On higher Fitting ideals of Iwasawa
modules of ideal class groups over
imaginary quadratic fields and Euler
systems of elliptic units

Tatsuya Ohshita

Abstract Kurihara described all higher Fitting ideals of the minus part of Iwasawa
modules of ideal class groups over totally real fields by using Stickelberger elements and
Euler systems of “Gauss sums.” In this paper, we obtain some partial results for elliptic
units which are analogues of his result. By using Kolyvagin derivative classes of Euler

systems of elliptic units, we construct some ideals € flic of Iwasawa algebras and prove

that they give “upper bounds” of higher Fitting ideals of one- and two-variable Iwasawa
modules of ideal class groups over imaginary quadratic fields.

1. Introduction

Let K be an imaginary quadratic field. We fix an algebraic closure Q = K of K.
In this paper, an algebraic number field is a finite extension of Q in this fixed
algebraic closure Q. For each algebraic number field F, we denote the ring of
integers of F' by Op. If F5/F} is a finite extension of fields, we write Fy Cy F5.

We fix an abelian extension Ky of K and put A := Gal(Ky/K). Let p be
a prime number which does not divide #(O[X(O)tors#A. We consider an abelian
extension Ko, /K which contains Ky. We assume that I':= Gal(K,/K)p) is iso-
morphic to Z, or Zi as a topological group. We put G := Gal(K/K)=A xT.
We define A :=7Z,[[F]].

Put A := Hom(A,@; ). For any character x € A, we denote by O, the Z,[A]-
algebra, which is a Zy-algebra isomorphic to Z,[Im x| with action of A via x.
The A-algebra A, is defined by O,[[I']]. Note that for any x € A, the algebra Ay
is flat over A since we assume that p does not divide #A. For any A-module M,
we put M, := M ®p Ay

Let X be a projective limit of the systems

{NF’/F: Apr —)AF|K0 ngng/CKOC},
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where Ar is the p-Sylow subgroup of the ideal class group of F' and Ng» /g is the
norm map. Note that X is a finitely generated torsion A-module. Let X5, be the
largest pseudo-null A-submodule of X, and let X’ := X/Xg,. In our paper, we
study the higher Fitting ideals {Fitta, ;(X})}iez., for each x € A by using the
Euler systems of elliptic units. In Section 4, we will define ideals Cflic of A, for
all ¢ € Z>(, which are analogues of Kurihara’s higher Stickelberger ideals in [Ku]
for elliptic units, and we will prove that they give “upper bounds” (admitting
some “error factors”) of Fitty ;(X}) (cf. Theorems 1.1, 5.1).

To state our main theorem, we define some ideals which appear in “error
factors” of our main theorem. For each place v of K, we denote the decomposition
group of v in A (resp., G) by Da, (resp., D,). For any subgroup H of G, let
Z(H) be the ideal in A generated by {y — 1|~y € H}. Let T be the set of places
of K above p which ramify in Ko /K. We define Zy :=[[,c Z(Dy).

Let n be a positive integer. For each ring R, we denote the group of all
nth roots of unity by u,(R). For simplicity, we write j, := p,,(K) and jipe :=
Upns1 Hpm (K). We put Z,, = annp (Hye (Koo)).-

The following is a rough form of the main theorem of our paper. (For the
precise version, see Theorem 5.1.)

THEOREM 1.1

Let x € A be a nontrivial character. If Ko contains p,, we assume x # w and
X # x " 'w, where

w: A — Gal(K (up)/K) — L)
is the Teichmiiller character. Assume one of the following:

- p splits completely in K/Q;

- p does not split (i.e., p ramifies or inerts) in K/Q, and for the element
p €T, the character x is nontrivial on Da ,. (Note that in this case, T is a
singleton.)

