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Abstract Kurihara described all higher Fitting ideals of the minus part of Iwasawa

modules of ideal class groups over totally real fields by using Stickelberger elements and

Euler systems of “Gauss sums.” In this paper, we obtain some partial results for elliptic

units which are analogues of his result. By using Kolyvagin derivative classes of Euler

systems of elliptic units, we construct some ideals C ell
i,χ of Iwasawa algebras and prove

that they give “upper bounds” of higher Fitting ideals of one- and two-variable Iwasawa

modules of ideal class groups over imaginary quadratic fields.

1. Introduction

Let K be an imaginary quadratic field. We fix an algebraic closure Q=K of K.

In this paper, an algebraic number field is a finite extension of Q in this fixed

algebraic closure Q. For each algebraic number field F , we denote the ring of

integers of F by OF . If F2/F1 is a finite extension of fields, we write F1 ⊆f F2.

We fix an abelian extension K0 of K and put Δ := Gal(K0/K). Let p be

a prime number which does not divide #(O×
K0

)tors#Δ. We consider an abelian

extension K∞/K which contains K0. We assume that Γ := Gal(K∞/K0) is iso-

morphic to Zp or Z2
p as a topological group. We put G := Gal(K∞/K) = Δ× Γ.

We define Λ := Zp[[G]].
Put Δ̂ := Hom(Δ,Q

×
p ). For any character χ ∈ Δ̂, we denote by Oχ the Zp[Δ]-

algebra, which is a Zp-algebra isomorphic to Zp[Imχ] with action of Δ via χ.

The Λ-algebra Λχ is defined by Oχ[[Γ]]. Note that for any χ ∈ Δ̂, the algebra Λχ

is flat over Λ since we assume that p does not divide #Δ. For any Λ-module M ,

we put Mχ :=M ⊗Λ Λχ.

Let X be a projective limit of the systems

{NF ′/F : AF ′ −→AF |K0 ⊆f F ⊆f F ′ ⊂K∞},
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where AF is the p-Sylow subgroup of the ideal class group of F and NF ′/F is the

norm map. Note that X is a finitely generated torsion Λ-module. Let Xfin be the

largest pseudo-null Λ-submodule of X , and let X ′ :=X/Xfin. In our paper, we

study the higher Fitting ideals {FittΛχ,i(X
′
χ)}i∈Z≥0

for each χ ∈ Δ̂ by using the

Euler systems of elliptic units. In Section 4, we will define ideals Cell
i,χ of Λχ for

all i ∈ Z≥0, which are analogues of Kurihara’s higher Stickelberger ideals in [Ku]

for elliptic units, and we will prove that they give “upper bounds” (admitting

some “error factors”) of FittΛχ,i(X
′
χ) (cf. Theorems 1.1, 5.1).

To state our main theorem, we define some ideals which appear in “error

factors” of our main theorem. For each place v of K, we denote the decomposition

group of v in Δ (resp., G) by DΔ,v (resp., Dv). For any subgroup H of G, let
I(H) be the ideal in Λ generated by {γ − 1 | γ ∈H}. Let T be the set of places

of K above p which ramify in K∞/K. We define IT :=
∏

p∈T I(Dp).

Let n be a positive integer. For each ring R, we denote the group of all

nth roots of unity by μn(R). For simplicity, we write μn := μn(K) and μp∞ :=⋃
m≥1μpm(K). We put Iμ = annΛ(μp∞(K∞)).

The following is a rough form of the main theorem of our paper. (For the

precise version, see Theorem 5.1.)

THEOREM 1.1

Let χ ∈ Δ̂ be a nontrivial character. If K0 contains μp, we assume χ �= ω and

χ �= χ−1ω, where

ω : Δ−→Gal
(
K(μp)/K

)
−→ Z×

p

is the Teichmüller character. Assume one of the following:

• p splits completely in K/Q;

• p does not split (i.e., p ramifies or inerts) in K/Q, and for the element

p ∈ T , the character χ is nontrivial on DΔ,p. (Note that in this case, T is a

singleton.)

Then, the following hold:

(1) If the character χ is nontrivial on DΔ,p for any p ∈ T , then we have

Cell
0,χ ⊆ FittΛχ,0(X

′
χ).

(2) For any i ∈ Z≥0, there exists a height-two ideal Ji,χ of Λχ satisfying

Ji,χI3
T,χFittΛχ,i(X

′
χ)⊆ Cell

i,χ.

Moreover, if Γ� Zp and IT,χ = Iμ,χ =Λχ, we have

annΛχ(Xfin)FittΛχ,i(X
′
χ)⊆ Cell

i,χ

for any i ∈ Z≥0.
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REMARK 1.2

Here, we remark briefly on the structure of Xχ in the case of χ= 1. For the two-

variable cases, the generalized Greenberg conjecture predicts that the Iwasawa

module X of the Z2
p-extension of any imaginary quadratic field K0 =K is pseudo-

null (for details, see [Gr, Conjecture 3.5]). In [Mi], Minardi proved the generalized

Greenberg conjecture for imaginary quadratic fields when p does not divide the

class number of K. So, the assertion of our main theorem holds trivially in this

case.

For the one-variable cases, the following results are known.

(1) Assume that p does not split in K/Q. Then, we have X =X ′ = 0 for any

Zp-extensions K∞ of K0 =K (a special case of Iwasawa’s result in [Iw]).

(2) Assume that p splits in K/Q and the class number of K is prime to p.

Then for all but finitely many Zp-extensions K∞ of K0 =K, the Λ-module X ′ =

X ′
1 associated to K∞/K is free of rank 1 as a Zp-module (see [Oz, Theorem 1]).

Assume that p splits in K/Q and that p does not divide the class number of K.

Then, the result (2) by Ozaki and the Iwasawa main conjecture imply that we

have

FittΛ,i(X
′) =

{
charΛ(E∞/C∞) if i= 0,

Λ if i > 0,

for all but finitely many Zp-extensions K∞ of K0 = K, where E∞ (resp., C∞)

is the Λ-module of global units (resp., the Λ-module of elliptic units) defined in

Section 2.1 (resp., Section 2.2) of this paper.

In this paper, we prove Theorem 1.1 by using Kurihara’s Euler system argument

in [Ku] for elliptic units. Kurihara’s methods are not “usual” Euler system argu-

ments which appear in the proof of Iwasawa main conjectures in [Ru1] or [Ru3].

Note that usual Euler system arguments work well for Iwasawa modules with a

diagonal relation matrix, but Kurihara’s arguments work for Iwasawa modules

with a square relation matrix. (Recall that when we prove the Iwasawa main

conjecture for X , instead of X , we study an Iwasawa module with a diagonal

relation matrix which is pseudo-isomorphic to X .) Though we also treat noncy-

clotomic extensions in our paper, our Euler system arguments work completely

parallel to those of [Ku] and [Oh], which treat only cyclotomic Zp-extensions.

REMARK 1.3

In the one-variable case, we can give some bounds of error factors Ji,χI3
T,χ of

Theorem 1.1 (cf. Theorem 5.1, which is the precise form of our main theorem

for the one-variable case). Kurihara’s Euler system arguments work well only

for Iwasawa modules whose relation matrices can be written by square matrices.

Under the assumption Γ� Zp, the relation of an Iwasawa module M is written

by a square matrix if (and only if) M has no nontrivial submodule whose order

is finite (cf. Lemma 2.11). So, in the one-variable case, we can apply Kurihara’s
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argument directly to X ′, and we obtain some bounds of error factors Ji,χI3
T,χ

when we observe Kurihara’s Euler system argument carefully. In the two-variable

case, we cannot bound error factors since we have no “canonical” modification

of X to Iwasawa modules with square relation matrix. (In the two-variable case,

X ′ may not have a relation matrix written by a square matrix.) Indeed, as we

will see later in Section 6, our result for the two-variable case follows from the

standard Euler system argument for the proof of the Iwasawa main conjecture

without using Kurihara’s methods, and it is not so new or strong.

In particular, when Γ � Zp and Xχ has no nontrivial pseudo-null submodule,

then our theorem give upper bounds of higher Fitting ideals directly.

COROLLARY 1.4

Let χ ∈ Δ̂ be a nontrivial character. If K0 contains μp, we assume χ �= ω and

χ �= χ−1ω. Assume one of the following:

• p splits completely in K/Q;

• p does not split in K/Q, and for the element p ∈ T , the character χ is

nontrivial on DΔ,p.

Further, we assume Γ� Zp, IT,χ = Iμ,χ =Λχ, and Xfin,χ = 0. Then, we have the

following.

(1) If the character χ is nontrivial on DΔ,p for any p ∈ T , then we have

FittΛχ,0(Xχ) = Cell
0,χ.

(2) We have FittΛχ,i(Xχ)⊆ Cell
i,χ for any i ∈ Z≥0.

REMARK 1.5

Here, we give an example satisfying Xχ =X ′
χ. (Note that we usually have Xχ �=

X ′
χ for many cases.) When X is the Iwasawa module associated to the anticyclo-

tomic Zp-extension K∞ of a imaginary quadratic field K0 =K, [Fu, Theorem 4.2]

gives a sufficient condition to make X a cyclic Λ-module satisfying X =X ′. For

instance, let K∞ be the anticyclotomic Z3-extension of K =Q(
√
−461), and let

γ be a topological generator of Γ =Gal(K∞/K); then we have

X =X ′ � Λ/(γ3 − 1)Λ.

This implies

FittΛ,i(X) = FittΛ,i(X
′) =

{
(γ3 − 1)Λ if i= 0,

Λ if i > 0.

For details of this example, see the examples below Theorem 2 and [Fu, Theo-

rem 4.2]. Note that we cannot apply Corollary 1.4 in this case since the corollary

requires that χ be a nontrivial character.
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REMARK 1.6

Recall the fact that the Iwasawa main conjecture for Iwasawa modules X of

ideal class groups implies the Iwasawa main conjecture for Iwasawa modules of

Selmer groups of elliptic curves over Q with complex multiplication (see [Ru1,

Section 12]). But this fact follows from multiplicativity of characteristic ideals

for exact sequences of Iwasawa modules. Since higher Fitting ideals do not have

multiplicativity, our main theorem does not imply any bounds of higher Fit-

ting ideals of Iwasawa modules of Selmer groups of elliptic curves with complex

multiplication.

Notation
In this paper, we use the following notation.

Let L/K be a finite Galois extension of algebraic number fields. Let λ be

a prime ideal of K, and let λ′ be a prime ideal of L above λ. We denote the

completion of K at λ by Kλ and the completion of L at λ′ by Lλ′ . If λ is

unramified in L/K, the arithmetic Frobenius at λ′ is denoted by (λ′,L/K) ∈
Gal(L/K).

We fix a family of embeddings {lK : K ↪→ Kl}l:prime satisfying a technical

condition (A) as follows.

(A) For any subfield L ⊂ K which is a finite Galois extension of K and

any element σ ∈ Gal(L/K), there exist infinitely many prime ideals l of OK

such that l is unramified in L/K and (lL,L/K) = σ, where lL is the prime ideal

corresponding to the embedding lK |L.

The existence of a family satisfying the condition (A) is easily proved by using

the Chebotarev density theorem.

Let l be a prime ideal l of OK . For an algebraic number field L, let lL be the

prime ideal of OL corresponding to the embedding lK |L. Then, if L2 ⊇ L1 is an

extension of algebraic number fields containing K, we have lL2 | lL1 .

For an abelian group M and a positive integer n, we write M/n in place of

M/nM for simplicity. In particular, for the multiplicative group K× of a field

K, we write K×/pN in place of K×/(K×)p
N

.

Let F be a finite extension field of K0 contained in K∞. We put ΓF :=

Gal(K∞/F ). For a Λ-module M , we denote the ΓF -invariants (resp.,

ΓF -coinvariants) of M by MΓF (resp., MΓF
or MF ).

Let R be a commutative ring. For an R-module M , we define annR(M) to

be the annihilator of M . Namely,

annR(M) := {a ∈R | am= 0 for any m ∈M}.

The maximal torsion submodule of M is denoted by Mtors.

2. Preliminaries

In this section, we review some preliminary results. We use the same notation

as in Section 1. This section consists of three subsections. In Section 2.1, we
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recall some Iwasawa theoretical results on unit groups and ideal class groups.

In Section 2.2, we recall the definition and some properties of elliptic units. In

Section 2.3, we recall the notion of higher Fitting ideals.

