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STRUCTURE OF THE BRAUER RING OF A FIELD
EXTENSION

HIROYUKI NAKAOKA

Abstract. In 1986, Jacobson has defined the Brauer ring
B(E,D) for a finite Galois field extension E/D, whose unit group

canonically contains the Brauer group of D. In 1993, Cheng Xi-
ang Chen determined the structure of the Brauer ring in the case

where the extension is trivial. He revealed that if the Galois
group G is trivial, the Brauer ring of the trivial extension E/E

becomes naturally isomorphic to the group ring of the Brauer

group of E. In this paper, we generalize this result to any finite

group G via the theory of the restriction functor, by means of

the well-understood functor −+. More generally, we determine

the structure of the F -Burnside ring for any additive functor F .

We construct a certain natural isomorphism of Green functors,

which induces the above result with an appropriate F related

to the Brauer group. This isomorphism will enable us to cal-
culate Brauer rings for some extensions. We illustrate how this

isomorphism provides Green-functor-theoretic meanings for the

properties of the Brauer ring shown by Jacobson, and compute
the Brauer ring of the extension C/R.

1. Introduction

For the general theory of Mackey and Green functors, see [2]. Throughout
this paper, we fix a finite group G, and use the following notation:

• H ≤ G means that H is a subgroup of G.
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• For any K ≤ H ≤ G and any g ∈ G, gH := gHg−1, Hg := g−1Hg, and
�g,H : G/gH → G/H is the G-map defined by �g,H(g′ · gH) = g′g · H , pH

K : G/
K → G/H is the canonical projection.

• Mack(G) and Green(G) denote the category of Mackey functors and Green
functors, respectively.

• For any group M , Z[M ] denotes its group ring over Z, and similarly for Q.

Most of the following arguments will work well even if the codomain of Green
(and several other) functors is the category of R-modules R − Mod instead of
Ab = Z − Mod , for any commutative ring R with 1. But we restrict ourselves
to the case of R = Z, for the sake of simplicity. Monoids, rings, and Green
functors are equipped with 1, but not assumed to be commutative, unless
otherwise specified.

For a commutative diagram

X

�

Z

Y W ,

we use a small square � to indicate that it is a pull-back diagram:

X

�

Z

Y W

The Brauer ring B(E,D) of a finite Galois field extension E/D was defined
by Jacobson in [4]. B(E,D) can be regarded as an example of the F -Burnside
ring, where F is an additive functor F : G → Ab. By using Chen’s result
(Corollary 3.4) in [3], for any trivial field extension E/E, we can see that the
Brauer ring B(E,E) is naturally isomorphic to the group ring of the Brauer
group Br(E):

B(E,E) ∼= Z[Br(E)]

(see also Proposition 2.8 and Remark 2.9 in this paper).
In the following, we will define several types of additive functors, and by

the adjoint properties concerning these functors, we will see the structure of
the F -Burnside ring as follows.

Theorem 3.13. For any F ∈ Ob(Add(G)), there is a natural isomorphism
of Green functors

(Z[RF ])+
∼=−→ AF .

As a corollary, the structure of the Brauer ring B(E,D) can be seen as
follows.
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Corollary 4.1. For any finite Galois extension E/D of fields with Galois
group G, we have a ring isomorphism

B(E,D) ∼=
( ⊕

H≤G

Z[Br(EH)]
)/(

I(Z[G]) ·
⊕
H≤G

Z[Br(EH)]
)

.

This is a generalization of the above isomorphism B(E,E) ∼= Z[Br(E)].

2. Definition of the additive functor and the Brauer ring

In this section, we recall the construction of the F -Burnside ring, defined by
Jacobson [4], and introduce the Brauer ring. In fact, we make a generalization
of the definition in [4], which is mostly due to the referee.

We fix a finite group G, and let G be the category of finite G-sets and G-
maps. Set denotes the category of small sets. A contravariant functor E : G →
Set is said to be additive if the canonical map (E(iX),E(iY )) : E(X

∐
Y ) →

E(X) × E(Y ) induced by the inclusions iX , iY is bijective for any X,Y ∈
Ob(G). Let jX,Y denote the inverse bijection. E(∅) consists of one element.
Sadd(G) denotes the category of additive functors from G to Set, whose
morphisms are natural transformations.

Definition 2.1. Let E be in Ob(Sadd(G)). For any S ∈ Ob(G), category
(G,S,E) is defined as follows:

Ob(G,S,E) = {(Y,φ,u) | Y ∈ Ob(G), φ ∈ G(Y,S), u ∈ E(Y )},
Morph(G,S,E)((Y,φ,u), (Z,ψ, v)) = {α ∈ G(Y,Z) | φ = ψ ◦ α,E(α)(v) = u}.

