−1, if e is a “case I” double point,
ρ, if e is a “case II” double point,
ρw−1, if e is a simple point.

Note that under these definitions, φ, ψ′, and ρ′ are local defining functions
for the divisors Z, N , and P , respectively, regardless of whether the chosen
point e ∈ E is a simple, double, or triple point. Now, define the logarithmic
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Nash frame to be {
dφ

φ
,
dψ

ψ′ ,
dρ

ρ′

}
.

Theorem 3.1. The logarithmic Nash frame is a basis for Ω1
W (logE)(W ).

Proof. We must show that every element of Ω1
Ũ

(logE)(W ) (written in the
standard logarithmic frame) can be written in the logarithmic Nash frame.
In each case (triple point, double point, and simple point), we will do this by
calculating the transformation from the logarithmic frame to the logarithmic
Nash frame and then showing that this transformation has an inverse. As
usual, all computations here take place over the analytic neighborhood W of
our chosen point e.

Near a triple point e, we have

dφ

φ
=

d(um1vm2wm3)
um1vm2wm3

= m1
du

u
+ m2

dv

v
+ m3

dw

w
,

dψ

ψ′ =
d(un1vn2wn3)
un1vn2wn3

= n1
du

u
+ n2

dv

v
+ n3

dw

w
,

dρ

ρ′ =
d(up1vp2wp3)
up1vp2wp3

= p1
du

u
+ p2

dv

v
+ p3

dw

w
.

In other words, the change of basis from the logarithmic to the logarithmic
Nash frame of Ω1

W (logE)(W ) is given by⎛
⎝m1 m2 m3

n1 n2 n3

p1 p2 p3

⎞
⎠

⎛
⎝ du/u

dv/v
dw/w

⎞
⎠ =

⎛
⎝ dφ/φ

dψ/ψ′

dρ/ρ′

⎞
⎠ .

By Theorem 1.1, we have ∣∣∣∣∣∣
m1 m2 m3

n1 n2 n3

p1 p2 p3

∣∣∣∣∣∣ �= 0,

and thus the change of basis matrix is invertible. Therefore, the logarithmic
Nash frame is a local basis for Ω1

W (logE)(W ).
The double point case is similar. The change of basis matrix for “case I”

double points is ⎛
⎝ m1 m2 0

n1 n2 0
wp1 wp2 1

⎞
⎠ ,

while for “case II” double points we have⎛
⎝ m1 m2 0

wn1 wn2 1
p1 p2 0

⎞
⎠ .
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In either case, by Theorem 1.1 the matrix has nonzero determinant (since we
have either

∣∣∣m1 m2
n1 n2

∣∣∣ �= 0 or
∣∣∣m1 m2

p1 p2

∣∣∣ �= 0, respectively), and thus is invertible.
In the simple point case the change of basis matrix is⎛

⎝ m1 0 0
vn1 1 0
wp1 0 1

⎞
⎠ .

Since by Theorem 1.1 we have m1 �= 0, this matrix has nonzero determinant
and is invertible. �

4. An exact sequence of weighted Nash complexes

In this paper, we are considering resolutions of three-dimensional complex
algebraic varieties with isolated singular points. In the two-dimensional case,
Pardon and Stern construct an exact sequence of sheaves over Ũ that expresses
the Nash sheaf in terms of the resolution data (see [3]). In this section,
we develop a generalization of that exact sequence. The sequence here only
partially describes the Nash sheaf in terms of the resolution data Z, N , and P
(the problem is that the exact sequence also involves the second exterior power
of the Nash sheaf and is thus self-referential regarding the Nash sheaf).

4.1. The exact sequence. Suppose π : (Ũ ,E) → (U,v) and H̃ are as in
Theorem 2.10. We now define two weighted complexes of sheaves that will
enable us to build the short exact sequence that is the focus of this paper.

Definition 4.1. The weighted Nash complex is the complex of sheaves
over Ũ whose kth level is given by

Ñ k := Λk N ⊗ O(Z − E),

with maps Ñ k → Ñ k+1 given by ∧ dh̃

h̃
.

Definition 4.2. The weighted log forms complex is the complex of sheaves
over Ũ with kth level

Ω̃k := Ωk(logE) ⊗ O
(

−(k − 1)Z − E
)
,

with maps Ω̃k → Ω̃k+1 given by ∧ dh̃

h̃
.