2.1.
In this subsection, we recall some preliminary results on Iwasawa theory which

are used in our paper. For each finite extension field F of K0 contained in K∞,

we put

EF :=O×
F ⊗Zp,

and we define a Λ-module E∞ to be the projective limit of the system

{NF ′/F : EF ′ −→EF |K0 ⊆f F ′ ⊆f F ′ ⊂K∞}

where NF ′/F are the norm maps.

Let F be a number field satisfying K0 ⊆f F ⊂K∞. Recall that we put ΓF :=

Gal(K∞/F ), and for a Λ-module M , we denote the ΓF -coinvariants of M by

MF . We consider the natural homomorphisms

πE,F : (E∞)F −→EF ,

πA,F : (X∞)F −→AF .

We define the ideals IE , JE , IA, and JA of Λ by

IE :=
⋂
F

annΛ(KerπE,F ), JE :=
⋂
F

annΛ(CokerπE,F ),

IA :=
⋂
F

annΛ(KerπA,F ), JA :=
⋂
F

annΛ(CokerπA,F ),

where F runs all intermediate fields of K∞/K satisfying K0 ⊆f F .

Recall that we denote the set of places of K above p which ramify in K∞/K

by T , and we define IT :=
∏

p∈T I(Dp), where we denote the decomposition group

of p in G by Dv and let I(Dv) be the ideal in Λ generated by {γ − 1 | γ ∈Dv}.

PROPOSITION 2.1

(1) There exists a height two ideal A satisfying

ITA⊆ IE and I2
TA⊆JE .

Further, if we assume that Γ� Zp and let χ ∈Δ be a character satisfying IT,χ =

Λχ, then we have

IE,χ =Λχ and annΛχ(Xfin,χ)⊆JE,χ

(see [Ru1, Theorem 7.6]).

(2) We have

ITI0 ⊆ IA and I(G)⊆JA,
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where I(G) is the augmentation ideal, which is an ideal of Λ generated by {γ−1 |
γ ∈ G}, and

I0 :=
{
Λ if Γ� Zp,

I(G) if Γ� Z2
p.

In particular, if we assume that Γ� Zp, then the natural homomorphism

πA,F : (X∞)F −→AF

is an isomorphism for any number field F satisfying K0 ⊆f F ⊂K∞, and any

character χ ∈Δ satisfying IT,χ = Λχ. So, if Γ� Zp, and if IT,χ = Λχ, then we

have

IA,χ = JA,χ =Λχ

(see [Ru1, Theorem 5.4]).

2.2.
Here, we briefly recall the definition and some properties of elliptic units. We fix

an embedding ∞K : K −→C and regard K as a subfield of C by ∞K . Let F be

an intermediate field of C/K, and let E be an elliptic curve over F with complex

multiplication by OK . In this paper, we always identify OK with End(E) by

unique isomorphism OK
�−→ End(E) such that the composite map

OK −→ End(E)−→ EndF
(
Lie(E)

)
= F

coincides with the inclusion map. For each ideal a of OK , we denote the a-torsion

subgroup scheme of E by aE.

PROPOSITION 2.2

Let a be an ideal of OK which is prime to 6. Then, there exists a unique element

aθE of O(E \ aE)× satisfying the following conditions:

(i) The divisor of aθE is N(a) · (0)− aE.

(ii) For any integer b prime to a, we have

N[b](aθE |E\baE) = aθE ,

where N[b] : O(E \ba E)× −→ O(E \ aE)× is the norm map associated to the

multiplication map

[b] : E \ baE −→E \ aE.

We use the notion of “CM-pair” in [Ka, Section 15]. Let F be an intermediate

field of C/K, and let f be an ideal of OF which makes the natural homomorphism

O×
K −→ (OK/f)× be injective. (For instance, if f is a proper ideal of OK prime

to 6, then this injectivity holds.) We call a pair (E,α) a CM-pair of modulus f

over F if E is an elliptic curve over F with complex multiplication by OK , and

α is a torsion point of E(F ) satisfying annOK
(α) = f. A CM-pair (E,α) over F

is isomorphic to a CM-pair (E′, α′) if and only if there exists an isomorphism
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ι : E
�−→ E′ satisfying ι(α) = ι(α′). Note that since we assume that the natu-

ral homomorphism O×
K −→ (OK/f)× is injective, if a CM-pair (E,α) over F is

isomorphic to a CM-pair (E′, α′), then there exists only one isomorphism from

(E,α) to (E′, α′).

Let n be a nonzero ideal of OK . Then, we denote the ray class field of K of

the modulus n by K(n). In particular, K(OK) is the Hilbert class field HK of

K. The following facts are well known.

• There exists a CM-pair of modulus f over K(f) which is isomorphic to

(C/f,1 mod f) over C. This CM-pair of modulus f over K(f) is unique up to

unique isomorphism. We call this CM-pair of modulus f over K(f) the canonical

CM-pair over K(f) and denote it by (Ef
can, α

f
can).

• Let F be an intermediate field of C/K, and let (E,α) be a CM-pair of

modulus f over F . Then, there exists a unique embedding ι : K(f) −→ F such

that the base change (ι∗Ef
can, ι

∗αf
can) of the canonical CM-pair is isomorphic to

(E,α).

DEFINITION 2.3

Let a and f be ideals of OK satisfying the following condition (I).

(I) The ideal a is prime to 6f, and the ideal f makes the natural homomor-

phism O×
K −→ (OK/f)× injective.

Then, we define

azf := aθEf
can

(αf
can) ∈K(f)×.

The following properties of azf’s are well known.

PROPOSITION 2.4 ([dS, CHAPTER II, PROPOSITION 2.5, NORM COMPATIBILITY])

Let a and f be ideals of OK satisfying the condition (I).

(1) If f is a power of one prime ideal of OK , we have azf ∈ OK(f)[1/f]
×.

Otherwise, we have azf ∈O×
K(f).

(2) Let l be a prime ideal of OK not dividing a. Then, we have

NK(fl)/K(f)(azfl) =

{
az

1−Fr−1
l

f
if l is prime to f,

azf if l divides f,

where Frl ∈Gal(K(f)/K) is the arithmetic Frobenius element at l.

Here, we define elliptic units.

DEFINITION 2.5

Let F be a finite abelian extension field of K which contains HK . We denote the

conductor of F/K by Cond(F ).
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(1) Let n be an ideal of OK prime to a. We define

azf(F,n) :=NF (f)/F (azfn).

For simplicity, we put azf(F ) := azf(F,OK).

(2) We denote by DF the Z[Gal(F/K)]-submodule of F× generated by{
azf(F )

∣∣∣∣ a and f are ideals of OK satisfying

the condition (I) and f |Cond(F )

}
∪ (O×

F )tors.

We denote the intersection DF ∩O×
F by CF , and we call CF the group of elliptic

units of F .

(3) We denote by CF the Zp[Gal(F/K)]-submodule of EF generated by the

image of CF , and we define a Λ-module C∞ to be the projective limit of the

system

{NF ′/F : CF ′ −→CF |K0 ⊆f F ⊆f F ′ ⊂K∞}

where NF ′/F are the norm maps.

Here, we recall the statement of the Iwasawa main conjecture proved in [Ru1]

and [Ru2] briefly. Let χ ∈Δ be an arbitrary character. It is well-known fact that

E∞,χ/C∞,χ is a torsion Λχ-module. Assume one of the following:

• p splits completely in K/Q;

• p does not split in K/Q, and for the element p ∈ T , the character χ is

nontrivial on Dp.

Then, we have

charΛχ(X∞,χ) = charΛχ(E∞,χ/C∞,χ).

(See [Ru1, Theorem 4.1] and [Ru2, Theorem 2].)

Here, we recall some results on the Λ-modules E∞ and C∞.

PROPOSITION 2.6 ([Ru1, PROPOSITION 7.7, COROLLARY 7.8])

Recall we put Iμ = annΛ(μp∞(K∞)).

(1) Let (E∞)tors (resp., (C∞)tors) be the maximal torsion Λ-submodule of E∞
(resp., C∞). Then, we have

(E∞)tors = (C∞)tors =

⎧⎨⎩lim
←−

μpn if K∞ =K0(μp∞),

0 otherwise.

(2) We have

C∞ �

⎧⎪⎪⎨⎪⎪⎩
Iμ if Γ� Zp, K∞ �=K0(μp∞),

Λ⊕ lim
←−

μpn if K∞ =K0(μp∞),

I(G)Iμ if Γ� Z2
p.
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In this paper, we fix a generator θχ ∈ Λχ of the ideal charΛχ(E∞,χ/C∞,χ). For

each homomorphism ϕ : E∞,χ −→ Λχ of Λχ-modules, we write

I(C∞,χ;ϕ) := θ−1
χ ϕ(C∞,χ).

Note that it follows from Proposition 2.6(1) that I(C∞,χ;ϕ) is an integral ideal

of Λχ.

DEFINITION 2.7

We define IC,χ to be the ideal of Λχ generated by
⋃

ϕ I(C∞,χ;ϕ), where ϕ runs

through all homomorphism ϕ : E∞,χ −→Λχ of Λχ-modules.

Note that IC,χ is an ideal of Λχ of height at least two. The following corollary

follows from Proposition 2.6.

COROLLARY 2.8

Assume Γ� Zp. Let χ ∈Δ be a character satisfying Iμ,χ =Λχ. Then, there exists

a Λχ-homomorphism ϕ : E∞,χ −→ Λχ satisfying

ϕ(C∞,χ) = charΛχ(E∞,χ/C∞,χ).

In particular, IC,χ =Λχ if Iμ,χ =Λχ.

2.3.
Here, we recall the notion of higher Fitting ideals.

DEFINITION 2.9 (HIGHER FITTING IDEALS; [No, SECTION 3.1])

Let R be a commutative ring, and M be a finitely presented R-module. Let

Rm f−→Rn −→M −→ 0

be an exact sequence of R-modules. For each i ≥ 0, we define the ith Fitting

ideal FittR,i(M) to be the ideal of R generated by all (n− i)× (n− i) minors of

the matrix corresponding to f . Note that when 0≤ i < n and m< n− i (resp.,

i ≥ n), we define FittR,i(M) := 0 (resp., FittR,i(M) := R). Definition of these

ideals depends only on M , and does not depend on the choice of the above exact

sequence. We have the ascending filtration

FittR,0(M)⊆ FittR,1(M)⊆ · · · ⊆ FittR,n(M) = FittR,n+1(M) = · · ·=R.

We denote the smallest number of generators of an R-module M by nR(M). If

FittR,n(M) �=R, then nR(M)≥ n+1. Note that when R is a local ring or a PID,

we have nR(M) = i+ 1 if and only if FittR,i(M) �=R and FittR,i+1(M) =R.

EXAMPLE 2.10

Let O be the valuation ring of some finite extension field of Qp. Suppose R is

a ring isomorphic to O[[T ]] or O[[S,T ]], and M is a finitely generated torsion
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R-module. (For example, R=Λχ for some χ ∈ Δ̂.) Assume that

M ∼
n⊕

i=1

R/fiR

and that fi divides fi+1 for 1≤ i≤ n−1. Then, for each i with i≥ 0, there exists

an ideal Ii of height at least two in R such that

FittR,i(M) =

{
(
∏n−i

k=1 fk)Ii if i < n,

Ii if i≥ n

(cf. [Ku, Lemma 9.2]). This implies that the family {FittR,i(M)}i≥0 of Fitting

ideals of M determines the pseudo-isomorphism class of M . Note that for two

pseudo-isomorphic R-modules which have no nontrivial pseudo-null submodules,

their higher Fitting ideals may be different. For example, we consider the follow-

ing. Let f, g ∈R be distinguished polynomial which are prime to each other, and

put M1 :=R/(fg) and M2 :=R/(f)⊕R/(g). Then, R-modules M1 and M2 have

no nontrivial pseudo-null submodules, and they are pseudo-isomorphic, but their

first Fitting ideals are different: FittR,1(M1) = R and FittR,1(M2) = (f, g) �= R.

Note that higher Fitting ideals do not determine the isomorphism classes of

R-modules. See [Ku, Remark 9.4].

We need the following lemma in the proof of Theorem 1.1.

LEMMA 2.11 (SEE, E.G., [Ku, THEOREM 9.1])

Let O be the valuation ring of some finite extension field of Qp, R := O[[T ]]

and M a finitely generated torsion R-module. Suppose M contains no nontrivial

pseudo-null R-submodule. Then, there exists an exact sequence

0−→Rn −→Rn −→M −→ 0

for some integer n > 0, and we have

FittR,0(M) = charR(M).