Y

φ

α

�

Z

ψ

S

E(α) : E(Z)

∪

E(Y )

∪

v u

For any (Y,φ,u), (Z,ψ, v) ∈ Ob(G,S,E), we define their sum as follows:
Sum: (Y,φ,u) + (Z,ψ, v) := (Y

∐
Z,φ ∪ ψ : Y

∐
Z → S,u

∐
v), where

u
∐

v := jY,Z((u, v)). With this sum, we define a group ME(S) as the Gro-
thendieck group of the category (G,S,E). For any object (Y,φ,u), we write
its image in ME(S) as [Y,φ,u].

Remark 2.2. ME becomes a Mackey functor by the following definition:
Covariant part: For any f ∈ G(S,T ), ME∗(f) : ME(S) → ME(T ),

[Y,φ,u] 	→ [Y, f ◦ φ,u].
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Contravariant part: For any f ∈ G(S,T ), M ∗
E(f) : ME(T ) → ME(S),

[Z,ψ, v] 	→ [S ×
T

Z,πS ,E(πZ)(v)].

S ×T Z

�πS

πZ

Z

ψ

S
f

T

We abbreviate ME(G/H) to ME(H) for any H ≤ G. The correspondence
E 	→ ME is a functor from Sadd(G) to Mack(G). Indeed, for any morphism
η : E1 → E2 in Sadd(G), we obtain a sum-preserving functor (G,S,E1) →
(G,S,E2) for any S ∈ Ob(G), and thus obtain a set of homomorphisms
Mη(H) : ME1(H) → ME2(H) (H ≤ G), which form a morphism of Mackey
functors Mη : ME1 → ME2 .

Let E denote the forgetful functor from Mack(G) to Sadd(G); so if M is
a Mackey functor for G and if X is a finite G-set, then E (M)(X) is the set
M(X), and if f : X → Y is a map in G, then E (M)(f) : M(Y ) → M(X) is
the map M ∗(f).

Proposition 2.3. The functor E 	→ ME is left adjoint to E .

Proof. Let E ∈ Ob(Sadd(G)) and M ∈ Ob(Mack(G)). A morphism of
Mackey functors Φ : ME → M is a collection of group homomorphisms
ΦS : ME(S) → M(S) for all finite G-sets S, which are compatible with the
Mackey structure. This implies

ΦS([Y,φ,u]) = M∗(φ) ◦ ΦY ([Y, id,u])

for any Y ∈ Ob(G), u ∈ E(Y ) and φ ∈ G(Y,S).

ME(Y )

�ME∗(φ)

ΦY
M(Y )

M∗(φ)

ME(S)
ΦS

M(S)

It follows that if we define θY : E(Y ) → M(Y ) by θY (u) = ΦY ([Y, idY , u]),
then Φ is determined by θ as

(2.1) ΦS([Y,φ,u]) = M∗(φ)(θY (u)).

Conversely, for a given set of maps θ = (θY )Y ∈Ob(G), define Φ = (ΦS)S∈Ob(G)

by (2.1). Then Φ is a morphism of Mackey functors if and only if θ is a
morphism in Sadd(G). To see this, since Φ defined by (2.1) is always natural
with respect to the covariant part of the Mackey functors, it suffices to show
that the following (A) and (B) are equivalent.
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(A) ΦS M ∗
E(f)([Z,ψ, v]) = M ∗(f)ΦT ([Z,ψ, v])(

∀f ∈ G(S,T ), ∀[Z,ψ, v] ∈ ME(T )
)
,

(B) θS(E(f)(v)) = M ∗(f)(θT (v))
(

∀f ∈ G(S,T ), ∀v ∈ E(T )
)

Since

ΦS M ∗
E(f)([Z,ψ, v]) = ΦS

(
[S ×T Z,πS ,E(πZ)(v)]

)
= M∗(πS)(θS×T Z(E(πZ)(v)))

and

M ∗(f)ΦT ([Z,ψ, v]) = M ∗(f)M∗(ψ)θZ(v)
= M∗(πS)M ∗(πZ)(θZ(v)),

S ×T Z

�πS

πZ

Z

ψ

S
f

T

we have

(A) ⇔ M∗(πS)(θS×T Z(E(πZ)(v))) = M∗(πS)(M ∗(πZ)θZ(v)).

Obviously, this follows from (B), and conversely (B) follows from this equality
if we put Z = T and ψ = idT . �

Let Madd(G) denote the category of additive contravariant functors from G
to the category Mon of monoids.

Remark 2.4. Let F ∈ Ob(Sadd(G)). The following are equivalent:
(1) F ∈ Ob(Madd(G)).
(2) F is equipped with cross product maps

F (X) × F (Y ) � (u, v) 	→ u × v ∈ F (X × Y )

which are functorial in an obvious way in both X and Y , and associative.
Moreover, there exists a unit element εF ∈ F (•) (• denotes the one-element
set).