Then, the following hold:
(1) If the character x is nontrivial on Da ,, for any p € T, then we have
¢ql C Fitta, (X))
(2) For any i € Z>q, there exists a height-two ideal J; 5, of Ay, satisfying
Jin Ty, Fitta (X)) C €.
Moreover, if I' ~Z,, and Iy =1, = Ay, we have
anna (Xﬁn) FittAX’Z‘ (X;() - Q?};

for any i € Z>o.
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REMARK 1.2

Here, we remark briefly on the structure of X, in the case of x = 1. For the two-
variable cases, the generalized Greenberg conjecture predicts that the Iwasawa
module X of the Zf,-extension of any imaginary quadratic field Ky = K is pseudo-
null (for details, see [Gr, Conjecture 3.5]). In [Mi], Minardi proved the generalized
Greenberg conjecture for imaginary quadratic fields when p does not divide the
class number of K. So, the assertion of our main theorem holds trivially in this
case.

For the one-variable cases, the following results are known.

(1) Assume that p does not split in K/Q. Then, we have X = X’ =0 for any
Z,-extensions Ko, of Ky =K (a special case of Iwasawa’s result in [Iw]).

(2) Assume that p splits in K/Q and the class number of K is prime to p.
Then for all but finitely many Z,-extensions Ko, of Ky = K, the A-module X’ =
X1 associated to K /K is free of rank 1 as a Z,-module (see [Oz, Theorem 1]).

Assume that p splits in K/Q and that p does not divide the class number of K.
Then, the result (2) by Ozaki and the Iwasawa main conjecture imply that we
have

Fitty:(X') =

charp (£ /Cs0) ifi=0,
A if ¢ >0,

for all but finitely many Z,-extensions Ko, of Ko = K, where £ (resp., Cx)
is the A-module of global units (resp., the A-module of elliptic units) defined in
Section 2.1 (resp., Section 2.2) of this paper.

In this paper, we prove Theorem 1.1 by using Kurihara’s Euler system argument
in [Ku] for elliptic units. Kurihara’s methods are not “usual” Euler system argu-
ments which appear in the proof of Iwasawa main conjectures in [Rul] or [Ru3].
Note that usual Euler system arguments work well for Iwasawa modules with a
diagonal relation matrix, but Kurihara’s arguments work for Iwasawa modules
with a square relation matrix. (Recall that when we prove the Iwasawa main
conjecture for X, instead of X, we study an Iwasawa module with a diagonal
relation matrix which is pseudo-isomorphic to X.) Though we also treat noncy-
clotomic extensions in our paper, our Euler system arguments work completely
parallel to those of [Ku] and [Oh], which treat only cyclotomic Z,-extensions.

REMARK 1.3

In the one-variable case, we can give some bounds of error factors Ji,xz%,x of
Theorem 1.1 (cf. Theorem 5.1, which is the precise form of our main theorem
for the one-variable case). Kurihara’s Euler system arguments work well only
for Iwasawa modules whose relation matrices can be written by square matrices.
Under the assumption I' > Z,,, the relation of an Iwasawa module M is written
by a square matrix if (and only if) M has no nontrivial submodule whose order
is finite (cf. Lemma 2.11). So, in the one-variable case, we can apply Kurihara’s
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argument directly to X', and we obtain some bounds of error factors Ji7XI%,X
when we observe Kurihara’s Euler system argument carefully. In the two-variable
case, we cannot bound error factors since we have no “canonical” modification
of X to Iwasawa modules with square relation matrix. (In the two-variable case,
X’ may not have a relation matrix written by a square matrix.) Indeed, as we
will see later in Section 6, our result for the two-variable case follows from the
standard Euler system argument for the proof of the Iwasawa main conjecture
without using Kurihara’s methods, and it is not so new or strong.

In particular, when I' ~ Z,, and X, has no nontrivial pseudo-null submodule,
then our theorem give upper bounds of higher Fitting ideals directly.

COROLLARY 1.4
Let x € A be a nontrivial character. If Ky contains p,, we assume X #w and
X # X ‘w. Assume one of the following:

- p splits completely in K/Q;
- p does not split in K/Q, and for the element p € T, the character x is
nontrivial on Da p.

Further, we assume I' ~Z,, It =1, = A, and Xan, = 0. Then, we have the
following.

(1) If the character x is nontrivial on Da , for any p € T, then we have

Fitta, o(Xy) =€f.