3. Euler systems of elliptic units and Kurihara’s element

In this section, we set up some notions related to Euler systems of elliptic units,

and prove some preliminary propositions to prove our main theorem. This section

contains four subsections. In the first section, we recall the notion of Kolyvagin

derivative classes. In the second subsection, we define two homomorphisms which

play key roles in Euler system arguments. In the third subsection, we define ele-

ments xn,q(η, a) ∈ (F×/pN )χ, which are analogues of Kurihara’s elements defined

in [Ku, Section 7] for elliptic units. We define them by using the Kolyvagin deriv-

ative classes of the Euler system of elliptic units. In the final subsection, we prove

an important proposition for induction arguments in the proof of our main result.
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3.1.
Here, we recall the definition of the Kolyvagin derivative classes κf,a(F,N ;n) of

the Euler system of elliptic units (cf., e.g., [Ru1]).

We denote the ideal class group of K by ClK , and we fix a decomposition

ClK =

k⊕
i=1

Zāi

of ClK into a direct sum of cyclic subgroups, where āi is the ideal class of a

prime ideal ai of OK for each i. We denote the order of āi in ClK by ni, and fix

a generator ai of the principal ideal ani
i .

Let F be a finite extension field of K0. For an integer N ≥ 1, let Sprime
N (F )

be the set of all prime ideals l of OK satisfying the following conditions:

(1) l does not divide #O×
K ;

(2) l splits completely in F (μpN , a
1/pN

1 , . . . , a
1/pN

k )/K.

We denote the set of all square-free integral ideals n of OK such that all prime

divisors of n belong to Sprime
N (F ) by SN (F ). For simplicity, we put Sprime

N :=

Sprime
N (K0) and SN := SN (K0). Recall the following lemma in [Ru2].

LEMMA 3.1 ([Ru2, LEMMA 3])

Let N be a positive integer. For any l ∈ Sprime
N , there exists a cyclic extension

K0(l;N) of F of degree pN contained in the composite field K0 ·K(l), which is

totally ramified at all primes above l, and unramified at all primes not dividing l.

DEFINITION 3.2

Let F be a finite extension field of K0 contained in K∞, and N a positive integer.

Let n ∈ SN (F ) be any element, and assume n is decomposed as n=
∏r

i=1 li, where

l1, . . . , lr are distinct prime ideals of OK . For each li, let K0(li) =K0(li;N) be as

in Lemma 3.1.

• We denote the composite field F ·K0(l1;N) · · ·K0(lr;N) by F (n;N), or by

F (n) for simplicity. In particular, we put F (OK) := F .

• We put

Hn =Hn,N := Gal
(
K0(n)/K0

)
.

Note that K0(l1), . . . ,K0(lr) and F are linearly disjointed over K0, we have the

natural isomorphism

Gal
(
F (n)/F

)
�Hn �Hl1 × · · · ×Hlr ,

and we identify them by this natural isomorphism.

As in Section 2.2, we regard K as a subfield of C by the fixed embedding

∞K : K −→ C. We put ζn := e2πi/n ∈K for any positive integer n. Let F be a

finite extension field of K0 contained in K∞, and l ∈ Sprime
N (F ). Recall Hl =Hl,N

is a cyclic group of order pN . We take a generator σl of Hl as follows:
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Note that since the prime ideal l splits completely in K0(μpN )/K, we have

(K0)lK0
=Kl and ζpN ∈Kl. We put L :=K0(l)lK0(l)

. We identify Gal(L/Kl) with

Hl by the isomorphism induced by the embedding

lK0(l) : K0(l) ↪→ L

fixed in Section 1. Let π be a uniformizer of OL. We fix a generator σl of Hl

such that

πσl−1 ≡ ζpN (mod mL),

where mL is the maximal ideal of OL. Note that the definition of σl does not

depend on the choice of π.

Let n ∈ SN (F ). We define the element Dn of the group ring Z[Hn] as follows.

DEFINITION 3.3

Let n=
∏r

i=1 li ∈ SN (F ) such that li ∈ Sprime
N (F ) for i= 1, . . . , r. We define

Dli :=

pN−1∑
k=1

kσk
li
∈ Z[Hli ]⊆ Z[Hn]

for i= 1, . . . , r, and

Dn :=

r∏
i=1

Dli ∈ Z[Hn].

The following lemma is well known.

LEMMA 3.4

Let a and f be ideals of OK satisfying the condition (I) in Definition 2.3. Let

n1,n2 ∈ SN (F ). Assume l ∈ Sprime
N (F (n1)) for each prime divisor l of n2. We

put n = n1n2. Then, the image of azf(F,n)
Dn2 in F (n)×/pN is fixed by Hn2 =

Gal(F (n)/F (n1)).

The Kolyvagin derivative class

κn1

f,a(F,N ;n) ∈ F (n1)
×/pN

is an element of F (n1)
×/pN such that its image in F (n)×/pN by the natural

homomorphism

ι : F (n1)
×/pN −→

(
F (n)×/pN

)Hn2

coincides with the class of azf(F,n)
Dn2 . Note that the natural homomorphism

ι is not injective or surjective in general, so the inverse image ι−1(azf(F,n)
Dn2 )

may not be a singleton. In order to construct Kolyvagin derivative classes, we

recall the notion of universal Euler systems. Let F,N, f,a and n= n1n2 be as in

Lemma 3.4. Let YF (n1)(n2) be the free Z[Hn2 ]-module whose basis is symbols{
y(d) | d is an ideal of OK dividing n2

}
.
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We write the group law multiplicatively. Let ZF (n1)(n2) be the Z[Hn2 ]-submodule

of YF (n1)(n2) generated by{
y(d)σ−1 | d is an ideal of OK dividing n2, and σ ∈Gal

(
F (n)/F (n1d)

)}
∪
{
y(d)Nly(d/l)Fr

−1
l

−1

∣∣∣∣ d is an ideal of OK dividing n2,

and l is a prime ideal of OK dividing d

}
,

where Nl :=
∑

σ∈Hl
σ ∈ Z[Hl], and Frl is the arithmetic Frobenius at l in Hn2/l.

(Note that we regard Hn2/l as a subgroup of Hn2 .) Then, we define the module

XF (n1)(n2) of universal Euler systems at F (n1) by

XF (n1)(n2) := YF (n1)(n2)/ZF (n1)(n2).

In order to define Kolyvagin derivatives, we use the following lemma.

LEMMA 3.5 ([Ru1, LEMMA 2.1])

(i) The Z[Hn2 ]-module XF (n1)(n2) is torsion-free.

(ii) For any ideal d of OK dividing n and any σ ∈Hn2 , we have

y(d)Dd(σ−1) ∈ XF (n1)(n2)
pN

.

By Lemma 2.4, we define a homomorphism

δ : XF (n1)(n2)−→ F (n)×

of Z[Hn2 ]-modules by δ(y(d)) := azf(F (n1),n1d) for each ideal d of O dividing

n2. Then, by Lemma 3.5, we (uniquely) define a 1-cocycle c : Hn2 −→ F (n)
×

by

c(σ) := δ
((
y(d)Dd(σ−1)

)1/pN )
.

By Hilbert’s Theorem 90, there exists an element β ∈ F (n)
×

such that βσ−1 =

c(σ) for any σ ∈Hn2 .

Now, we define the Kolyvagin derivative class κn1

f,a(F,N ;n).

DEFINITION 3.6

Let F,N, f,a,n= n1n2 be as in Lemma 3.4. We define

κn1

f,a(F,N ;n) := azf(F,n)
Dn2 /βpN ∈ F (n1)

×/pN .

Note that the definition of κn1

f,a(F,N ;n) is independent of the choice of β. When

n1 =OK , the element κOK

f,a (F,N ;n) is denoted by κf,a(F,N ;n).

3.2.
Let F be a finite extension field of K0 contained in K∞. We put RF,N :=

Z/pN [Gal(F/K)] and RF,N,χ := RF,N ⊗Zp[Δ] Oχ for any character χ ∈ Δ̂. Let

n be an element of SN (F ). Here, for each l ∈ Sprime
N (F (n)), we define two homo-

morphisms

[·]lF,N,χ : (F
×/pN )χ −→RF,N,χ (cf. Definition 3.7)
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and

φ̄l
F (n),N,χ :

(
F (n)

×
/pN
)
χ
−→RF,N,χ[Hn] (cf. Definition 3.8),

which play important roles in Euler system arguments.

First, we define [·]lm,N,χ. Let F be an algebraic number field. We define

IF := Div
(
Spec(OF )

)
to be the divisor group, and we write its group law additively. We define the

homomorphism (·)F : F× −→IF by

(x)F =
∑
λ

ordλ(x)λ,

where λ runs through all prime ideals of OF , and ordλ : F
× −→→ Z is the normal-

ized valuation of λ. For any prime ideal l of OK , we define Il
F to be the subgroup

of IF generated by all prime divisors above l. Then, we define (·)lF : F× −→ Il
F

by

(x)lF =
∑
λ|l

ordλ(x)λ.

Recall that we fix a family of embeddings {lK : K ↪→ Kl}l:prime satisfying

the condition (A) (cf. Section 1). For each prime number l and algebraic num-

ber field F , we denote the ideal of OF corresponding to the embedding lK |K
by lF . Note that l splits completely in F/K. Then, Il

F is a free Z[Gal(F/K)]-

module generated by lF , and we identify Il
F with Z[Gal(F/K)] by the isomor-

phism ι : Z[Gal(F/K)]
�−→ Il

F defined by x �−→ x · lF for x ∈ Z[Gal(F/K)]. We

also denote the composite map F× −→Il
F

ι−1

−→ Z[Gal(F/K)] by (·)lF .

DEFINITION 3.7

We define the RF,N,χ-homomorphism

[·]F,N,χ : (F
×/pN )χ −→ (IF /pN )χ

to be the homomorphism induced by (·)lF : F× −→ IF . For each l ∈ Sprime
N (F ),

we define the RF,N,χ-homomorphism

[·]lF,N,χ : (F
×/pN )χ −→RF,N,χ

to be the homomorphism induced by (·)lF : F× −→ Z[Gal(F/K)].

Second, we will define φ̄l
F (n),N,χ. Let l ∈ SN (F (n)). Note l splits completely in

F (n)/K, so we have F (n)λ =Kl for any prime ideal λ of F above l. The groups⊕
λ|lF (n)×λ and

⊕
λ|lHl are regarded as Z[Gal(F (n)/K)]-modules by the iden-

tification ⊕
λ|l

F (n)×λ = Il
F (n) ⊗Z K

×
l

and
⊕
λ|l

Hl = Il
F (n) ⊗Hl,
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respectively. (Here, we regard K×
l

as a Z[Gal(F (n)/K)]-modules on which the

group Gal(F (n)/K) acts trivially.) We denote by

φKl
: K×

l
−→Gal

(
K(l)lK(l)

/Kl

)
=Gal

(
K(l)/K

)
=Hl

the homomorphism induced by the reciprocity map

φrec
Kl

: K×
l
−→Gal(Kl/Kl)

of local class field theory. (Let π be a uniformizer of Kl and k(l) :=O/l. Then

φrec
Kl

(π) induces the N(l)-power map on k(l).) The homomorphism

φl
F (n) : F (n)× −→ Z

[
Gal
(
F (n)/K

)]
⊗Hl

is defined to be the composite of the three homomorphisms of Z[Gal(F (n)/K)]-

modules:

diag : F (n)× −→
⊕
λ|l

F (n)
×
,

⊕
φKl

:
⊕
λ|l

F (n)×λ −→
⊕
λ|l

Hl,

ι−1
H :
⊕
λ|l

Hl
�−→ Z
[
Gal
(
F (n)/K

)]
⊗Hl,

which are defined as follows:

(1) the first homomorphism diag is the diagonal inclusion;

(2) the second homomorphism
⊕

φKl
is the direct sum of the reciprocity

maps;

(3) the third isomorphism ι−1
H is the inverse of the isomorphism

ιH : Z
[
Gal
(
F (n)/K

)]
⊗Hl

�−→
⊕
λ|l

Hl = Il
F (n) ⊗Hl,

which is induced by the isomorphism

ι : Z
[
Gal
(
F (n)/K

)] �−→Il
F (n)

given by x �−→ x · lF (n).

DEFINITION 3.8

Let l ∈ SN (F (n)). We define

φl
F (n),N,χ :

(
F (n)

×
/pN
)
χ
−→ Z/pN

[
Gal
(
F (n)/K

)]
χ
⊗Hl

to be the homomorphism of RF,N,χ[Hn]-modules induced by φl
F (n). The choice

of a generator σl of Hl induces the RF,N,χ[Hn]-homomorphism

φ̄l
F (n),N,χ :

(
F (n)

×
/pN
)
χ
−→ Z

[
Gal
(
F (n)/K

)]
χ
=RF,N,χ[Hn].