Proof. (1)⇒(2)
For any X , Y ∈ Ob(G), by using the product in the monoid F (X × Y ), we

define
u × v := F (pX)(u) · F (pY )(v),

where pX : X × Y → X and pY : X × Y → Y are the projections.
(2)⇒(1)
For any X ∈ Ob(G), we define the monoid structure on F (X) by

u · v := F (ΔX)(u × v),
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where ΔX : X → X × X is the diagonal map. Zero element is given by F (X →
•)(εF ). �

Now, if F is in Ob(Madd(G)), then MF has an additional Green func-
tor structure: In the category (G,S,F ), we can define the product of two
objects (Y,φ,u) and (Z,ψ, v) by (Y,φ,u) · (Z,ψ, v) := (Y ×S Z,φ ◦ πY = ψ ◦
πZ , F (πY )(u) · F (πZ)(v)), where πY and πZ are the projections of the fiber
product Y ×S Z of Y , Z over S, and F (πY )(u) · F (πZ)(v) is the product of
F (πY )(u) and F (πZ)(v) in the monoid F (Y ×S Z).

Y ×S Z

�πY

πZ

Z

ψ

Y
φ

S

Thus, MF (S) has a natural ring structure, defined by

[Y,φ,u] · [Z,ψ, v] := [(Y,φ,u) · (Z,ψ, v)].

Equivalently, in the view of Remark 2.4, we can describe the Green functor
structure on MF by the maps

MF (S) × MF (T )

∪

MF (S × T )

∪

([Y,φ,u], [Z,ψ, v]) [Y × Z,φ × ψ,u × v]

(∀S,T ∈ Ob(G)) (cf. Section 2.2 in [2]), where u × v is the cross product
of u ∈ F (Y ), v ∈ F (Z). From now on, if F is an object of Madd(G), the
Green functor MF will be denoted by AF . AF is called the F -Burnside ring
functor [4]. If F is commutative, i.e., F (X) is a commutative monoid for each
X ∈ Ob(G), then AF becomes a commutative Green functor.

Let F : Green(G) → Madd(G) be the forgetful functor, i.e., for any A ∈
Ob(Green(G)), F (A)(X) = A(X) (∀X ∈ Ob(G)), F (A)(f) = A∗(f) (∀f : X →
Y in G), and the cross product on F (A) is the cross product on A.

Proposition 2.5 (cf. Theorem 5.11 in [4]). The functor F 	→ AF from
Madd(G) to Green(G) is left adjoint to F .

Proof. Let F ∈ Ob(Madd(G)) and A ∈ Ob(Green(G)). By Proposition 2.3,
there is a one-to-one correspondence between Φ ∈ Mack(G)(AF ,A) and θ ∈

Sadd(G)(F, F A). So, it suffices to show that under this correspondence, Φ is
a morphism of Green functors if and only if θ is a morphism in Madd(G).

Since

ΦS([Y,φ,u]) × ΦT ([Z,ψ, v]) = A∗(φ)(θY (u)) × A∗(ψ)(θZ(v)),
ΦS×T ([Y × Z,φ × ψ,u × v]) = A∗(φ × ψ)

(
θY ×Z(u × v)

)
,
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for any S, T ∈ Ob(G), [Y,φ,u] ∈ AF (S), [Z,ψ, v] ∈ AF (T ), Φ is a morphism
of Green functors if and only if

A∗(φ)(θY (u)) × A∗(ψ)(θZ(v)) = A∗(φ × ψ)
(
θY ×Z(u × v)

)
for any [Y,φ,u] ∈ AF (S), [Z,ψ, v] ∈ AF (T ). This is equivalent to

θY ×Z(u × v) = θY (u) × θZ(v)
(∀Y,Z ∈ Ob(G), ∀u ∈ F (Y ), ∀v ∈ F (Z)),

which is equal to the fact that θ is a morphism in Madd(G). �
Let Gadd(G) be the category of additive contravariant functors from G to

the category Grp of groups. If F is an object of Madd(G), then F belongs
to Ob(Gadd(G)) if and only if

F (X) ∈ Ob(Grp)
(

∀X ∈ Ob(G)
)
.

For any F ∈ Ob(Madd(G)), if we define

U F (X) := {u ∈ F (X) | u is invertible}
for any X , then U F = (U F (X))X∈Ob(G) naturally forms an element U F ∈
Ob(Gadd(G)). Moreover, for any F1 ∈ Ob(Gadd(G)) and F2 ∈ Ob(Madd(G)),
we have a natural isomorphism

Gadd(G)(F1, U F2) ∼= Madd(G)(F1, F2).

Thus, if we abbreviate R× := U ◦ F (R) for any R ∈ Ob(Green(G)), we obtain
the next corollary of Proposition 2.5.

Corollary 2.6. For any F ∈ Ob(Gadd(G)) and any R ∈ Ob(Green(G)),
there is a natural isomorphism

Gadd(G)(F,R×) ∼= Green(G)(AF ,R)

Let Add(G) denote the category of additive contravariant functor from G to
the category Ab of Abelian groups. Morphisms are natural transformations.

For F = B̃rE/D constructed below, its F -Burnside ring is called the Brauer
ring.