(2) We have Fitty, ;(Xy) C Ql‘fl; for any i € Z>o.
REMARK 1.5
Here, we give an example satisfying X, = X;(. (Note that we usually have X, #
X}, for many cases.) When X is the Iwasawa module associated to the anticyclo-
tomic Z,-extension K, of a imaginary quadratic field Ky = K, [Fu, Theorem 4.2]
gives a sufficient condition to make X a cyclic A-module satisfying X = X'. For
instance, let K, be the anticyclotomic Zs-extension of K = Q(1/—461), and let
v be a topological generator of I' = Gal(K . /K); then we have
X=X'~A/(y*=1)A.
This implies
S—_1A ifi=0,
Fitty ;(X) = Fitta ;(X') = O’ -1
A if > 0.

For details of this example, see the examples below Theorem 2 and [Fu, Theo-
rem 4.2]. Note that we cannot apply Corollary 1.4 in this case since the corollary
requires that x be a nontrivial character.
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REMARK 1.6

Recall the fact that the Iwasawa main conjecture for Iwasawa modules X of
ideal class groups implies the Iwasawa main conjecture for Iwasawa modules of
Selmer groups of elliptic curves over Q with complex multiplication (see [Rul,
Section 12]). But this fact follows from multiplicativity of characteristic ideals
for exact sequences of Iwasawa modules. Since higher Fitting ideals do not have
multiplicativity, our main theorem does not imply any bounds of higher Fit-
ting ideals of Iwasawa modules of Selmer groups of elliptic curves with complex
multiplication.

Notation
In this paper, we use the following notation.

Let L/K be a finite Galois extension of algebraic number fields. Let A be
a prime ideal of K, and let A\’ be a prime ideal of L above A. We denote the
completion of K at A by K, and the completion of L at X by Ly. If X is
unramified in L/K, the arithmetic Frobenius at A’ is denoted by (N,L/K) €
Gal(L/K).

We fix a family of embeddings {lzz: K < K{}i.prime satisfying a technical
condition (A) as follows.

(A) For any subfield L C K which is a finite Galois extension of K and
any element o € Gal(L/K), there exist infinitely many prime ideals | of O
such that | is unramified in L/K and (I, L/K) =0, where I}, is the prime ideal
corresponding to the embedding Iz,

The existence of a family satisfying the condition (A) is easily proved by using
the Chebotarev density theorem.

Let [ be a prime ideal [ of Ok . For an algebraic number field L, let [}, be the
prime ideal of Of, corresponding to the embedding l|r,. Then, if Ly D L, is an
extension of algebraic number fields containing K, we have [y, | (1, .

For an abelian group M and a positive integer n, we write M/n in place of
M/nM for simplicity. In particular, for the multiplicative group K* of a field
K, we write K* /pY in place of KX/(KX)PN.

Let F be a finite extension field of Ky contained in K.,. We put I'p :=
Gal(Kw/F). For a A-module M, we denote the I'p-invariants (resp.,
I p-coinvariants) of M by M7 (resp., Mr, or Mp).

Let R be a commutative ring. For an R-module M, we define anng(M) to
be the annihilator of M. Namely,

annp(M):={a € R|am =0 for any m € M}.

The maximal torsion submodule of M is denoted by Mioys.

2. Preliminaries

In this section, we review some preliminary results. We use the same notation
as in Section 1. This section consists of three subsections. In Section 2.1, we
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recall some Iwasawa theoretical results on unit groups and ideal class groups.
In Section 2.2, we recall the definition and some properties of elliptic units. In
Section 2.3, we recall the notion of higher Fitting ideals.

2.1.

In this subsection, we recall some preliminary results on Iwasawa theory which
are used in our paper. For each finite extension field F' of K contained in K,
we put

Ep = O;i ® Zp,
and we define a A-module £, to be the projective limit of the system
{NF’/F: 5F/ —>5F|K() ng/ gf F/CKOO}

where Npv,p are the norm maps.