The following formulas on Kolyvagin derivative classes are well known. (For

example, see [Ru1, Proposition 2.4] for the proof. Note that our φ̄l
F,N,χ is the

map ϕl in [Ru1].)
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PROPOSITION 3.9

Let a and f be ideals of OK satisfying the condition (I) in Definition 2.3. Let

n1,n2 ∈ SN (F ). Assume l ∈ Sprime
N (F (n1)) for each prime divisor l of n2. We put

n= n1n2.

(1) If λ is a finite place of K not dividing n2, the λ-component of [κn1

f,a(F,N ;

n)χ]F,N,χ is 0. In particular, if q ∈ Sprime
N (F ) is a prime ideal of OK not dividing

n2, we have [
κf,a(F,N ;n)χ

]q
F,N,χ

= 0.

(2) Let l be a prime ideal of OK dividing n. Then,[
κf,a(F,N ;n)χ

]l
F,N,χ

= φ̄l
F,N,χ

(
κf,a(F,N ;n/l)χ

)
.

To prove our main theorem, we need not only Proposition 3.9 but another rela-

tions of Kolyvagin derivative classes (cf. Proposition 3.11). As in [Ku, Section 6.2],

we need the notion well ordered.

DEFINITION 3.10

Let n ∈ SN (F ). We call n well ordered if and only if n has a factorization n =∏r
i=1 li with li ∈ Sprime

N (F ) for each i such that li+1 splits in F (
∏i

j=1 lj)/K for

i= 1, . . . , r− 1.

PROPOSITION 3.11

Let a and f be ideals of OK satisfying the condition (I) in Definition 2.3. Let

n ∈ SN (F ) be prime to af. If n is well ordered, then

φ̄l
F,N,χ

(
κf,a(F,N ;n)χ

)
= 0

for each prime ideal l of OK dividing n.

Proof

In the theory of Kolyvagin systems, this proposition is proved in more general

situation. (For example, see [MR, Theorem A.4] for the case of Euler systems

over Q.) But in our case, we can give a more elementary proof by using the

similar method to [Ku, Lemma 6.3].

We may assume n �=OK . Since n is well ordered, we put n=
∏r

i=1 li, where

li’s are elements of Sprime
N (F ) satisfying li+1 splits in F (

∏i
j=1 lj)/K for i =

1, . . . , r−1. Assume l= li, and put n1 :=
∏i−1

j=1 lj . (If l= l1, then we put l1 =OK .)

Note that the image of κf,a(F,N ;n) in F (n1)
×/pN coincides with κn1

f,a(F,N ;n)Dn1 .

Since the diagram
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(
F (n1)⊗K Kl

)×
/pN = Il

F (n1)
⊗Z (K

×
l
/pN )

⊕
λ′ φKl Il

F (n1)
⊗Z (Hl/p

N )

(F ⊗K Kl)
×/pN = Il

F ⊗Z (K
×
l
/pN )

⊕
λ φKl Il

F ⊗Z (Hl/p
N )

commutes, in order to prove our proposition, it is sufficient to show that

(1) φ̄l
F (n1),N,χ

(
κn1

f,a(F,N ;n)χ
)
= 0.

Let λ be a place of F (n1) above l, and λ′ a place of F (n1l) above λ. We

fix a uniformizer π′ of F (n1l)λ′ and put π =NF (n1l)λ′/F (n1)λ′ (π
′). We denote the

residue field of F (n1) by k(λ) and fix a generator α of a cyclic group k×/pN .

Then, we have a decomposition F (n1)
×
λ /p

N = 〈π̄〉 × 〈α〉, where π̄ is the image of

π in F (n1)
×
λ /p

N . Let

φF (n)λ : F (n)×λ /p
N −→Hl/p

N

be the local reciprocity map. To prove (1), it is sufficient to prove that the image

of κn1

f,a(F,N ;n) is contained in Ker(φF (n)λ) for all λ above l. By local class field

theory, we have Ker(φF (n)λ) = 〈π̄〉 since the image of norm map

NF (n1l)λ′/F (n1)λ′ : F (n1l)
×
λ′/p

N −→ F (n1)
×
λ′/p

N

coincides with 〈π̄〉. Note that we can check easily that the kernel of the natural

homomorphism

ιλ : F (n1)
×
λ /p

N =K×
l
/pN −→ F (n1l)

×
λ′/p

N

is also 〈π̄〉. So, it is sufficient to prove that the image of ιλ(κ
n1

f,a(F,N ;n)) = 1.

The image of κn1

f,a(F,N ;n) in F (n1l)
×
λ′/pN coincides with κn1l

f,a (F,N ;n)Dl , so let

us prove κn1l

f,a (F,N ;n)Dl = 1 in F (n1l)
×
λ′/pN . By Proposition 3.9(1), we have

κn1l

f,a (F,N ;n) ∈ (OF (n1l) ⊗OK,l)
×,

where OK,l is localization of OK at l. The group Hl = Gal(F (n1l)/F (n1)) acts

trivially on

(OF (n1l)/lK(l)OF (n1l))
× = Il

F (n1)
⊗Z (OK/l)×

since all prime ideals above l ramifies completely in F (n1l)/F (n1). Therefore, we

have

κn1

f,a(F,N ;n) = κn1l

f,a (F,N ;n)Dl

= κn1l

f,a (F,N ;n)
∑pN−1

k=1 kσk
l

= κn1l

f,a (F,N ;n)p
N (pN−1)/2

= 1
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in F (n1l)/F (n1). This implies the image of κn1

f,a(F,N ;n) belongs to Ker(ιλ) =

Ker(φF (n)λ) for all places λ of F (n1) above l, and completes the proof. �

3.3.
In this subsection, we will define some elements xn,q(η, a) ∈ (F×/pN )χ, which

are analogues of Kurihara’s elements defined in [Ku, Section 7] for elliptic units.

Elements xn,q(η, a) become a key of the proof of our main theorem for the one-

variable cases.

Let F be a finite extension field ofK0 contained in K∞, Cond(F ) the conduc-

tor ideal of F/K, and N a positive integer. We consider an elliptic unit η ∈CF .

Let a be a map

(IK)2 = {nonzero ideals of OK}2 −→RF,N,χ; (f,a) �−→ af,a

satisfying the following condition (R):

(R) We have af,a = 0 for all but finitely many (a, f), and there exists an

element ζ ∈ (O×
F )tors satisfying

η = ζ
∏

(f,a)∈(IK)2

azf(F )af,a .

Further, if af,a �= 0, then the pair (f,a) satisfies f |Cond(F ) and the condition (I)

in Definition 2.3.

By the definition of elliptic units, there exists such a map a. We define the ideal

a(η;a) of OK by the product of the all ideals a satisfying af,a �= 0 for some f. We

put

κ(η, a;n) :=
∏
f,a

κf,a(F,N ;n)
af,a
χ ∈ F×/pN .

Note that for any character χ ∈ Δ̂ satisfying χ �= ω, we have

ηχ = κ(η, a;OK)χ ∈ (F×/pN )χ.

DEFINITION 3.12

Let qn= q
∏r

i=1 li ∈ SN , where q, l1, . . . , lr are distinct prime ideals of OK prime

to a(η;a). For any ideal d of OK dividing n, we define the element κ̃{d,q}(η) ∈
(F×/pN )⊗ (

⊗
l|dHl) by

κ̃{d,q}(η, a) := κ(η, a;qd)⊗
(⊗

l|d
σl

)
.

Fix a character χ ∈ Δ̂. Let qn ∈ SN be an ideal of OK satisfying (n,a(η;a)) = 1

and assume qn is well ordered. Assume that for each prime number l dividing

n, an element wl ∈RF,N,χ ⊗Hl is given. Then, we have an element w̄l ∈RF,N,χ

such that wl = w̄l ⊗ σl. Note that we will take {wl}l|n explicitly later, but here,
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we take arbitrary one. For any ideal d of OK dividing n, we define

wd :=
⊗
l|d

wl ∈RF,N,χ ⊗
(⊗

l|d
Hl

)
.

We also define the element w̄d ∈Rm,N,χ by wd = w̄d ⊗ (
⊗

l|d σl).

DEFINITION 3.13

We write the group law of (F×/pN )χ ⊗ (
⊗

l|dHl) multiplicatively. We define the

element x̃n,q(η) by

x̃n,q(η, a) :=
∏
d|n

wd ⊗ κ̃{n/d,q}(η, a)χ ∈ (F×/pN )χ ⊗
(⊗

l|d
Hl

)
.

Note that we naturally identify the RF,N,χ-module (F×/pN )χ ⊗ (
⊗

l|dHl) with

RF,N,χ ⊗
(⊗

l|d
Hl

)
⊗RF,N,χ

(F×/pN )χ.

The element xn,q(η, a) ∈ (F×/pN )χ is defined by x̃n,q(η, a) = xn,q(η, a)⊗(
⊗

l|n σl).

The following formulas follows from Proposition 3.9 straightforward.

PROPOSITION 3.14 (CF. [Ku, PROPOSITION 5.2])

Let η ∈ F be an elliptic unit as above, and let nq ∈ SN (F ). Fix a map a : (IK)2 −→
RF,N,χ satisfying the condition (R) for η. We assume that nq is well ordered.

(1) If λ is a prime ideal of K not dividing n, the λ-component of [xn,q]F,N,χ

is 0. In particular, if s is a prime ideal of OK not dividing nq, we have[
xn,q(η, a)

]s
F,N,χ

= 0.

(2) Let l be a prime ideal of OK dividing n. Then, we have[
xn,q(η, a)

]l
F,N,χ

= φ̄l
F,N,χ

(
xn/l,q(η, a)

)
.

(3) Let l be a prime ideal of OK not dividing n. Then, we have

φ̄l
F,N,χ

(
xn/l,q(η, a)

)
= w̄lφ̄

l
F,N,χ

(
xn/l,q(η, a)

)
.

3.4.
Recall that we fix a family of embeddings {lK : K ↪→ Kl}l:prime satisfying the

condition (A) for families of embeddings as follows.

(A) For any subfield L⊂K which is a finite Galois extension field of K and

any element σ ∈ Gal(L/K), there exist infinitely many prime numbers l such

that l is unramified in L/K and (lL,L/K) = σ, where lL is the prime ideal of L

corresponding to the embedding lL|L.

Note that the existence of such a family of embeddings follows from the Cheb-

otarev density theorem. Here, we prove the following proposition, which plays

key roles in induction arguments in the proof of our main theorem.
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PROPOSITION 3.15

Let F be an intermediate field of K∞/K satisfying K ⊆f F , and let χ ∈ Δ̂ be a

nontrivial character. If K0 contains μp, we assume χ �= ω and χ �= χ−1ω. Let q

be a nonzero prime ideal of OK , and let n ∈ SN (F ) be an ideal of OK prime to

q. Assume that n has a factorization n=
∏r

i=1 li into the product of prime ideals.

Suppose the following are given:

• a finite RF,N,χ-submodule W of (F×/pN )χ;

• an RF,N,χ-homomorphism λ : W −→RF,N,χ.

Then, there exist infinitely many q′ ∈ SN (F (n)) which have the following proper-

ties:

(1) the class of q′F in AF,χ coincides with that of qF ;

(2) there exists an element z ∈ (F× ⊗Zp)χ such that

(z)F,χ = (q′F − qF )χ ∈ (IF ⊗Zp)χ,

and

φli
F,N,χ(z) = 0

for each i= 1, . . . , r;

(3) the group W is contained in the kernel of [·]q
′

F,N,χ, and

λ(x) = φ̄q
′

F,N,χ(x)

for any x ∈W .

Proof

Let F be an intermediate field of K∞/K satisfying K ⊆f F . For a finite place v

of F , we denote the valuation ring of the completion Fv of F at v by OFv and

put

O1
Fv

:= {x | x≡ 1 mod mv},

where mv is the maximal ideal of OFv . We denote the residue field of F at v by

k(v).