Notice that we can utilize the isomorphism O(−Z) ≈ O(H̃) to rewrite Ñ k

and Ω̃k as
Ñ k = Λk N ⊗ O

(
kZ + (k − 1)H̃ − E

)
and

Ω̃k = Ωk(logE) ⊗ O
(
(k − 1)H̃ − E

)
.
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In this form, it is more apparent that the maps ∧ dh̃

h̃
are well defined for these

complexes.

Theorem 4.3. There is a short exact sequence of the form

0 → Ω̃1�Ñ 1 ↪→ Ω̃2�Ñ 2 � Ω̃3�Ñ 3 → 0.

We will prove Theorem 4.3 in Section 4.2. The existence of a short exact
sequence as in Theorem 4.3 is equivalent to the existence of an exact sequence
of the form given in Theorem 4.4, which is a 3-dimensional generalization of
the 2-dimensional sequence that appears in Proposition 3.20 of [3].

Theorem 4.4. The exact sequence in Theorem 4.3 is equivalent to an exact
sequence of sheaves on Ũ of the form

0 → N (Z − E)
α
↪→ IEΩ1(logE)

β→
(
Ω2(logE)�Λ2N (2Z)

)
⊗ O(−Z − E)

γ
� Ω3 ⊗ OP+N −2Z(−2Z) → 0.

Proof. We first show that the sequence in Theorem 4.4 is equivalent to an
exact sequence that will enable us to use the generic hyperplane H discussed
in Section 2. Since O(H̃) ≈ O(−Z) (by multiplication by h̃), we have(

Ω2(logE)�Λ2N (2Z)
)

⊗ O(−Z − E)

≈ Ω2(logE) ⊗ O(−Z − E)�Λ2N (2Z) ⊗ O(−Z − E)

≈ IEΩ2(logE) ⊗ O(H̃)�Λ2N (2Z − E) ⊗ O(H̃).

The last term in the sequence above can be rewritten using the fact that
there is an isomorphism

Λ3N ≈ Ω3 ⊗ O(−Z − N − P + E).

The proof that there is such an isomorphism is as follows. Let e ∈ E be a point
with analytic neighborhood W ⊂ Ũ . By Lemma 4 in [4] and the definition of
φ, ψ, and ρ, near a triple point, we can write the generator of Λ3N (W ) as

dφ ∧ dψ ∧ dρ = udivdj wdk(μdu ∧ dv ∧ dw)

where dl = ml +nl +pl − 1 for l = i, j, k. The arguments for double and simple
points are similar.

Now, using the isomorphism above, and the fact that Ω3(logE) ≈ Ω3 ⊗
O(E), we have

Ω3 ⊗ ON+P −2Z(−2Z)

≈ Ω3 ⊗ O(2H̃) ⊗ O�O(−N − P − 2Z)

≈ Ω3 ⊗ O(2H̃)�Ω3 ⊗ O(2H̃ − N − P + 2Z)

≈ IEΩ3(logE) ⊗ O(2H̃)�Λ3N (3Z − E) ⊗ O(2H̃).
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Therefore, the sequence in Theorem 4.4 is equivalent to the sequence

0 → N (Z − E)(4.1)
α
↪→ IEΩ1(logE)
β−→ IEΩ2(logE) ⊗ O(H̃)�Λ2N (2Z − E) ⊗ O(H̃)
γ
� IEΩ3(logE) ⊗ O(2H̃)�Λ3N (3Z − E) ⊗ O(2H̃) → 0,

which is clearly equivalent to the sequence of weighted Nash complexes in
Theorem 4.3. �

4.2. Proof of exactness. To prove that the sequence in Theorem 4.3 is
exact, we will prove that the equivalent sequence in expression (4.1) at the
end of the proof of Theorem 4.4 is exact.

Proof. The first parts of the proof are similar to the proof of the 2-dimen-
sional version that appears as Proposition 3.20 in [3]. We first show that we
have an injection

α : N (Z − E) ↪→ IEΩ1(logE).