Let F' be a number field satisfying Ko C¢ F' C K. Recall that we put I'p :=
Gal(K/F), and for a A-module M, we denote the I p-coinvariants of M by
Mp. We consider the natural homomorphisms

et (Eso)p — Ep,
Tar: (Xoo)p — Ap.
We define the ideals Z¢, Je, Za, and J4 of A by
Te :zﬂannA(Keng,F% Je ::r}annA(Coker7r‘g’p)7
F F

Ta ::ﬂannA(KerﬁAF), Ta ::ﬂannA(CokerwAF),
F F

where F' runs all intermediate fields of Ko /K satisfying Ko Cs F.

Recall that we denote the set of places of K above p which ramify in K., /K
by T', and we define Zp := HpET Z(Dy), where we denote the decomposition group
of pin G by D, and let Z(D,) be the ideal in A generated by {y—1|~v € D,}.

PROPOSITION 2.1
(1) There exists a height two ideal A satisfying

IrACTe and ~ T2AC Je.

Further, if we assume that I' ~Z,, and let x € A be a character satisfying Ir , =
Ay, then we have

Tex =Ny and annp, (Xfin,x) € Je.x

(see [Rul, Theorem 7.6]).
(2) We have

IrTo CTa and  Z(G) C Ja,
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where Z(G) is the augmentation ideal, which is an ideal of A generated by {v—1]|
v€G}, and

A if I ~7Zp,
I() = . 9

(G) ifI~Z;.

In particular, if we assume that I' ~Z,, then the natural homomorphism
TAF: (Xoo)F —)AF
is an isomorphism for any number field F satisfying Ko Cy F' C K, and any
character x € A satisfying Ip = Ay. So, if I' ~Zy, and if Iy, = A, then we
have
Tax=Tax=NM

(see [Rul, Theorem 5.4]).

2.2,

Here, we briefly recall the definition and some properties of elliptic units. We fix
an embedding coz: K — C and regard K as a subfield of C by coz. Let F be
an intermediate field of C/K, and let E be an elliptic curve over F' with complex
multiplication by Ok. In this paper, we always identify Ok with End(E) by
unique isomorphism O — End(E) such that the composite map

Ok — End(E) — Endp (Lie(E)) = F

coincides with the inclusion map. For each ideal a of O, we denote the a-torsion
subgroup scheme of E by F.

PROPOSITION 2.2

Let a be an ideal of Ok which is prime to 6. Then, there exists a unique element
W0r of O(E\ (E)* satisfying the following conditions:

(i) The divisor of 40p is N(a)-(0) — . E.
(ii) For any integer b prime to a, we have
Ny (abE|E\,E) = oFE,

where Npj: O(E \pa E)* — O(E \ E)* is the norm map associated to the
multiplication map

[b]: B\ poE — E\ .

We use the notion of “CM-pair” in [Ka, Section 15]. Let F be an intermediate
field of C/K, and let f be an ideal of Op which makes the natural homomorphism
O — (Ok /§)* be injective. (For instance, if f is a proper ideal of Ok prime
to 6, then this injectivity holds.) We call a pair (E,«) a CM-pair of modulus f
over F'if F is an elliptic curve over F' with complex multiplication by O, and
« is a torsion point of E(F) satisfying annep, (o) =f. A CM-pair (E,«a) over F
is isomorphic to a CM-pair (E’,a’) if and only if there exists an isomorphism
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1: E =5 F' satisfying ¢(a) = t(’). Note that since we assume that the natu-
ral homomorphism O — (O /f)* is injective, if a CM-pair (E,«) over F is
isomorphic to a CM-pair (E’, '), then there exists only one isomorphism from
(E,a) to (E',a).

Let n be a nonzero ideal of Ok. Then, we denote the ray class field of K of
the modulus n by K(n). In particular, K(Og) is the Hilbert class field Hx of
K. The following facts are well known.