In the first step of the proof, by using global class field theory, we construct

a finite Galois extension L1 and an element σ ∈Gal(L1/F ), which are related to

conditions (1) and (2) in the assertion of Proposition 3.15. Let F{n} be the maxi-

mal abelian p-extension of F unramified outside n. Note that F{n} is Galois over

K. By global class field theory, we have the Gal(F/K)-equivariant isomorphism

(
∏

v|nF
×
v /O1

Fv
)× (
⊕

u�nF
×
u /O×

Fu
)

the image of F× ⊗Zp
�−→Gal

(
F{n}/F

)
,

where u runs all finite places outside n. We naturally regard Gal(F{n}/F )χ as a

quotient group of Gal(F{n}/F ). Let F{n}χ be the intermediate field of F{n}/F
satisfying Gal(F{n}χ/F ) = Gal(F{n}/F )χ.
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Recall that we fix a decomposition

ClK =

k⊕
i=1

Zāi

of ClK into a direct sum of cyclic subgroups. We denote the order of āi in ClK
by ni and fix a generator ai of the principal ideal ani

i . We put

F ′ := F (μpN , a
1/pN

1 , . . . , a
1/pN

k ).

Let L1 := F{n}χ · F ′ · F (n) be the composite field.

We put Δ′ := Gal(K0(μp)/K). By the natural surjection Δ′ −→→ Δ, we

regard χ as a character of Δ′. Note that the subgroup Δ′ of Gal(F/K) acts on

Gal(F{n}χ/F ) (resp., Gal(F (μpN ) ·F (n)/F ) and Gal(F ′/F (μpN ))) via χ (resp.,

trivial character and ω). Since we assume that χ is nontrivial and χ �= ω, we have

F{n}χ ∩ F ′ · F (n) = F.

Then, we take the element σ ∈Gal(L1/F
′ · F (n)) such that

σ|F{n}χ
=
(
qF{n}χ

, F{n}χ/F
)
.

In the second step, by using Kummer theory, we construct a finite Galois

extension L2/F
′ and an element λ′ ∈Gal(L2/F

′), which are related to condition

(3) in the assertion of Proposition 3.15. We define a projection pr : RF,N −→
Z/pNZ by ∑

g∈Gal(F/K)

agg �−→ a1,

where ag ∈ Z/pNZ for all g ∈Gal(F/K), and 1 ∈Gal(F/K) is the identity ele-

ment. We define λ′ ∈Hom(W,μpN ) by

x �−→ (ζpN )pr◦λ(x)

for all x ∈ W . (Recall that ζpN is a primitive pN th root of unity defined in

Section 3.1.) We use the following well-known lemma.

LEMMA 3.16

Let P : HomRF,N,χ
(W,RF,N,χ) −→ Hom(W,Z/pNZ) be the map given by f �−→

pr ◦ f . Then, P is bijective.

Indeed, the inverse of P is given by

h �−→
(
x �−→

∑
g∈Gal(F/K)

h(g−1x)g
)
∈HomRF,N,χ

(W,RF,N,χ),

for h ∈Hom(W,Z/pNZ). The group Δ′ acts on W via χ, so we have

HomRF,N
(W,RF,N ) = HomRF,N,χ

(W,RF,N,χ).
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Note that Δ′ acts on H1(F (μpN )/F,μpN ) and H0(F ′/F (μpN ),H1(F ′, μpN ))

via the trivial character. Since we assume that χ is nontrivial, we have

H1(F ′/F,μpN )χ = 0.

So, the natural homomorphism

W ⊂ (F×/pN )χ −→ (F ′×/pN )χ

is injective. Then, we regard W as a subgroup of (F ′×/pN )χ. Let L2 be the

extension field of F ′ generated by all pN th roots of elements of F× whose image

in F×/pN is contained in W . We consider the Kummer pairing

Gal(L2/F
′)×W −→ μpN .

This pairing induces a Gal(F (μpN )/K)-equivariant isomorphism

Hom(W,μpN )�Gal(L2/F
′).

(Note that L2 is Galois over K since W is stable by the action of Gal(F ′/K).)

We regard λ′ as an element of Gal(L2/F
′) by this isomorphism.

In the final step, we complete the proof. By the isomorphism Hom(W,μpN )�
Gal(L2/F

′), the group Δ′ acts on Gal(L2/F
′)) via χ−1ω. Comparing the action

of Δ, we obtain

L1 ∩L2 = F ′.

We put the composite field L̃ := L1L2. By condition (A), there exist infinitely

many prime numbers q′ such that{
(q′L1

,L1/K) = σ ∈Gal(L1/F
′),

(q′L2
,L2/K) = λ′−1 ∈Gal(L1/F

′).

Let us prove that each of such q′ unramified in L̃/K satisfies conditions (1)–(3)

of Proposition 3.15.

First, we show that q′ satisfies conditions (1) and (2). Let α= (αv)v ∈A×
F be

an idele whose q′F -component is a prime element of Fq′
F
, and other components

are 1. Let β = (βv)v ∈ A×
F be an element whose qF -component is a uniformizer

of FqF
, and other components are 1. By definition, ideles α and β have the same

image in( (∏v|nF
×
v /O1

Fv
)× (
⊕

u�nF
×
u /O×

Fu
)

the image of F× ⊗Zp

)
χ
�Gal

(
F{n}χ/F

)
.

This implies that there exist z ∈ (F× ⊗Zp)χ such that

α= zβ in
(((∏

v|n
F×
v /O1

Fv

)
×
(⊕

u�n

F×
u /O×

Fu

))
⊗Zp

)
χ
.

Hence, we have (z)Fχ = (q′F − qF )χ, and φli
F,N,χ(z) = 0 for any i= 1, . . . , r. The

prime ideal q′ of OK satisfies conditions (1) and (2).

Next, we shall prove that q′ satisfies condition (3). Since q′ is unramified in

L̃/K, the groupW is contained in the kernel of [·]q
′

F,N,χ. Since (q
′
L2
,L2/K) = λ′−1,
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for any x ∈W , we have

(ζpN )pr◦λ(x) = λ′(x) = (x1/pN

)1−Frq′ ,

where Frq′ ∈ Gal(L̃/K) is the arithmetic Frobenius at q′, and x1/pN ∈ L2 is a

pN th root of x. Then, we obtain

(ζpN )pr◦λ(x) ≡ x(1−N(q′))/pN

(mod q′L2
).

Let π be a uniformizer of M := F (q′)q′
F (q′) . By the definition of σq′ , we have

πσq′−1 ≡ ζpN (mod mM ),

where mM is the maximal ideal of M . Recall that W is contained in the kernel

of [·]q
′

F,N,χ. By [Se, Chapter XIV, Proposition 6], we have

(ζpN )pr◦φ̄
q′
F,N,χ(x) ≡ πφ(x)−1 ≡ x(1−N(q′))/pN

(mod mM )

for all x ∈W , where we put

φ(x) := σ
pr◦φ̄q′

F,N,χ(x)

q′ .

Hence, we obtain

(ζpN )pr◦λ(x) = (ζpN )pr◦φ̄
q′
F,N,χ(x)

for all x ∈ W . By Lemma 3.16, we have λ = φ̄q
′

F,N,χ|W . Therefore q′ satisfies

condition (3) of Proposition 3.15, and the proof is complete. �

4. Analogue of Kurihara’s ideals for elliptic units

Let χ ∈ Δ̂ be an arbitrary character. In this section, we define ideals Cell
i,χ of Λχ

for each i ∈ Z≥0 by using elliptic units and prove Theorem 1.1 for i= 0.

4.1.
Let F be a finite extension field of K0 contained in K∞, and let N be a positive

integer. Let n ∈ SN (F ) with a decomposition n =
∏r

i=1 li, where li ∈ Sprime
N (F )

for each i. We put ε(n) := r. Namely, ε(n) is the number of prime divisors of

n. We denote by Sw.o.
N (F ) the set of all elements in n ∈ SN (F ) which are well

ordered. We define the RF,N,χ-submodule WF,N,χ(n) of (F×/pN )χ to be the

RF,N,χ-submodule generated by the image of{
κ(η, a;n) | η ∈CF ,

(
n,a(η;a)

)
= 1 for some a satisfying (R) in Section 3.3

}
∪ (O×

F )tors.

We put

HWF,N,χ(n) := HomRF,N,χ

(
WF,N,χ(n),RF,N,χ

)
.

DEFINITION 4.1

We define Cell
i,F,N,χ to be the ideal of RF,N,χ generated by the union of the images
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of all f ∈HWF,N,χ(n), where n runs through all elements of Sw.o.
N (F ) satisfying

ε(n)≤ r.

REMARK 4.2

Note that RF,N,χ is injective as an RF,N,χ-module, since the RF1,N,χ-module

HomZ(RFi,N,χ,Q/Z) is injective and free of rank 1. In particular, for any n ∈
Sw.o.
N (F ), the restriction map

HomRF,N,χ

(
(F×

2 /pN )χ,RF,N,χ

)
−→HWF,N,χ(n)

is surjective. This implies that the ideal Cell
F,N,χ coincides with the ideal of RF,N,χ

generated by ⋃
n

⋃
f

f
(
WF,N,χ(n)

)
,

where n runs through all elements of Sw.o.
N (F ) satisfying ε(n) ≤ r, and f runs

through all elements of HomRF,N,χ
((F×

2 /pN )χ,RF,N,χ).

In order to define the ideal Cell
i,χ of Λχ, we need the following lemma.

LEMMA 4.3

Let N1,N2 be integers satisfying N1 ≤ N2, and let F1 ⊆ F2 be finite extension

fields of K0 contained in K∞. Then, the image of Cell
i,F2,N2,χ

by the natural pro-

jection RF2,N2,χ −→RF1,N1,χ is contained in Cell
i,F1,N1,χ

.

Proof

It is sufficient to show our lemma in the following two cases: (1) F2 = F1,

(2) N1 =N2. The first case is clear, so let us prove our lemma in the second case.

Assume N1 = N2 = N . We put the natural surjection pr : RF2,N,χ −→ RF1,N,χ.

By Lemma 2.4, we have

NF2/F1

(
WF2,N,χ(n)

)
⊆WF1,N,χ(n)

for any n ∈ SN (F2). So, it is sufficient to show the following claim.

CLAIM 4.4

For any homomorphism

f2 ∈HomRF2,N,χ

(
(F×

2 /pN )χ,RF2,N,χ

)
,

there exists a homomorphism

f1 ∈HomRF1,N

(
(F×

1 /pN )χ,RF1,N,χ

)
which makes the diagram
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(F×
2 /pn)χ

f2

NF1,F2

RF2,N,χ

pr

(F×
1 /pn)χ

f1
RF1,N,χ

commute.

For each elements σ ∈Gal(F1/K), we fix a lift σ̄ ∈Gal(F2/K) of σ. We have

(RF2,N )Gal(F2/F1) =
{ ∑
σ∈Gal(F1/K)

aσσ̄n
∣∣∣ aσ ∈ Z/pN

}
,

where n is an element of RF2,N defined by

n :=
∑

τ∈Gal(F2/F1)

τ.

Wedefine the isomorphismϕ : (RF2,N,χ)
Gal(F2/F1) �−→RF1,N,χ ofRF1,N,χ-modules

by ∑
σ∈Gal(F1/K)

aσσ̄n �−→
∑

σ∈Gal(F1/K)

aσσ.

Let ι : (F×
1 /pN )χ −→ (F×

2 /pN )χ be the natural homomorphism. We have

pr ◦ f2 = ϕ ◦ f2 ◦ ι ◦NF2/F1
.

Since RF1,N,χ is an injective RF1,N,χ-module, there exists a homomorphism

f1 : (F
×
1 /pN )χ −→RF1,N,χ

satisfying

f1|NF2/F1
(F×

1 /pN ) = ϕ ◦ f2 ◦ ι.

By the definition of f1, we obtain the commutative diagram

(F×
2 /pn)χ

f2

NF1,F2

RF2,N,χ

pr

(F×
1 /pn)χ

f1
RF1,N,χ

as desired. This completes the proof of the claim, and our lemma follows from

the claim immediately. �

Now, we can define the ideals Cell
i,χ of Λχ, which are analogues of Kurihara’s

higher Stickelberger ideals Θ
(δ),χ
i,K∞

in [Ku] for elliptic units.
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DEFINITION 4.5

We define the ith elliptic ideal Cell
i,χ to be the ideal of Λχ by Cell

i,χ := lim
←−

Cell
i,F,N,χ,

where the projective limit is taken with respect to the system of the natural

homomorphisms Ci,F2,N2,χ −→ Cell
i,F1,N1,χ

for integers N1,N2 satisfying N2 ≥N1

and intermediate fields F1, F2 of K∞/K satisfying K0 ⊆f F1 ⊆f F2 ⊆K∞.

4.2.
Recall that the Iwasawa main conjecture says

charΛχ(X∞,χ) = charΛχ(E∞,χ/C∞,χ).