Example 2.7. Let E/D be a finite Galois extension of fields with Galois
group G. For any S ∈ Ob(G), put B̃rE/D(S) := Br(G(S,E)) where G(S,E) is
regarded as a commutative ring by the pointwise operations, and Br(G(S,E))
is its Brauer group. Recall that by taking the Brauer group of commutative
rings, we obtain a covariant functor Br : (CommRng) → Ab from the category
of commutative rings (CommRng) to Ab. For any f ∈ G(S,T ), we have a ring
homomorphism f ∗ : G(T,E) → G(S,E) defined by the pullback, and if we
put B̃rE/D(f : S → T ) := (Br(f ∗) : B̃rE/D(T ) → B̃rE/D(S)), we obtain an
additive functor B̃rE/D ∈ Madd(G) (in fact, B̃rE/D ∈ Add(G)). As in [4],
we abbreviate the B̃rE/D-Burnside ring functor A

B̃rE/D
to ABr , and we call
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this functor the Brauer ring functor. In particular, we write its value at G as
B(E,D) := ABr (G).

When the extension is trivial (i.e., G is trivial, E = D), we have the fol-
lowing structure theorem by Chen [3].

Proposition 2.8 (Corollary 3.4 in [3]). There is a natural isomorphism
Z[Br(E)] ∼= B(E,E) (B(E,E) is denoted by B(E) in [3]), compatible with
the inclusions of Br(E) into the multiplicative unit groups.

Br(E)

�

Z[Br(E)]
∼=

B(E,E)

Remark 2.9. Indeed, Chen defined the Brauer ring B(R) for any commu-
tative ring R, and showed Z[Br(R)] ∼= B(R) for any connected ring R (the
word connected means that Spec(R) is connected).

Remark 2.10. For any H ≤ G, G(G/H,E) is naturally isomorphic to the
fixed field EH . With this identification, we can easily show that
(�g,H)∗ : EH → E(gH) = g · (EH) is equal to the multiplication by g (we write
this as (�g,H)∗ = g : EH → g · (EH)) for any g ∈ G. So, we have B̃rE/D(�g,H) =
Br(g) : Br(EH) → Br(g · (EH)).

3. Structure of the F -Burnside ring

We recall the definition of a restriction functor from [1].

Definition 3.1. A restriction functor is a triple (R, c, res) where R, c, res
are

R : a family of Abelian groups (R(H))H≤G,
c : a family of conjugation homomorphisms cg,H : R(H) → R(gH) (g ∈ G,

H ≤ G),
res : a family of restriction homomorphisms resH

K : R(H) → R(K) (K ≤ H ≤
G), which satisfy the following conditions:

(R1) ch,H = resH
H = idR(H) (∀H ≤ G, ∀h ∈ H),

(R2) cg′g,H = cg′,gH ◦ cg,H (∀g, g′ ∈ G, ∀H ≤ G),
(R3) cg,K ◦ resH

K = res
gH
gK ◦ cg,H (∀g ∈ G, ∀K ≤ H ≤ G).

We sometimes abbreviate (R, c, res) to R. A morphism Φ : R → S of re-
striction functors is a family (ΦH : R(H) → S(H))H≤G of Abelian group ho-
momorphisms, compatible with conjugations and restrictions. We write the
category of restriction functors Res(G).
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Definition 3.2. Let R be a restriction functor. A stable basis of R is a
family of subsets B = (B(H))H≤G such that B(H) ⊂ R(H) is a basis for each
H ≤ G, and cg,H(B(H)) = B(gH) for any g ∈ G and any H ≤ G.

There is a correspondence between additive functors and restriction func-
tors.

Proposition 3.3. Let F be an object in Add(G). If we put RF (H) :=
F (G/H), cg,H = F (�g,H), resH

K := F (pH
K) for each g ∈ G and K ≤ H ≤ G,

then (RF , c, res) is a restriction functor.

Proof. (R1) is trivial. (R2) and (R3) follows from the compatibility of
corresponding �g,H ’s and pH

K ’s. �

For any F1, F2 ∈ Ob(Add(G)) and any ϕ ∈ Add(G)(F1, F2), define Rϕ ∈
Res(G)(RF1 , RF2) by (Rϕ)H = ϕG/H . Thus, we obtain a functor Add(G) →
Res(G). We claim this functor gives an equivalence of the categories. A sim-
ilar argument seems to be well known in the case of Mackey functors, but we
include this proof for the reader’s convenience. We remark that the author’s
proof was fairly improved by the referee’s suggestion.

Proposition 3.4. The above functor F 	→ RF , ϕ 	→ Rϕ gives an equiva-
lence of categories Add(G)

∼=→ Res(G).

Proof. We construct a quasi-inverse functor from Res(G) to Add(G) as
follows. Suppose that R is a restriction functor. If X is a finite G-set, then G
acts on the Abelian group V = VR(X) :=

⊕
x∈X R(Gx), where Gx denotes the

stabilizer group of x in X : If x ∈ X and u ∈ R(Gx), denote by ux the image
of u in V , and set g · ux = (cg,Gx(u))gx. This makes sense since Ggx = gGx.
Then define

FR(X) := (VR(X))G,

as the group of coinvariants, i.e., the quotient of V by the subgroup generated
by the elements (cg,Gx(u))gx − ux, for g ∈ G and x ∈ X . Denote by [ux] the
image of ux in this quotient.