The following computation assumes we are at a triple point e of E; for the
double and simple point cases, simply replace uvw with uv or u, respectively.
Since the Nash sheaf N is generated by {dφ, dψ,dρ}, we have

N (Z − E) = {(adφ + bdψ + cdρ) · f | a, b, c ∈ O, f ∈ O(Z − E)}(4.2)

=
{

k1
dφ

φ
+ k2

dψ

ψ′ + k2
dρ

ρ′

∣∣∣k1 ∈ O(−E),

k2 ∈ O(Z − N − E), k3 ∈ O(Z − P − E)
}

.

Since O(Z − P − E) ⊂ O(Z − N − E) ⊂ O(−E) ≈ IE (recall that P > N since
pi ≥ ni for all i, by Theorem 1.1), we have the desired injection α.

To define β, we first define the map

β̃ : IEΩ1(logE) −→ IEΩ2(logE) ⊗ O(H̃)

by β̃(ω) = ω ∧ dh̃

h̃
. Take ω ∈ IEΩ1(logE). Then ω = k1

dφ
φ +k2

dψ
ψ′ +k3

dρ
ρ′ , with

ki ∈ O(−E). We need to show that β̃(ω) is actually in IEΩ2(logE) ⊗ O(H̃).
We do this locally, examining the three possible cases: e ∈ E away from H̃ ,
e ∈ E1 ∩ H̃ is a simple point of E on H̃ , and e ∈ E1 ∩ E2 ∩ H̃ is a double point
of E On H̃ (and necessarily a “case II” double point). By Theorem 2.10, we
know that div(h̃) = Z + H̃ . Therefore, away from H̃ , h̃ = φ, in this case, we
have

β̃(ω) = ω ∧ dh̃

h̃
= −k2

dφdψ

φψ′ + k3
dρdφ

ρ′φ
.
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This is clearly in IEΩ2(logE) since dφdψ
φψ′ and dρdφ

ρ′φ are each nontrivial linear
combinations of dudv

uv , dv dw
vw , dw du

wu (because the logarithmic Nash frame serves
as a basis for Ω1

Ũ
(logE); see Section 3).

At a simple point of E contained in H̃ , say e ∈ E1 ∩ H̃ , we can choose
coordinates {u, v,w} so that E1 = {u = 0} and H̃ = {v = 0}. Since mi = ni =
pi on components E1 that intersect H̃ , up to unit we have

h̃ = umiv = univ = ψ′v = ψ.

In such a case, we have

β̃(ω) = ω ∧ dh̃

h̃
=

k1

v

dφdψ

φψ′ − k3

v

dψ dρ

ψ′ρ′ ,

which is clearly in IEΩ2(logE) ⊗ O(H̃).
Finally, at a double point of E contained in H̃ , e ∈ E1 ∩ E2 ∩ H̃ , we can

choose coordinates {u, v,w} centered at e so that E1 = {u = 0}, E2 = {v = 0},
and H̃ = {w = 0}. Since mi = ni and mj = nj , in such a case (see Theo-
rem 2.10), and div(h̃) = Z + H̃ , we have (up to unit)

h̃ = umivmj w = univnj w = ψ = ψ′w.

Thus, β̃(ω) is given in this case by

β̃(ω) = ω ∧ dh̃

h̃
=

k1

w

dφdψ

φψ′ − k3

w

dψ dρ

ψ′ρ′ ,

which as above, is clearly an element of IEΩ2(logE) ⊗ O(H̃).
Since O(H̃) ≈ O, away from H̃ , and O(H̃) is generated by v−1 (respec-

tively, w−1) near a point e in the simple (respectively, double) point case
near H̃ , the computations above show that ω ∧ dh̃

h̃
is always in IEΩ2(logE) ⊗

O(H̃).
We will define β to be the composition of the map β̃ with the projection

IEΩ2(logE) ⊗ O(H̃)
p� IEΩ2(logE) ⊗ O(H̃)�Λ2N (2Z − E) ⊗ O(H̃);

however, first we must show that this projection is well defined; i.e., we must
show that Λ2N (2Z − E) ⊗ O(H̃) is a subset of IEΩ2(logE) ⊗ O(H̃). (The
following computation assumes we are at a triple point e of E; for the double
and simple point cases, simply replace uvw with uv or u, respectively.)