In order to obtain the i= 0 part of our main theorem (Theorem 1.1), we compare

Cell
0,χ with charΛχ(E∞,χ/C∞,χ).

PROPOSITION 4.6

Let χ ∈Δ be an arbitrary character. Then, we have the following:

(1) IE,χJE,χIC,χ charΛχ(E∞,χ/C∞,χ)⊆ Cell
0,χ;

(2) if the character χ is nontrivial on DΔ,p for any p ∈ T , we have

Cell
0,χ ⊆ charΛχ(E∞,χ/C∞,χ).

Proof

We fix a generator θχ ∈ Λχ with charΛχ(E∞,χ/C∞,χ). First, let us prove that C
ell
0,χ

contains IE,χJE,χIC,χ charΛχ(E∞,χ/C∞,χ). It is sufficient to show that

θ̄χĪE,χJ̄E,χĪC,χ ⊆ Cell
0,F,N,χ

for any intermediate field F of K∞/K satisfying K ⊆f F and for any positive

integer N , where θ̄χ (resp., ĪE,χ, J̄E,χ, and ĪC,χ) is the image of θχ (resp., IE,χ,
JE,χ, and IC,χ) in RF,N,χ.

Fix a homomorphism ϕ : E∞,χ −→Λχ with pseudo-null cokernel, and let

δC ∈ I(C∞,χ;ϕ)⊆ IC,χ
be an arbitrary element. Note that by the definition of I(C∞,χ;ϕ), we have δCθχ ∈
ϕ(C∞,χ). We fix elements δI ∈ IE and δJ ∈ JE . Let F be an intermediate field

of K∞/K satisfying K ⊆f F , and let N be a positive integer. Then, there exists

a homomorphism ψ : (EF /pN )χ −→RF,N,χ which makes the diagram

(C∞,χ)F /p
N (E∞,χ)F /p

N
δIδJ ϕ̄F,N

RF,N,χ

WF,N,χ(OK) (EF /pN )χ

ψ

commute, where ϕ̄F,N : (E∞,χ)F /p
N −→ RF,N,χ is a homomorphism of RF,N,χ-

modules induced by ϕ. This implies

δIδJ δCθχ ∈ δIδJ ϕ̄F,N

(
(C∞,χ)F /p

N
)
= ψ
(
WF,N,χ(OK)

)
⊆ Cell

i,F,N,χ.



872 Tatsuya Ohshita

Vary a homomorphism ϕ and elements δI ∈ IE and δJ ∈ JE , and we have

θ̄χĪE,χJ̄E,χĪC,χ ⊆ Cell
0,F,N,χ.

Therefore, taking the projective limit, we obtain

Cell
0,F,N,χ ⊇ IE,χJE,χIC,χ charΛχ(E∞,χ/C∞,χ).

Next, let us prove that Cell
0,χ is contained in charΛχ(E∞,χ/C∞,χ). Here, we

assume that the character χ is nontrivial on DΔ,p for any p ∈ T . Under this

assumption, Lemma 2.4 implies that the natural homomorhism C∞,χ −→ CF,χ

is surjective. (Recall that CF is the Zp[F/K]-submodule of EF generated by the

image of the group CF of elliptic units.)

Fix a homomorphism ϕ : E∞,χ −→ Λχ of pseudo-null cokernel. Let δ ∈Kerϕ

and δ′ ∈ Cokerϕ. Let F be an intermediate field of K∞/K satisfying K ⊆f F ,

and let N be a positive integer. Let ϕ̄F,N : (E∞,χ)F /p
N −→ RF,N,χ be a homo-

morphism induced by ϕ. Let f : WF,N,χ(OK)−→RF,N,χ be an arbitrary RF,N,χ-

homomorphism. Since RF,N,χ is an injective RF,N,χ-module, there exists a homo-

morphism f̃ : (EF /pN )χ −→ RF,N,χ whose restriction to WF,N,χ(OK) coincides

with f . Then, we have an element a ∈RF,N,χ which makes the diagram

C∞,χ (E∞,χ)F /p
N

δδ′ϕ̄F,N

RF,N,χ

×a

(CF /p
N )χ (EF /pN )χ

f̃
RF,N,χ

WF,N,χ(OK)

f

commute, where ×a is the homomorphism multiplying a. This diagram implies

that

f
(
WF,N,χ(OK)

)
= δδ′aϕ̄F,N

(
(CF /p

N )χ
)
⊆ aδδ′IC θ̄χRF,N,χ ⊆ θ̄χRF,N,χ.

Then, we have Cell
0,F,N,χ ⊆ θ̄χRF,N,χ. Taking the projective limit, we obtain

C0,χ ⊆ θχΛχ = charΛχ(E∞,χ/C∞,χ).

This completes the proof. �

Theorem 1.1 for i= 0 follows from Proposition 4.6 and the Iwasawa main con-

jecture.

COROLLARY 4.7 (THEOREM 1.1 FOR I = 0, PRECISE FORM)

Let χ ∈ Δ̂ be any character. Assume one of the following:

• p splits completely in K/Q;

• p does not split in K/Q, and for the element p ∈ T , the character χ is

nontrivial on DΔ,p.
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Then, the following hold:

(1) IE,χJE,χIC,χFittΛχ,0(Xχ)⊆ Cell
0,χ;

(2) if the character χ is nontrivial on DΔ,p for any p ∈ T , we have

Cell
0,χ ⊆ FittΛχ,0(Xχ).

REMARK 4.8

By Proposition 2.1, there exists a height-two ideal J0,χ of Λχ satisfying

IE,χJE,χIC,χ = J0,χI3
T,χ.

So, Corollary 4.7 implies Theorem 1.1 for i= 0.

5. Proof of the main theorem for the one-variable case

Here, we prove our main theorem for Γ� Zp. First, we recall the notation and

state the precise assertion of our main theorem. In this section, we assume that

Γ := Gal(K∞/K0)� Zp. The Λ-module X is defined by the projective limit X :=

lim
←−

AF with respect to norm maps, where F runs through all finite extension fields

of K contained in K∞, and AF is the p-Sylow subgroup of the ideal class group

of F . The Λ-module X ′ is defined by X ′ :=X/Xfin, where Xfin is the maximal

pseudo-null Λ-submodule of X .

We denote the ideal of Λχ generated by ith power of elements of IA (resp.,

JA) by IA,i (resp., JA,i) for each i ∈ Zi≥0. The precise assertion of our main

theorem for the one-variable case is as follows.

THEOREM 5.1

Let χ ∈ Δ̂ be a nontrivial character. If K0 contains μp, we assume χ �= ω and

χ �= χ−1ω. Assume one of the following:

• p splits completely in K/Q;

• p does not split in K/Q, and for the element p ∈ T , the character χ is

nontrivial on Dp.

Further, we assume that Γ� Zp. Then, the following hold:

(1) if the character χ is nontrivial on DΔ,p for any p ∈ T , we have

Cell
0,χ ⊆ FittΛχ,0(X

′
χ);

(2) IE,χJE,χIC,χIA,iJA,iFittΛχ,i(X
′
χ)⊆ Cell

i,χ for any i ∈ Z≥0.

We have already proved Theorem 1.1 for i= 0 in the last section. Here, we prove

the second assertion for i≥ 1.

5.1.
We spend this subsection on the setting of notations. Fix a nontrivial character

χ ∈ Δ̂. we assume that χ �= χ−1ω and χ �= ω if K0 contains μp. Since X ′
χ has no
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nontrivial pseudo-null submodules, we have an exact sequence

0−→ Λh
χ

f−→ Λh
χ

g−→X ′
χ −→ 0,(2)

by Lemma 2.11. Let M be the matrix corresponding to f with respect to the

standard basis (ei)
h
i=1 of Λh

χ. Let {m1, . . . ,mh} and {n1, . . . , nh} be permutations

of {1, . . . , h}. For any integer i satisfying 1≤ i≤ h− 1, consider the matrix Mi

which is obtained from M by eliminating the njth rows (j = 1, . . . , i) and the

mkth columns (k = 1, . . . , i). If detMi = 0, it is trivial that detMi ∈ Cell
i,χ. So

we assume that detMi �= 0. If necessary, we permute {m1, . . . ,mi} and assume

detMr �= 0 for all integers r satisfying 0≤ r ≤ i.

We fix a finite extension field F of K0 contained in K∞, and we put the group

ΓF := Gal(K∞/F ) and the integer NF := max{#AF ,#(X ′
χ)F }. (Recall that we

denote the ΓF -coinvariants of a Λ-module M by MF .) We fix a positive integer

N > NF , and we put, for simplicity, R := Zp[Gal(F/K)]χ and RN := RF,N,χ =

Z/pN [Gal(F/K)]χ. Let AF,fin,χ be the image of Xfin,χ in AF,χ by the natural

homomorphism.

Let εI ∈ IA,χ and εJ ∈ JA,χ be any nonzero elements. Then, we can consider

a homomorphism

ιεI ,εJ : AF,χ/AF,fin,χ −→ (X ′
χ)F ; [a]χ �−→ εIb

of R-modules, where b ∈ (X ′
χ)F is an element whose image by the natural homo-

morphism (X ′
χ)F −→ AF,χ/AF,fin,χ is εJ [a]χ. Note that the cokernel of ιεI ,εJ

is annihilated by IA,χJA,χ. From the exact sequence (2), we obtain the exact

sequence,

0−→Rh f̄−→Rh ḡ−→ (X ′
χ)F −→ 0,

by taking the ΓF -coinvariants. Note that the injectivity of the homomorphism

f̄ follows from the finiteness of (X ′
χ)F . This injectivity become a key of our

argument.

The image of er in Rh is denoted by e
(F )
i . We define c1 := g(e1), . . . ,ch :=

g(eh), and we define c
(F )
r to be the image of cr in (X ′

χ)F , namely, c
(F )
r := ḡ(e

(F )
r ).

We take sufficiently large F , and we may assume c
(F )
r �= c

(F )
s if r �= s. We fix a

lift c̃
(F )
r ∈AF,χ of c

(F )
r and define

Pr :=
{
l ∈ Sprime

N (F )
∣∣ ιεI ,εJ ([lF ]χ)= c̃(F )

r

}
,

where [lF ]χ is the class of lF in AF,χ. We define

P :=

i⋃
r=1

Pr,

and we define PF to be the set of all the prime ideals of F above P . Let J be

the subgroup of IF generated by PF , and let the R-submodule F of (F× ⊗Zp)χ
be the inverse image of (J ⊗ Zp)χ by the homomorphism (·)F : (F× ⊗ Zp)χ −→
(IF ⊗Zp)χ. We define a surjective homomorphism

α : (J ⊗Zp)χ −→Rh
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by lF �→ er for each l ∈ Pr and r with 1≤ r ≤ h. We define

αr := prr ◦ α : (J ⊗Zp)χ
α−→Rh prr−−→R

to be the composite of α and the rth projection prr.

We define the homomorphism β : F −→Rh to make the diagram

F
(·)F,χ

β

(J ⊗Zp)χ
can

εIεJα

AF,χ/AF,fin,χ

ιεI ,εJ

0 Rh f̄
Rh ḡ

annΛχ(X
′
χ) 0

(3)

commute, where can is induced by the canonical homomorphism

(4) J −→A′
F,χ =AF,χ/AF,fin,χ.

Note that since the second row of the diagram is exact, β is well defined. We

define

βr := prr ◦ β : F
β−→Rh prr−−→R

to be the composite of β and the rth projection prr.

We consider the diagram (3) by taking (−
⊗

Z/pNZ). We use the following

lemmas.

LEMMA 5.2

The canonical homomorphism

F/pN −→ (F×/pN )χ

is injective.

Proof

Let x be an element in the kernel of the homomorphism F/pN −→ (F×/pN )χ,

and let x̃ be a lift of x in F . Then, there exists y ∈ (F×⊗Zp)χ such that x̃= yp
N

.

Since (x̃)F,χ ∈ (J ⊗Zp)χ and (IF ⊗Zp)/(J ⊗Zp) is a torsion-free Zp-module, we

have (y)F,χ ∈ (J ⊗Zp)χ. Hence, y ∈ F , and we obtain x= 1. �

The RN -module F/pN is regarded as a submodule of (F×/pN )χ by Lemma 5.2.

We regard (F×/pN )χ as a Λχ-module. For an element x ∈ (F×/pN )χ and

δ ∈ Λχ, we write xδ for the scalar multiple of x by δ.