If f : X → Y is a morphism in G, then define FR(f) : FR(Y ) → FR(X) by

FR(f)([uy]) =
∑

x∈[Gy \f −1(y)]

[(resGy

Gx
(u))x],

where [Gy \ f −1(y)] is a set of representatives of Gy-orbits of f −1(y). This
makes sense since Gx ≤ Gy if f(x) = y. The right-hand side does not depend
on the choice of a set of representatives [Gy \ f −1(y)], since for any x ∈ f −1(y)
and any g ∈ Gy , we have

[(resGy

Ggx
(u))gx] = [(res

gGy
gGx

◦ cg,Gy (u))gx]

= [(cg,Gx ◦ resGy

Gx
(u))gx] = [(resGy

Gx
(u))x].
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FR(f)([uy]) is well defined, i.e., FR(f)([uy]) does not depend on the choice
of a representative of [uy]. Indeed, for any g ∈ G we have

FR(f)([(cg,Gy (u))gy]) =
∑

x∈[Gy \f −1(y)]

[(resGgy

Ggx
◦ cg,Gy (u))gx]

=
∑

x∈[Gy \f −1(y)]

[(cg,Gx ◦ resGy

Gx
(u))gx]

=
∑

x∈[Gy \f −1(y)]

[(resGy

Gx
(u))x] = FR(f)([uy]).

Here, we used the fact that { gx | x ∈ [Gy \ f −1(y)]} is a set of representatives
of Ggy \ f −1(gy) for any fixed g ∈ G.

FR is a contravariant functor, since for any X
f→ Y

f ′

→ Z in G, we have(
FR(f) ◦ FR(f ′)

)
([uz]) =

∑
y∈[Gz \f ′ −1(z)]

∑
x∈[Gy \f −1(y)]

[(resGz

Gx
(u))x]

=
∑

x∈[Gz \(f ′ ◦f)−1(z)]

[(resGz

Gx
(u))x]

=
(
FR(f ′ ◦ f)

)
([uz])

(
∀z ∈ Z, ∀u ∈ R(Gz)

)
.

FR is additive, since for any sum diagram X
iX
↪→ X � Y

iY←↩ Y in G, we have

FR(X � Y ) =
(
VR(X � Y )

)
G

=
(
VR(X) ⊕ VR(Y )

)
G

= VR(X)G ⊕ VR(Y )G

and

FR(iX) : FR(X � Y ) −→ FR(X),
[ux] 	−→ [ux]

(
∀x ∈ X, ∀u ∈ R(Gx)

)
,

[vy] 	−→ 0
(

∀y ∈ Y, ∀v ∈ R(Gy)
)
.

This assignment R 	→ FR gives in fact a functor Res(G) → Add(G). Indeed,
for any morphism Φ = (ΦH : R(H) → S(H))H≤G ∈ Res(G)(R, S), we have a
natural set of morphisms

VΦ,X : VR(X) → VS (X)

defined simply by the direct sum, and since VΦ,X is compatible with G-action
on VR(X) and VS (X), we obtain a natural transformation

FΦ =
(
FΦ,X : FR(X) → FS (X)

)
X∈Ob(G)

induced by VΦ,X .
This functor R 	→ FR is a quasi-inverse of the functor F 	→ RF . Indeed,

since

RFR (H) = FR(G/H) =
( ⊕

x∈G/H

R(Gx)
)

G
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for any H ≤ G, the natural morphism

R(H)
∼=−→ R(G1G ·H) ↪→

⊕
x∈G/H

R(Gx)
quotient

�
( ⊕

x∈G/H

R(Gx)
)

G

gives a natural isomorphism R
∼=→ RFR . Here, the first isomorphism is the

identification of R(H) with the component of
⊕

x∈G/H R(Gx) at x = 1G · H ∈
G/H . And conversely, since

FRF
(X) =

(⊕
x∈X

RF (Gx)
)

G

=
(⊕

x∈X

F (G/Gx)
)

G

,

any set of representatives {x1, . . . , x� } of G-orbits of X defines a morphism

F (X)
∼=→

⊕
1≤i≤�

F (G/Gxi) ↪→
⊕
x∈X

F (G/Gx) �
(⊕

x∈X

F (G/Gx)
)

G

,

which gives a natural isomorphism F
∼=→ FRF

. Note that this morphism does
not depend on the choice of {x1, . . . , x� }, since

[ugxi ] = [(cg,Gxi
(u))gxi ] = [uxi ]

for any g ∈ Gxi and u ∈ F (G/Gxi) = F (G/Ggxi). �
Finally, let Radd(G) be the category of additive contravariant functors

from G to the category of rings: The word additive for such a functor R
means that for any object X and Y of G, the map

(R(iX),R(iY )) : R(X � Y ) → R(X) × R(Y )

is a ring isomorphism. Equivalently, R is an object in Add(G), together with
cross product maps

R(X) × R(Y ) → R(X × Y )
for any X,Y ∈ Ob(G), which are natural in X and Y , bilinear, and associative.
There is a unit element ε ∈ R(•).