Λ2N (2Z − E) ⊗ O(H̃)(4.3)
= {(adφdψ + bdψ dρ + cdρdφ) · g · r | a, b, c ∈ O,

g ∈ O(2Z − E), r ∈ O(H̃)}
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=
{

Ar
dφdψ

φψ′ + Br
dψ dρ

ψ′ρ′ + Cr
dρdφ

ρ′φ

∣∣∣A ∈ O(Z − N − E),

B ∈ O(2Z − N − P − E),C ∈ O(Z − P − E), r ∈ O(H̃)
}

.

Since O(2Z − N − P − E) ⊂ O(Z − P − E) ⊂ O(Z − N − E) ≈ IE O(Z − N),
we see from the above computation that

Λ2N (2Z − E) ⊗ O(H̃) ⊂ IEΩ2(logE) ⊗ O(Z − N + H̃).

Moreover, since O(Z − N) ⊂ O, we have shown that Λ2N (2Z − E) ⊗ O(H̃)
is contained in IEΩ2(logE) ⊗ O(H̃). Thus, the projection p is well defined,
and we can define β := p ◦ β̃.

Now, we show that the sequence is exact at IEΩ1(logE), in other words,
that ker(β) = im(α). Let ω = k1

dφ
φ + k2

dψ
ψ′ + k3

dρ
ρ′ be any element of

IEΩ1(logE). We have

ω ∈ ker(β) ⇐⇒ β̃(ω) ∈ IEΩ2(logE) ⊗ O(H̃),
ω ∈ im(α) ⇐⇒ ω ∈ N (Z − E).

Let us first handle the case where we are away from H̃ . Looking back on
our computation of Λ2N (2Z − E) ⊗ O(H̃) in (4.3), where r is now equal
to 1, we see that ω ∈ ker(β) if and only if −k2 = A ∈ O(Z − N − E) and
k3 = C ∈ O(Z − P − E). Comparing this with our computation of N (Z − E)
in (4.2), it is clear that this is precisely the condition we need in order to have
ω ∈ N (Z − E), i.e., ω ∈ im(α).

Near H̃ , say at a simple point e ∈ E1 ∩ H̃ , we have Z = N = P . We
see that ω ∈ ker(β) if and only if k1 = A ∈ O(Z − N − E) ≈ O(−E) and
−k3 = B ∈ O(2Z − N − P − E) ≈ O(−E). Note that since Z = N = P , k2 and
k3 are a priori in O(Z − N − E) ≈ O(−E); thus we have exactly the conditions
we need in order to have ω ∈ im(α).

Likewise, at a double point of E contained in H̃ , we have Z = N . Now
ω ∈ ker(β) if and only if k1 = A ∈ O(Z − N − E) ≈ O(−E) and −k3 = B ∈

O(2Z − N − P − E) ≈ O(Z − P − E). Looking back at (4.2) we see that these
conditions imply that ω ∈ N (Z − E) We have now shown that in all cases,
the sequence is exact at IEΩ1(logE).

As a first step towards defining γ, we define the map

γ̃ : IEΩ2(logE) ⊗ O(H̃) −→ IEΩ3(logE) ⊗ O(2H̃)

by γ̃(τ) = τ ∧ dh̃

h̃
. Take τ ∈ IEΩ2(logE) ⊗ O(H̃). Then τ = Ar dφdψ

φψ′ +

Br dψ dρ
ψ′ρ′ + Cr dρdφ

ρ′φ , with A,B,C ∈ O(−E), and r ∈ O(H̃). We will first
show that the map γ̃ is well defined, i.e., that γ̃(τ) is in fact an element
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of IEΩ3(logE) ⊗ O(2H̃). Away from H̃ (so r = 1), we have h̃ = φ, and thus

γ̃(τ) = τ ∧ dh̃

h̃
= B

dφdψ dρ

φψ′ρ′ ;

which is in IEΩ3(logE) ⊗ O(2H̃) since dφdψ dρ
φψ′ρ′ is a nowhere-vanishing multiple

of dudv dw
uvw and O(H̃) ≈ O away from H̃ .

Near a simple point e ∈ E1 contained in H̃ , we have (up to unit) h̃ =
ψ = ψ′v (where as above we have chosen coordinates {u, v,w} for Ũ , so that
E1 = {u = 0} and H̃ = {v = 0}), and thus

γ̃(τ) = τ ∧ dh̃

h̃
=

Cr

v

dφdψ dρ

φψ′ρ′ ,

which is clearly in IEΩ3(logE) ⊗ O(2H̃) since r and 1
v are in O(H̃).