LEMMA 5.3

Let [·]F,N,χ be the homomorphism

(F×/pN )χ −→ (IF /pN )χ

induced by (·)F : F× −→IF . Let x be an element of (F×/pN )χ satisfying [x]F,N,χ ∈
(J/pN )χ. Then, x

δ is contained in F/pN ⊂ (F×/pN )χ for any δ ∈ annΛχ(Xfin,χ).
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Proof

We consider the natural exact sequence

0−→P −→IK −→AF −→ 0,

where P is defined by P = F×/O×
F . By the snake lemma for the commutative

diagram

0 P

×pN

IF

×pN

AF

×pN

0

0 P IF AF 0

we obtain the exact sequence

0−→AF −→P/pN
[·]N−−→IF /pN −→AF −→ 0.

(Recall that we assume pN >#AF .) Let BF be the image of J in AF , and let

P0 =F/O×
F . Then, we have the exact sequence

0−→P0 −→ J −→BF −→ 0,

and by a similar argument as above, we obtain the exact sequence

0−→BF −→P0/p
N [·]N,0−−−→ J/pN −→BF −→ 0.

Now, we obtain two commutative diagrams

0 BF

f1

P0/p
N

[·]N,0

f2

Im[·]N,0

f3

0

0 AF P/pN
[·]N

Im[·]N 0

(5)

0 Im[·]N,0

f3

J/pN

f4

BF

f1

0

0 Im[·]N IF /pN AF 0

(6)

whose all rows are exact, and all vertical arrows are injective.

Let x be an element of P/pN satisfying [x]N ∈ Imf4 = J/pN , and let δ be

an arbitrary element of annΛχ(Xfin,χ). Let us show that xδ belongs to Imf2 =

P0/p
N . By the snake lemma for the diagram (6), we have an exact sequence

0 =Kerf1 −→Cokerf3 −→Cokerf4,

so we obtain [x]N ∈ Imf3. The exact sequence

Cokerf1 −→Cokerf2 −→Cokerf3 −→ 0

follows from the diagram (5). Then, we obtain xδ ∈ Imf2 = P0/p
N since the

surjection (4) implies that δ annihilates Cokerf1. �
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The following corollary follows as a by-product of the proof of Lemma 5.3.

COROLLARY 5.4

The kernel of the homomorphism

[·]F,χ : F/pN −→ J/pN

is finite.

Let n be an element of SN (F ) whose prime divisors are in P . We define P n
F to

be the set of all elements of P dividing n. We define Jn to be the subgroup of J

generated by P n
F , and the submodule Fn,N of F/pN is the inverse image of Jn

by the restriction of [·]F,N,χ to F/pN . Note that Fn,N is a finite RN -submodule

of (F×/pN )χ by Corollary 5.4. We have obtained the following commutative

diagram:

Fn,N

[·]F,χ

β

(Jn/p
N )χ

εIεJα

Rh
N

f̄
Rh

N

5.2.
First, we take a prime ideal q of OK by the following way. For each integer r with

1≤ r ≤ h, we fix a prime number qr ∈ Pnr . We put Q :=
∏h

r=1 qr ∈ SN (F ). We

fix a homomorphism ϕ : E∞,χ −→ Λχ with pseudo-null cokernel. By the Iwasawa

main conjecture, we have

ϕ(C∞,χ) = (detM0) · I(C∞,χ;ϕ).

Then, we fix elements δC ∈ I(C∞,χ;ϕ) and η := (ηF ′)F ′ ∈ C∞ satisfying ϕ(ηχ) =

δC detM0. Let a be a map

(IK)2 −→RF,N,χ; (f,a) �−→ af,a

satisfying the condition (R) in Section 3.3 for the elliptic unit η := ηF ∈CF . We

assume χ �= ω, so we have

ηχ = κ(η, a;OK)χ =
∏

(f,a)∈(IK)2

azf(F )
af,a
χ ∈ (F×/pN )χ.

We fix nonzero elements δI ∈ IE and δJ ∈ JE . Then, as in the proof of

Proposition 4.6, there exists a homomorphism ψ : (EF /pN )χ−→RN which makes

the diagram

(C∞,χ)F /p
N (E∞,χ)F /p

N
δIδJ ϕ̄F,N

RN

WF,N,χ(OK) (EF /pN )χ

ψ
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commute, where ϕ̄F,N : (E∞,χ)F /p
N
χ −→RN is a homomorphism of RN -modules

induced by ϕ. By Proposition 3.15, we can take a prime ideal q ∈ Sprime
N (F ) prime

to a(η;a) satisfying the following two conditions:

(q1) The class of qF in AF,χ coincides with the class of q1F .

(q2) For all x ∈ (EF /pN )χ, we have

φ̄q(x) = ψ(x).

(Note that the natural homomorphism (EF /pN )χ −→ (F×/pN )χ is injective, and

we regard (EF /pN )χ as an RN -submodule of (F×/pN )χ by this homomorphism.)

In particular, we have

φ̄q(ηχ) = ψ(ηχ) = δIδJ ϕ̄F,N (ηχ)

= δIδJ δC detM0.

Next, we shall take n and {wl}l|n. We fix an element δfin ∈ annΛχ(Xfin). First,

we consider the homomorphism

βm1 : FQq,N −→RN .

Applying Proposition 3.15, we can take l2 ∈ Sprime
N (F (Qq)) prime to a(ηF ;a)

such that l2 ∈ Pn2 , l �= q2, and

φ̄l2(x) = βm1(x)

for all x ∈ FQq,N . We put n1 :=OK .

In the case i= 1, we put n := n1 =OK , and

xn,q = xOK ,q := κ(η, a).

It follows from Proposition 3.14(1) and Lemma 5.3 that xδfin
OK ,q is an element of

FQq,N .

Suppose i ≥ 2. To take n and {wl}l|n, we choose prime ideals lr for each

r with 2 ≤ r ≤ i + 1 by induction on r as follows. Let r be an integer sat-

isfying 2 < r ≤ i + 1, and suppose that we have chosen distinct prime ideals

ls ∈ Sprime
N (F (Qqns−1)) for each s with 2≤ s≤ r−1. We put nr−1 :=

∏r−1
s=2 ls. We

consider the homomorphism βm1 : FQqnr−1,N −→RN . Applying Proposition 3.15,

we can take lr ∈ S ′
N (F (Qqnr−1)) prime to a(η;a) satisfying the following condi-

tions:

(x1) lr ∈ Pnr , and lr �= qr;

(x2) there exists br ∈ (F× ⊗ Zp)χ such that (br)F,χ = (lr,F − qr,F )χ and

φ̄ls(br) = 0 for any s with 2≤ s < r;

(x3) φ̄lr (x) = βmr−1(x) for any x ∈ FQqnr−1,N .

Thus, we have taken l2, . . . , li+1, and we put n := ni =
∏i

r=2 lr ∈ SN (F ). Note

that the ideal n of OK satisfies (n,a(η;a)) = 1. For each r with 2≤ r ≤ i, we put

wlr :=−φlr (br) ∈RN ⊗Hlr , and we obtain

xn,q := xn,q(η, a) ∈ (F×/pN )χ
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(see Definition 3.13, Section 3.3). It follows from Proposition 3.14(1) and

Lemma 5.3 that xδfin
n,q is an element of FQn,N . Note that qn is well ordered.

LEMMA 5.5 (CF. [Ku, LEMMA 10.2])

Suppose i≥ 2. Then,

(1) βmr−1(x
δfin
n,q ) = 0 for all r with 2≤ r ≤ i;

(2) αj([xn,q]F,χ) = 0 for any j �= n1, . . . , ni.

Proof

Assertion (2) of this lemma follows straightforwardly from Proposition 3.14(1).

Let us prove assertion (1). We have α([br]F,χ) = 0 for any r satisfying 2≤ r ≤ i

since (br)F,χ = (lr,F − qr,F )χ. By definition of β, we have β(br) = 0. We put

yr = xn,q

i∏
s=r

b
φ̄ls (xn/ls,q)
s ;

then we have β(xδfin
n,q ) = β(yδfinr ). So, let us show βmr−1(y

δ
r) = 0 for any r satisfying

2 ≤ r ≤ i. Note that by Proposition 3.14(2), we have [yr]F,N,χ ∈ JQnr−1 . Then,

we have yδfinr ∈ FQnr−1,N . Therefore, we obtain

δfinφ̄
lr (yr) = βmr−1(y

δfin
r )

by the condition (x3). Since φ̄lr (bs) = 0 for all integers s satisfying r+ 1≤ s≤ i

by the condition (x2), we have

φ̄lr (yr) = φ̄lr(xn,qb
φ̄lr (xn/lr,q)
r ).

By Proposition 3.14(3), we have

φ̄lr(xn,qb
φ̄lr (xn/lr,q)
r ) = φ̄lr(xn,q) + φ̄lr(b

φ̄lr (xn/lr,q)
r )

=wlr φ̄
lr(xn/lr,q) + φ̄lr (xn/lr,q)φ̄

lr(br)

=−φ̄lr (br)φ̄
lr(xn/lr,q) + φ̄lr (xn/lr,q)φ̄

lr(br)

= 0.

Hence, we obtain βmr−1(x
δfin
n,q ) = δfinφ̄

lr(yr) = 0, and this completes the proof. �

As in the fourth step of the proof of [Ku, Theorem 2.1] in Section 10.2, we obtain

the following proposition from Lemma 5.5.

PROPOSITION 5.6

We have the following equalities on elements of RN,χ:

(1) δfin(detM) · φ̄l2(xOK ,q) =±δfinδIδJ εIεJ · (detM1) · ϕ̄F,N (η);

(2) for any integer r satisfying 2≤ r ≤ i, we have



880 Tatsuya Ohshita

δfin(detMr−1) · φ̄lr+1(xnr,q) =±δfinεIεJ · (detMr) · φ̄lr (xnr−1,q).

The signs ± in (1) and (2) do not depend on F .

Proof

For simplicity, we put

x(r) := β(xδfin
nr,q) ∈Rh

N and y(r) := εIεJα(xδfin
nr,q) ∈Rh

N

for each integer r satisfying 1 ≤ r ≤ i, and we regard them as column vectors.

Then, we have y(r) =Mx(r) in Rh
N .

First, we prove assertion (1) of this proposition. Note that xδfin
1,q is an element

of Fq,N . By Proposition 3.9(2) and condition (q2), we have

y(1) = δfinεIεJ ·
[
κOK ,q(η)χ

]q
F,N,χ

e(F )
n1

= δfinεIεJ · φ̄q(ηχ)e
(F )
n1

= δfinεIεJ · δIδJ · ϕ̄F,N (ηχ)e
(F )
n1

.

Let M̃ be the matrix of cofactors ofM . Multiplying the both sides of y(1) =Mx(1)

by M̃ , and comparing the m1th components, we obtain

(−1)n1+m1δfinδIδJ εIεJ (detM1) · ϕ̄F,N (ηF,χ) = (detM)βm1(x
δfin
OK ,q).

By condition (x3) for l2, we have βm1(x
δfin
OK ,q) = δmrmφ̄

l2(xOK ,q). Then, assertion

(1) follows.

Next, we assume i ≥ 2 and show the second assertion. This can be proved

similarly to the proof of assertion (1). It is sufficient to prove the assertion when

r = i. We write x = x(i) and y = y(i). Let x′ ∈ Rh−i+1
N be the vector obtained

from x by eliminating the mjth rows for j = 1, . . . , i− 1, and let y′ be the vector

obtained from y by eliminating the nkth rows for k = 1, . . . , i−1. Since the mrth

rows of x are 0 for all r with 1≤ r ≤ i−1 by Lemma 5.5(1), we have y′ =Mi−1x
′.

We assume that the m′
ith component of x′ corresponds to the mith component

of x, and the n′
ith component of y′ corresponds to the nith component of y. By

Lemma 5.5(2) and Proposition 3.14(2), we have

y′ = δfinεIεJ · φ̄li(xni−1,q)e
′(F )
n′
i
,

where (e′
(F )
i )h−i+1

i=1 denotes the standard basis of Rh−i+1
N . Let M̃i−1 be the matrix

of cofactors of Mi−1. Multiplying the both sides of y′ =Mi−1x
′ by M̃i−1, and

comparing the m′
ith components, we obtain

(−1)n
′
i+m′

i(detMi)δfinεIεJ · φ̄li(xni−1,q) = (detMi−1) · βmi(x
δfin
n,q ).

By condition (x3) for li+1, and since xδfin
n,q is an element of FQqn,N , we have

βmi(x
δfin
n,q ) = δfinφ̄

li+1(xn,q).