Definition 3.5. A restriction functor (R, c, res) is an algebra restriction
functor if R(H) is a ring for each H ≤ G, and conjugation and restriction
homomorphisms are ring homomorphisms.

In the definition of a morphism Φ : R → S of restriction functors, if more-
over R, S are algebra restriction functors and ΦH are ring homomorphisms for
all H ≤ G, Φ is said to be a morphism of algebra restriction functors. Thus,
we have the category of algebra restriction functors Resalg(G). From each
restriction functor (R, c, res), we can construct an algebra restriction functor
(Z[R], c, res) by putting (Z[R])(H) := Z[R(H)] for each H ≤ G. Conjugation
and restriction homomorphisms of Z[R] are canonically induced by those of R.
In the same way as Res(G)

∼=→ Add(G), Radd(G) is shown to be equivalent to
Resalg(G).
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Here, we recall the definition of the functor −+ : Res(G) → Mack(G). For
a restriction functor (R, c, res), put SR(H) :=

⊕
K≤H R(K). Then H acts on

SR(H) by hx := ch,K(x) (∀x ∈ R(K) ⊂ SR(H), ∀h ∈ H) and we put R+(H) :=
SR(H)H := SR(H)/(I(Z[H]) · SR(H)) for any H ≤ G, where I(Z[H]) ⊂ Z[H]
is the augmentation ideal defined by I(Z[H]) = {

∑
h∈H mhh |

∑
h∈H mh =

0,mh ∈ Z}. We write [K,x]H := x + I(Z[H]) · SR(H) for any x ∈ R(K) ⊂
SR(H).

Remark 3.6. The submodule I(Z[H]) · SR(H) ⊂ SR(H) is generated by
{x − hx | x ∈ R(K), h ∈ H}.

Definition 3.7. For any restriction functor (R, c, res), R+ ∈ Mack(G) is
defined as follows:

R+(H) = SR(H)/(I(Z[H]) · SR(H)) as above.
c+g,H : R+(H) → R+(gH), [K,x]H 	→ [gK, gx]gH .
res+

H
K : R+(H) → R+(K), [L,x]H 	→

∑
h∈K\H/L[K ∩ hL, res

hL
K∩hL(hx)]K .

ind+
H
K : R+(K) → R+(H), [L,x]K 	→ [L,x]H .

With an appropriate definition for morphisms (see [1]), we obtain a func-
tor −+ : Res(G) → Mack(G), which restricts to a functor −+ : Resalg(G) →
Green(G), and makes the following diagram commutative:

Resalg(G)

�forgetful

−+
Green(G)

forgetful

Res(G) −+
Mack(G)

Here, for R ∈ Ob(Resalg(G)), the ring structure on R+(H) is defined by

(3.1) [K,x]H · [L,y]H :=
∑

h∈K\H/L

[K ∩ hL, resK
K∩hL(x) · res

hL
K∩hL(hy)]H

for each H ≤ G.

Remark 3.8. When a restriction functor S has a stable basis
B = (B(H))H≤G, if we choose a set of representatives RH for the H-orbits
of the H-sets {(K,x) | K ≤ H, x ∈ B(K)}, then for each H ≤ G, S+(H) is a
free Z-module with a basis {[K,x]H | (K,x) ∈ RH }.

Now, when S = Z[R], if we take B(H) := R(H), then B is a stable basis
for S . As a corollary, we obtain a Z-basis of Z[R]+(H) as follows.

Corollary 3.9. For each H ≤ G, Z[R]+(H) is a free Z-module over the
basis {[K,x]H | (K,x) ∈ RH }, where RH is a set of representatives for the
H-orbits of {(K,x) | K ≤ H,x ∈ R(K)}.

For the functor −+, the following adjoint property is known.
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Remark 3.10 (Proposition I.4.1 in [1]). The functor

−+ : Res(G) −→ Mack(G)(
resp. : Resalg(G) −→ Green(G)

)
is left adjoint to the forgetful functor

O : Mack(G) −→ Res(G)(
resp. : Green(G) −→ Resalg(G)

)
.

There is a forgetful functor gr : Green(G) → Radd(G), obtained by forget-
ting the covariant part of the structure of Green functors. In the same way,
we obtain a commutative diagram of categories and forgetful functors

Green(G)

gm

gr

�

Radd(G)

ra

rm

�

Madd(G)

ms

Mack(G) ma Add(G) as Sadd(G).

(3.2)

Remark 3.11. Let R be a restriction functor for G, and set F := FR.
Then for any X ∈ Ob(G), the module R+(X) is isomorphic to the quotient of
AF (X) by the elements of the form

(Z,φ,u + v) − (Z,φ,u) − (Z,φ, v),

where φ : Z → X is a morphism in G, and where u, v ∈ R(Z). Moreover, the
family of projection maps

πX : AF (X) → R+(X)

is a morphism of Mackey functors AF → R+.