Near a double point e ∈ E1 ∩ E2 ∩ H̃ , up to unit we have h̃ = ψ = ψ′w (in
appropriate coordinates). In this case, we have

γ̃(τ) = τ ∧ dh̃

h̃
=

Cr

w

dφdψ dρ

φψ′ρ′ ,

which is an element of IEΩ3(logE) ⊗ O(2H̃). Thus, in all cases we have
shown that γ̃ is well defined.

As a further step towards defining γ, we will show that we have a well-
defined projection

IEΩ3(logE) ⊗ O(2H̃)
p̃
� IEΩ3(logE) ⊗ O(2H̃)/Λ3N (3Z − E) ⊗ O(2H̃).

It suffices to prove that we have an injection of Λ3N (3Z − E) ⊗ O(2H̃) into
IEΩ3(logE) ⊗ O(2H̃). (Once again, we assume we are at a triple point e
of E; for the double and simple point cases, simply replace uvw with uv or u,
respectively.)

Λ3N (3Z − E) ⊗ O(2H̃)

= {(adφdψ dρ) · f · r2 | a ∈ O(3Z − E), r ∈ O(H̃)}

=
{

Kr2 dφdψ dρ

φψ′ρ′

∣∣∣ K ∈ O(2Z − P − N − E), r ∈ O(H̃)
}

= IEΩ3(logE) ⊗ O(2Z − P − N + 2H̃).

Since O(2Z − N − P ) ≈ O(Z − N) ⊗ O(Z − P ) ⊂ O, we have Λ3N (3Z − E) ⊗
O(2H̃) as a subsheaf of IEΩ3(logE) ⊗ O(2H̃), and the projection p̃ is well
defined.
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We will define the map γ using the maps γ̃, p, and p̃ via the diagram

IEΩ2(logE) ⊗ O(H̃)
p
� IEΩ2(logE) ⊗ O(H̃)�Λ2N (2Z − E) ⊗ O(H̃)⏐⏐�̃γ ⏐⏐�γ

IEΩ3(logE) ⊗ O(2H̃)
p̃
� IEΩ3(logE) ⊗ O(2H̃)�Λ3N (3Z − E) ⊗ O(2H̃).

In other words, given

τ̄ ∈ IEΩ2(logE) ⊗ O(H̃)/Λ2N (2Z − E) ⊗ O(H̃),

with representative τ ∈ IEΩ2(logE) ⊗ O(H̃), p(τ) = τ̄ , we define γ(τ̄) =
p̃(γ̃(τ)). This is well defined because the restriction of γ̃ to Λ2N (2Z − E) ⊗
O(H̃) maps into Λ3N (3Z − E) ⊗ O(2H̃); if

τ = Ar
dφdψ

φψ′ + Br
dψ dρ

ψ′ρ′ + Cr
dρdφ

ρ′φ

is an element of Λ2N (2Z − E) ⊗ O(H̃), then we have A ∈ O(Z − N − E),
B ∈ O(2Z − N − P − E), C ∈ O(Z − P − E), and r ∈ O(H̃). Looking at the
computations above, it is clear that in this case we have γ̃(τ) ∈ Λ3N (3Z −
E) ⊗ O(2H̃).

The map γ is surjective because the map γ̃ is: given τ ∈ IEΩ2(logE) ⊗
O(H̃) as above, we can choose B (if away from H̃) or C (if near H̃) in the
coefficients of τ , so that γ̃(τ) hits any specified element of IEΩ3(logE) ⊗
O(2H̃).

It now remains only to prove that ker(γ) = im(β). It is easy to show that
im(β) ⊆ ker(γ); given ω in IEΩ1(logE) we must show that γ(β(ω)) = 0, i.e.,
that p̃(γ̃(β̃(ω))) = 0. We have

p̃(γ̃(β̃(ω))) = p̃

(
ω ∧ dh̃

h̃
∧ dh̃

h̃

)
= p̃(0) = 0.