- There exists a CM-pair of modulus § over K(f) which is isomorphic to
(C/§,1 mod f) over C. This CM-pair of modulus f over K(f) is unique up to
unique isomorphism. We call this CM-pair of modulus f over K (f) the canonical
CM-pair over K (f) and denote it by (El o}

can?’ Can)'
- Let F be an intermediate field of C/K, and let (E,«) be a CM-pair of
modulus f over F. Then, there exists a unique embedding ¢: K(f) — F such
that the base change (:*E]

T on ) of the canonical CM-pair is isomorphic to
(E, ).

*o
L Qgan

DEFINITION 2.3
Let a and § be ideals of Ok satisfying the following condition (I).

(I) The ideal a is prime to 6f, and the ideal f makes the natural homomor-
phism O — (Ok /)™ injective.
Then, we define

a®f = a%j.m,(ozian) € K(f)*.
The following properties of 4z;’s are well known.

PROPOSITION 2.4 ([dS, CHAPTER Il, PROPOSITION 2.5, NORM COMPATIBILITY])
Let a and § be ideals of Ok satisfying the condition (I).

(1) If § is a power of one prime ideal of Ok, we have qz; € Oy [1/f]*.
Otherwise, we have qz; € OIX<(f)'
(2) Let I be a prime ideal of Ok not dividing a. Then, we have

-1
Fry if L is prime to f,

1—

z

Ny i (a2s1) = o
(Fn/K () \a=fl o7 if | divides f,

where Fri € Gal(K (f)/K) is the arithmetic Frobenius element at 1.

Here, we define elliptic units.

DEFINITION 2.5

Let F' be a finite abelian extension field of K which contains Hg. We denote the
conductor of F/K by Cond(F).
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(1) Let n be an ideal of Ok prime to a. We define

aZf(F7 n) = NF(f)/F(qun)

For simplicity, we put q2;(F) := q25(F, Ok).
(2) We denote by Dp the Z|Gal(F/K)]-submodule of F'* generated by

{azf(F)

a and f are ideals of Ok satisfying (0%)
the condition (I) and § | Cond(F) FJtors:

We denote the intersection Dp N Of by Cp, and we call Cg the group of elliptic
units of F.

(3) We denote by Cr the Z,[Gal(F/K)]-submodule of £ generated by the
image of Cr, and we define a A-module C., to be the projective limit of the
system

{NF’/F:CF’ —>CF|K0 ngng/CKoo}

where Np/,p are the norm maps.

Here, we recall the statement of the Iwasawa main conjecture proved in [Rul]
and [Ru2] briefly. Let x € A be an arbitrary character. It is well-known fact that
Eoox/Coo,x 1s a torsion A,-module. Assume one of the following:

- p splits completely in K/Q;
- p does not split in K/Q, and for the element p € T, the character y is
nontrivial on Dy,.

Then, we have
chary, (Xoo,y) = charp (Eoo,x/Coo,x)-

(See [Rul, Theorem 4.1] and [Ru2, Theorem 2].)
Here, we recall some results on the A-modules £, and Cq.

PROPOSITION 2.6 ([Ru1, PROPOSITION 7.7, COROLLARY 7.8])
Recall we put T), = annp (p,0 (K))-

(1) Let (Exo)tors (Tesp., (Coo)tors) be the mazimal torsion A-submodule of Ex
(resp., Cx ). Then, we have

lim iy if Koo = Koljiye),
(goo)tors = (Coo)tors = P P

0 otherwise.
(2) We have
. T =2, Ko Kolpye),
Coo = { ATy if Koo = o),
Z(G)Z, if T ~72.
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In this paper, we fix a generator 0, € A, of the ideal charp (Eoc,y/Coo,x)- For
each homomorphism ¢: s — A, of Ay-modules, we write

I(COO,x§ p) = 0;190(6007X)'

Note that it follows from Proposition 2.6(1) that Z(C ; ®) is an integral ideal
of A,.

DEFINITION 2.7

We define Z¢ , to be the ideal of A, generated by UwI(COO’X; ©), where ¢ runs
through all homomorphism ¢: £, — Ay of Ay-modules.

Note that Z¢ , is an ideal of A, of height at least two. The following corollary
follows from Proposition 2.6.