Proof. By letting R	(X) be the quotient of AF (X) as above, we obtain
a quotient Mackey functor R	 of AF . Remark that there is a commutative
diagram

Mack(G)

ε

�

O

ma Add(G) as Sadd(G).

Res(G)

�
R
→FR

By Proposition 2.3, there is a functorial isomorphism

Mack(G)(AFR ,M)

∪

∼= Sadd(G)(FR, E M)

∪

Φ θ
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in the notation in the proof of Proposition 2.3. Since

Φ([Z,φ,u]) = M∗(φ)θZ(u),

we have

Φ factors R	

⇔ ΦS([Z,φ,u + v] − [Z,φ,u] − [Z,φ, v]) = 0(
∀φ ∈ G(Z,S), ∀u, v ∈ FR(Z)

)
⇔ M∗(φ)θZ(u + v) − M∗(φ)θZ(u) − M∗(φ)θZ(v) = 0(

∀φ ∈ G(Z,S), ∀u, v ∈ FR(Z)
)

⇔ θZ(u + v) − θZ(u) − θZ(v) = 0
(

∀Z ∈ Ob(G), ∀u, v ∈ FR(Z)
)

⇔ θ ∈ Add(G)(FR,ma(M)).

Thus, we obtain a functorial isomorphism

Mack(G)(R	,M)
∼=−→ Add(G)(FR,ma(M))

= Add(G)
(
FR, FO(M)

)
∼= Res(G)(R, O(M)).

So, the functor −	 : Res(G) −→ Mack(G) is left adjoint to O, and must
agree with −+. �

In diagram (3.2), the composition as ◦ ma is the forgetful functor E . So,
the left adjoint of E is the composition of the left adjoint of as , followed by the
left adjoint of ma . The left adjoint of as is the “free Abelian group functor,”
sending an object E of Sadd(G) to the additive functor Z[E], defined in the
obvious way by (Z[E])(X) = Z[E(X)], for any G-set X . The left adjoint of
ma is the composition

Add(G) �−→ Res(G)
−+−→ Mack(G).

By the uniqueness of the left adjoint of E , it follows that for any additive
contravariant functor E ∈ Ob(Sadd(G)), there is a natural isomorphism of
Mackey functors (

RZ[E]

)
+

∼=−→ ME .

Similarly, the composition rm ◦ gr is equal to the forgetful functor F . A similar
argument shows that for any F ∈ Ob(Madd(G)), there is a natural isomor-
phism of Green functors (

RZ[F ]

)
+

∼=−→ AF .

Thus, we obtained the following adjoint isomorphisms.

Proposition 3.12. (1) For any E ∈ Ob(Sadd(G)), there is a natural iso-
morphism of Mackey functors(

RZ[E]

)
+

∼=−→ ME .
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(2) For any F ∈ Ob(Madd(G)), there is a natural isomorphism of Green
functors (

RZ[F ]

)
+

∼=−→ AF .

Since obviously RZ[F ]
∼= Z[RF ] for any F ∈ Ob(Add(G)), we have the fol-

lowing structure theorem for F -Burnside rings.

Theorem 3.13. For any F ∈ Ob(Add(G)), there is a natural isomorphism
of Green functors

(Z[RF ])+
∼=−→ AF .

4. Applications

We state some results obtained from Theorem 3.13.
First, we see the structure of the Brauer ring. By Theorem 3.13, especially

we have Z[RF ]+(G)
∼=→ AF (G). By putting F = B̃rE/D, we obtain the next

corollary.

Corollary 4.1. For any finite Galois extension E/D of fields with Galois
group G, we have a ring isomorphism

B(E,D) ∼=
( ⊕

H≤G

Z[Br(EH)]
)/(

I(Z[G]) ·
⊕
H≤G

Z[Br(EH)]
)

,

where the ring structure of the right-hand side is defined by (3.1) in Defini-
tion 3.7. When G is trivial, this is nothing other than Proposition 2.8.

As mentioned in [4], if F is the trivial functor, then AF is canonically
isomorphic to the (ordinary) Burnside ring functor Ω. We can also induce
this isomorphism from Theorem 3.13, since there is a canonical isomorphism
Ω ∼= Z+, where Z is the constant algebra restriction functor with value Z (see
Example I.2.3 in [1]).

Theorem 3.13 gives us the structure of the F -Burnside ring functors, and
allows us to deduce some properties of them. We also remark here that con-
versely this isomorphism gives an explicit categorical meaning (Definition 2.1)
to the functor S+, in the case where S = Z[R] for a certain R.