This completes the proof. �



Higher Fitting ideals and elliptic units 881

5.3.
Now we prove the main theorem.

Proof of Theorem 5.1

Here, we vary F and N . So, the element

φ̄lr+1(xnr,q) ∈RN =RF,N,χ = (Z/pN )
[
Gal(F/K)

]
χ

defined in Section 5.2 is denoted by φ̄lr+1(xnr,q)F,N .

Let D be a set of pairs (F,N) of an intermediate field F of K∞/K0 finite

over K0 and a positive integer N satisfying the following property.

(D) For any intermediate field F of K∞/K0 satisfying K0 ⊆f F , there exists

a positive integer NF such that (F,N) ∈D for any integer N satisfying N ≥NF .

Let b be an element of Λχ, and let bF,N be the image of b for any intermediate

field F of K∞/K satisfying K ⊆f F and any positive integer N . We say that a

sequence (aF,N )(F,N)∈D converges to b= (bF,N ) ∈ Λ if and only if there exists a

subset D′ of D satisfying condition (D) such that aF,N = bF,N for any (F,N) ∈
D′. If a sequence (aF,N )(F,N)∈D converges to b, we write lim(aF,N ) := b.

By induction on r, we shall prove that

lim
(
φ̄lr+1(xnr,q)F,N

)
F,N

=±δIδJ δC(εIεJ )r detMr ∈ Λχ.

First, we consider the equality

δfin detM · φ̄l2(xOK ,q) =±δfinδIδJ εIεJ detM1 · ϕ̄F,N (ηχ).

Since the right-hand side converges to

±δfinδIδJ δCεIεJ detM1 · detM

and δfin detM is a nonzero element, we obtain

lim
(
φ̄l2(xOK ,q)F,N

)
F,N

=±δIδJ δCεIεJ detM1.

(Note that the sign ± does not depend on F ; see Proposition 5.6.)

Next, we assume

lim
(
φ̄lr(xnr−1,q)F,N

)
F,N

=±δIδJ δC(εIεJ )r−1 detMr−1.

Then, the right-hand side of

δfin detMr−1 · φ̄lr+1(xnr,q) =±δfinεIεJ detMr · φ̄lr(xnr−1,q)

converges to

±δfinδIδJ δC(εIεJ )r detMr · detMr−1.

Since we take detMr−1 �= 0, we obtain

lim
(
φ̄lr+1(xnr,q)F,N

)
F,N

=±δIδJ δC(εIεJ )r detMr.

By induction, in particular, we conclude that (φ̄li+1(xn,q)F,N ) converges to

±δIδJ δC(εIεJ )i detMi.
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Since (xn,q)F,N is contained in an RN -submodule of (F×/pN )χ generated by⋃
d|qn

WF,N,χ(d)

with ε(qn) = i, we have φ̄li+1(xn,q)F,N ∈ Ci,F,Nχ for any finite extension field F

of K contained in K∞ and any positive integer N . Hence we have

δIδJ δC(εIεJ )i detMi ∈ Ci,χ,

and this completes the proof of Theorem 5.1. �

6. Higher Fitting ideals for two-variable cases

Here, let us consider the two-variable case. We assume Γ� Z2
p. Note that for any

prime ideal p of OK above p, the decomposition subgroup Dp in G has finite

index by the global class field theory. So, the height of the ideal IT,χ of Λχ is

at least two if Γ� Z2
p. In the two-variable case, our main theorem is stated only

in the following form, which is weaker than the results in the one-variable case,

Theorem 5.1.

THEOREM 6.1

Let χ ∈ Δ̂ be a nontrivial character. If K0 contains μp, we assume χ �= ω and

χ �= χ−1ω. Assume Γ� Z2
p, and assume that we have one of the following:

• p splits completely in K/Q;

• p does not split in K/Q, and for the element p ∈ T , the character χ is

nontrivial on DΔ,p.

Then, the following holds:

(1) If the character χ is nontrivial on DΔ,p for any p ∈ T , we have

Cell
0,χ ⊆ FittΛχ,0(X

′
χ).

(2) For each i ∈ Z≥0, there exists a height-two ideal Ji,χ of Λχ satisfying

Ji,χFittΛχ,i(X
′
χ)⊆ Cell

i,χ.

Note that in the two-variable cases, we cannot give bounds for error factors

Ji,χI3
T,χ. Indeed, as we will see later, our result for the two-variable cases fol-

low from the standard Euler system arguments for the proof of Iwasawa main

conjecture, so it is not so new or strong.

Proof of Theorem 6.1

The first assertion is proved in Corollary 4.7, so it is sufficient to prove the second

assertion. Note that Xχ is a finitely generated torsion Λχ-module, so we have a

pseudo-isomorphism

ιX :

r⊕
i=1

Λχ/fiΛχ −→Xχ,
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where r is a positive integer, and the fi’s are nonzero elements of Λχ satisfying

fi | fi+1 for all i. By Example 2.10, it is sufficient to show that for any integer i

satisfying 0≤ i≤ r− 1, there exists a height-two ideal Ii of Λχ satisfying(r−i∏
j=1

fj

)
· Ii ⊆ Cell

i,χ.

First, we set up the notation. Let ei ∈
⊕r

i=1Λχ/fiΛχ be the element 1 in

the ith summand Λχ/fi. For an intermediate field F of K∞/K0 which is finite

over K0 and for any i ∈ Z satisfying 0≤ i≤ r, we denote the image of ei by the

composite map

r⊕
i=1

Λχ/fiΛχ
ιX−−→Xχ −→AF,χ

by ci,F ∈AF,χ.

Fix a homomorphism ϕ : E∞,χ −→ Λχ of Λχ-modules with pseudo-null cok-

ernel. Let θχ ∈ Λχ be a generator of charΛχ(E∞,χ/C∞,χ). We put

B := (I0,χ ·Coker ιX)∩
(
Aχ · I(C∞,χ;ϕ)

)
,

where I0 and A are as in Proposition 2.1.

We denote the set of all continuous homomorphisms from Γ to the discrete

group μp∞ by X. Note that any element ρ ∈ X uniquely extends to a continu-

ous ring homomorphism ρ : Λχ −→Oχ[μ
∞
p ]. For any f ∈ Λχ, we define a subset

X(f)⊆X and an ideal I(f) by

X(f) =
{
ρ ∈X

∣∣ ρ(f) = 0
}
,

I(f) =
{
g ∈ Λχ

∣∣ ρ(g) = 0 for any ρ ∈X(f)
}
.

If I ⊆ Λχ is a principal ideal generated by f , we define I(I) := I(f). Note that

if Γ� Z2
p, then the ideal

I
(
char(Xχ)

)
= I(θχ)

is height-two ideal of Λχ (see [Ru1, Proposition 7.11]). We define a height-two

ideal B′ of Λχ by

B′ := B ·
(
IT,χ ∩ I(θχ)

)
and fix an element δ ∈ B′. Note that B′ ⊆ I(C∞,χ;ϕ), so there exists an element

η = {ηF }F ∈ C∞,χ satisfying ϕ(ηχ) = δθχ.

Let F be an intermediate field ofK∞/K0 satisfyingK0 ⊆f F . We put RF,χ :=

Zp[Gal(F/K)]χ. Let N be any positive integer satisfying

pNδRF,χ ⊆
(
[F :K0]#AF,χδ

4rθχ
)
RF,χ.

Let a be a map

(IK)2 = {nonzero ideals of OK}2 −→RF,N,χ

satisfying the condition (R) in Section 3.3 for the elliptic unit η := ηF ∈CF .
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By the argument in the proof of [Ru1, Theorem 8.3], let us construct a

sequence {li}r+1
i=1 of distinct prime ideals OK prime to a(η, a) satisfying the fol-

lowing properties:

(S1) li ∈ Sprime
N (F (ni−1)) for any i with 1≤ i≤ r+1, where we put n0 :=OK

and ni :=
∏i

j=1 lj for i≥ 1;

(S2) the image of the ideal class of li in AF,χ coincides with ci,F for any i

with 1≤ i≤ r;

(S3) φ̄l1
F,N,χ(κ(η, a;OK)) = δ4θχ;

(S4) for any i with 2≤ i≤ r+ 1, we have

fr−i+2φ̄
li
F,N,χ

(
κ(η, a;ni−1)

)
= φ̄

li−1

F,N,χ

(
κ(η, a;ni−2)

)
.

First, we choose l1. By Proposition 2.1, we have δ ∈ IE and δ2 ∈ JE . So, as in

the proof of Proposition 4.6, there exists a homomorphism ψδ : (EF /pN )χ−→RN

which makes the diagram

(C∞,χ)F /p
N (E∞,χ)F /p

N
χ

δ3ϕ̄F,N,χ

RN

WF,N,χ(OK) (EF /pN )χ

ψδ

commute. By Proposition 3.15, we can take the prime ideal l1 of OK prime to

a(ηF , a) satisfying the following:

• the prime l1 satisfies (S1) and (S2);

• φ̄l1
F,N,χ|(EF /pN )χ = ψδ .

Note that the second condition on l1 implies condition (S3).

Next we choose li for i ≥ 2 inductively on i. Let i be an integer satisfying

1 < i ≤ r + 1, and suppose that we have chosen distinct prime ideals {lj}i−1
j=1

satisfying the conditions (S1)–(S4). Now let us find a prime ideal li. Let Wi−1

be the RF,N,χ-submodule of (F×/pN )χ generated by κ(η, a;ni−1)χ. By [Ru1,

Lemma 8.2], there exists a homomorphism ψi−1 : Wi−1 −→RF,N,χ satisfying

fr−i+2ψi−1 = δ4[·]lF,N,χ : Wi−1 −→RF,N,χ.

(For details, see Lemma 8.2 and the arguments in the proof of [Ru1, Theo-

rem 8.3].) By Proposition 3.15, we can find the prime ideal li of OK prime to

a(η, a) · ni−1 satisfying the following:

• the prime li satisfies (S1);

• the prime li satisfies (S2) if i≤ r;

• φ̄l1
F,N,χ|Wi−1 = ψi−1.

By the second condition on li and Proposition 3.9, we have
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fr−i+2φ̄
li
F,N,χ

(
κ(η, a;ni−1)

)
= fr−i+2ψ̄i−1

(
κ(η, a;ni−1)

)
=
[
κ(η, a;ni−1)

]li−1

F,N,χ

= φ̄
li−1

F,N,χ

(
κ(η, a;ni−2)

)
.

So, the sequence {lj}i−1
j=1 satisfies the condition (S4). By induction on i, we obtain

the sequence {lj}r+1
j=1 satisfying the conditions (S1)–(S4).

Now, we shall vary F and N and prove Theorem 6.1 by using the arguments

in Section 5.3. For any intermediate field F of K∞/K0 satisfying K0 ⊆f F , for

any positive integer N , and for any integer i satisfying 1≤ i≤ r+1, the element

φ̄li
(
κ(η, a;ni−1)

)
∈RF,N,χ

is denoted by φ̄li(κ(η, a;ni−1))F,N . By induction on i, we shall prove

lim
(
φ̄li
(
κ(η, a;ni−1)

)
F,N

)
F,N

= δ4
r−i+1∏
j=1

fj ∈ Λχ

in the sense of Section 5.3.

First, by condition (S3), the sequence (φ̄l1(κ(η, a;n0))F,N )F,N converges to

the element

δ4θχ = δ4
r∏

j=1

fj ∈ Λχ.

Next, let i be an integer with 1≤ i≤ r, and assume

lim
(
φ̄li
(
κ(η, a;ni−1)

)
F,N

)
F,N

= δ4
r−i+1∏
j=1

fj ∈ Λχ.

Then, condition (S4) implies

lim
(
fr−i+1 · φ̄li+1

(
κ(η, a;ni)

)
F,N

)
F,N

= δ4 ·
r−i+1∏
j=1

fj .

Since fi ∈ Λχ is a nonzero element, we obtain

lim φ̄li+1
(
κ(η, a;ni)

)
F,N

)F,N = δ4 ·
r−i∏
j=1

fj .

Therefore, by induction on i, we conclude that

lim
(
φ̄li
(
κ(η, a;ni−1)

)
F,N

)
F,N

= δ4
r−i+1∏
j=1

fj ∈ Λχ

for any i satisfying 1≤ i≤ r, and

lim
(
φ̄lr+1

(
κ(η, a;nr)

)
F,N

)
F,N

= δ4 ∈ Λχ.
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This implies (r−i∏
j=1

fj

)
· B′′ ⊆ Cell

i,χ

for any i ∈ Z≥0, where B′′ is the ideal of Λχ generated by {δ4 | δ ∈ B′}. Note that
B′′ is a height-two ideal of Λχ, so this completes the proof. �
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