To show that ker(γ) ⊆ im(β), take τ̄ = [τ ] with τ in IEΩ2(logE) ⊗ O(H̃).
If τ̄ ∈ ker(γ), then τ must be in ker(p̃ ◦ γ̃); that is to say, γ̃(τ) is contained in
Λ3N (3Z − E) ⊗ O(2H̃). Suppose

τ = Ar
dφdψ

φψ′ + Br
dψ dρ

ψ′ρ′ + Cr
dρdφ

ρ′φ

(a priori A, B, and C are in O(−E), and r ∈ O(H̃)). Away from H̃ we
have h̃ = φ (and r = 1 in τ ), and we see that if τ ∈ ker(p̃ ◦ γ̃), then B ∈
O(2Z − N − P − E). To show that τ̄ ∈ im(β), we must show that there exists
an ω ∈ IEΩ1(logE) so that τ̄ = β(ω) = p(β̃(ω)), i.e. p(τ) = p(β̃(ω)). Choose
ω = k1

dφ
φ + k2

dψ
ψ′ + k3

dρ
ρ′ with k2 = −A and k3 = C; then we have

p(β̃(ω)) = p

(
A

dφdψ

φψ′ + C
dρdφ

ρ′φ

)
.
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On the other hand, since B ∈ O(2Z − N − P − E), we have

p(τ) = p

(
A

dφdψ

φψ′ + B
dψ dρ

ψ′ρ′ + C
dρdφ

ρ′φ

)
= p

(
A

dφdψ

φψ′ + C
dρdφ

ρ′φ

)
.

Thus, we have shown that away from H̃ , ker(γ) ⊆ im(β).
At a simple point e ∈ E1 ∩ H̃ near H̃ , we have coordinates {u, v,w} in an an-

alytic neighborhood of e so that E1 = {u = 0}, H̃ = {v = 0}, and h̃ = ψ = ψ′v

(recall that Z = N = P on components E1 that intersect H̃). We see that
if τ ∈ ker(p̃ ◦ γ̃), then C ∈ O(Z − P − E) ≈ O(−E). Again, we must find an
ω ∈ IEΩ1(logE) so that p(τ) = p(β̃(ω)); choose ω = k1

dφ
φ + k2

dψ
ψ′ + k3

dρ
ρ′ with

k1 = A and k3 = −B. Then we have

p(β̃(ω)) = p

(
A

v

dφdψ

φψ′ +
B

v

dψ dρ

ψ′ρ′

)
.

On the other hand, since C ∈ O(Z − P − E) ≈ O(−E) we have

p(τ) = p

(
Ar

dφdψ

φψ′ + Br
dψ dρ

ψ′ρ′ + Cr
dρdφ

ρ′φ

)
= p

(
Ar

dφdψ

φψ′ + Br
dψ dρ

ψ′ρ′

)
.

Since r = 1
v , this shows that p(τ) = p(β̃(ω)), and thus we have shown that

near a simple point of E contained in H̃ , ker(γ) ⊆ im(β).
Finally, let e ∈ E1 ∩ E2 ∩ H̃ be a double point of E that is contained in H̃ .

With coordinates {u, v,w} about e so that E1 = {u = 0}, E2 = {v = 0}, and
H̃ = {w = 0}, we have h̃ = ψ = ψ′w. Moreover, Z = N on this analytic neigh-
borhood of e. It is evident that if τ ∈ ker(p̃ ◦ γ̃), then C ∈ O(Z − P − E).
Once more, we wish to find an element ω of IEΩ1(logE) with the property
that p(τ) = p(β̃(ω)). As above, choose ω = k1

dφ
φ + k2

dψ
ψ′ + k3

dρ
ρ′ with k1 = A

and k3 = −B. Then we have

p(β̃(ω)) = p

(
A

v

dφdψ

φψ′ +
B

v

dψ dρ

ψ′ρ′

)
.

Moreover, since p mods out by Λ2N (2Z − E) ⊗ O(H̃), expression (4.3) shows
that again we have

p(τ) = p

(
Ar

dφdψ

φψ′ + Br
dψ dρ

ψ′ρ′ + Cr
dρdφ

ρ′φ

)
= p

(
Ar

dφdψ

φψ′ + Br
dψ dρ

ψ′ρ′

)
.

Thus, in each of the three possible cases, we have ker(γ) ⊆ im(β). This com-
pletes the proof. �
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