For any algebra restriction functor A (in fact, being an algebra conjugation
functor is enough (cf. [1])), we have a Green functor defined by A+(H) =
(
∏

K≤H A(K))H . Here H acts on
∏

K≤H A(K) by conjugation, similarly as
in the definition of A+. And A+(H) has a canonical ring structure, induced
by the componentwise multiplication of

∏
K≤H A(K). This construction gives

us a functor −+ : Resalg(G) → Green(G). There is a natural Green functor
morphism ρA : A+ → A+, called the mark morphism. As in Proposition I.3.2
in [1], for any H ≤ G, there exists a map σA

H : A+(H) → A+(H) such that
σA

H ◦ ρA
H = |H| · id, ρA

H ◦ σA
H = |H| · id. Since Z[RF ]+(H) is free for any H ≤ G

(and so, it has no |H|-torsion), we obtain the following proposition.
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Proposition 4.2. For each H ≤ G, the component of the mark morphism
at H

ρH : Z[RF ]+(H) → Z[RF ]+(H)

is injective.

As the (componentwise) scalar extension of Z[RF ] by Q, the functor Q[RF ]
has a simpler structure as in [4]. We can realize this with the mark morphism.
Since |H| is invertible in Q for any H ≤ G, we obtain the following isomor-
phism of Green functors.

Proposition 4.3. The mark morphism ρ : Q[RF ]+ → Q[RF ]+ is an iso-
morphism.

In view of Theorem 3.13, this is nothing other than the following corollary.

Corollary 4.4 (Theorem 3.13 in [4]). For any additive functor F , there
is an isomorphism

AF (G) ⊗ Q ∼=
∏

a∈P (G)

Q[F (G/Ga)]NH(Ga),

where NG(K) denotes the normalizer of K in G for each K ≤ G.

In Proposition 4.3, the domain Q[RF ]+ is naturally isomorphic to
Z[RF ]+ ⊗ Q (see Lemma I.5.1 in [1]). As for the codomain Q[RF ]+, we
have an isomorphism

Q[RF ]+(H)

=
( ∏

K≤H

Q[RF ](K)
)H

=
{

(xK)K≤H ∈
∏

K≤H

Q[RF ](K) | h(xK) = x(hK) (∀K ≤ H, ∀h ∈ H)
}

∼=
{

(xa)a∈P (H) ∈
∏

a∈P (H)

Q[RF ](Ha) | h(xa) = xa

(
∀h ∈ NH(Ha)

)}

=
∏

a∈P (H)

(Q[RF ](Ha))NH(Ha)

for each H ≤ G. Thus, we obtain

AF (G) ⊗ Q ∼= (Z[RF ]+(G)) ⊗ Q

∼=
∏

a∈P (G)

(Q[RF ](Ga))NH(Ga) =
∏

a∈P (G)

Q[F (G/Ga)]NH(Ga).

Theorem 3.13 also enables us to calculate the Brauer ring for some (non-
trivial) finite Galois extensions. Here, we consider the case of C/R.
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Corollary 4.5. We have

B(C,R) ∼= Z[X,Y ]/(X2 − 1, Y 2 − 2Y,XY − Y ).

Proof. Since Gal(C/R) ∼= Z/2Z and Br(R) ∼= Z/2Z, we can write them as
Gal(C/R) = {1, σ} and Br(R) = {1, h}. By Corollary 4.1, we have

B(C,R) ∼=
(
Z[Br(R)] ⊕ Z[Br(C)]

)
/I(Z[G]) ·

(
Z[Br(R)] ⊕ Z[Br(C)]

)
(we abbreviate B̃rC/R to B̃r ). Here, we have

I(Z[G]) = {k · 1 + � · σ | k, � ∈ Z, k + � = 0} = {k · (1 − σ) | k ∈ Z}.

By the definition of the conjugation of R
B̃r

, for any H ≤ G we have cσ,H =

B̃r(�σ,H) = Br(σ) : Br(CH)
∼=→ Br(σ · (CH)). So both the maps

B̃r(�σ,G) : Br(R) → Br(R) (∼= Z/2Z),

B̃r(�σ,{1}) : Br(C) → Br(C) (= 0)

are identities, and we obtain I(Z[G]) · (Z[Br(R)] ⊕ Z[Br(C)]) = 0. Thus,
B(C,R) is equal to Z[Br(R)] ⊕ Z[Br(C)] as a module.

Finally, we compute its ring structure. To distinguish, let e and f denote
the unit element of Br(R) and Br(C), respectively. Then in the notation after
Definition 3.2, we have B(C,R) = Z · [G,e]G ⊕ Z · [G,h]G ⊕ Z · [{1}, f ]G. And
for this basis {[G,e], [G,h], [{1}, f ]} of B(C,R) (we omit the subscript G),
their multiplications are calculated by the formula (3.1) in Definition 3.7 as
follows:

[G,e]2 = [G,e], [G,h]2 = [G,e],
[G,e] · [G,h] = [G,h], [G,h] · [{1}, f ] = [{1}, f ],

[G,e] · [{1}, f ] = [{1}, f ], [{1}, f ]2 = 2[{1}, f ].

So, if we put X = [G,h] and Y = [{1}, f ], B(C,R) becomes isomorphic to
Z[X,Y ]/(X2 − 1, Y 2 − 2Y,XY − Y ). �
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