COROLLARY 2.8
Assume I’ ~7Z,. Let x € A be a character satisfying I, = Ay. Then, there exists
a Ay -homomorphism ¢: E  — Ay salisfying

¢(Coo,x) = chary (Eoo,x /Coo,x)-

In particular, e = Ay if T,y = Ay

2.3.
Here, we recall the notion of higher Fitting ideals.

DEFINITION 2.9 (HIGHER FITTING IDEALS; [No, SECTION 3.1])
Let R be a commutative ring, and M be a finitely presented R-module. Let

R LR M0
be an exact sequence of R-modules. For each i > 0, we define the ith Fitting
ideal Fittg ;(M) to be the ideal of R generated by all (n —4) X (n —¢) minors of
the matrix corresponding to f. Note that when 0 <i<n and m <n —1i (resp.,
i >n), we define Fittg (M) :=0 (resp., Fittr;(M) := R). Definition of these
ideals depends only on M, and does not depend on the choice of the above exact
sequence. We have the ascending filtration

Fitt (M) C Fittg, 1 (M) C -+ C Fittg, (M) = Fitt gy (M) =--- = R.

We denote the smallest number of generators of an R-module M by ng(M). If
Fittg (M) # R, then ng(M) > n+ 1. Note that when R is a local ring or a PID,
we have ng(M) =i+ 1 if and only if Fittg ;(M) # R and Fittg ;41 (M) = R.

EXAMPLE 2.10
Let O be the valuation ring of some finite extension field of Q,. Suppose R is
a ring isomorphic to O[[T]] or O[[S,T]], and M is a finitely generated torsion
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R-module. (For example, R = A, for some x € 3) Assume that
M ~ @ R/fiR
i=1

and that f; divides f;11 for 1 <i <n —1. Then, for each ¢ with ¢ > 0, there exists
an ideal I; of height at least two in R such that

(HZ: fu) i ifi<n,
I; ifi>n

Fittg,; (M) = {

(cf. [Ku, Lemma 9.2]). This implies that the family {Fittg;(M)};>0 of Fitting
ideals of M determines the pseudo-isomorphism class of M. Note that for two
pseudo-isomorphic R-modules which have no nontrivial pseudo-null submodules,
their higher Fitting ideals may be different. For example, we consider the follow-
ing. Let f,g € R be distinguished polynomial which are prime to each other, and
put My :=R/(fg) and Ms:= R/(f)® R/(g). Then, R-modules M; and M, have
no nontrivial pseudo-null submodules, and they are pseudo-isomorphic, but their
first Fitting ideals are different: Fittg1(M;1) = R and Fittg1(M2) = (f,9) # R.
Note that higher Fitting ideals do not determine the isomorphism classes of
R-modules. See [Ku, Remark 9.4].

We need the following lemma in the proof of Theorem 1.1.

LEMMA 2.11 (SEE, E.G., [Ku, THEOREM 9.1])

Let O be the valuation ring of some finite extension field of Q,, R := O[[T]]
and M a finitely generated torsion R-module. Suppose M contains no nontrivial
pseudo-null R-submodule. Then, there exists an exact sequence

0—R'"—R"—M—0
for some integer n >0, and we have

Fittg,o(M) = charg(M).

3. Euler systems of elliptic units and Kurihara’s element

In this section, we set up some notions related to Euler systems of elliptic units,
and prove some preliminary propositions to prove our main theorem. This section
contains four subsections. In the first section, we recall the notion of Kolyvagin
derivative classes. In the second subsection, we define two homomorphisms which
play key roles in Euler system arguments. In the third subsection, we define ele-
ments oy q(n,a) € (F* /p"),, which are analogues of Kurihara’s elements defined
in [Ku, Section 7] for elliptic units. We define them by using the Kolyvagin deriv-
ative classes of the Euler system of elliptic units. In the final subsection, we prove
an important proposition for induction arguments in the proof of our main result.
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3.1.
Here, we recall the definition of the Kolyvagin derivative classes ks (F, N;n) of
the Euler system of elliptic units (cf., e.g., [Rul]).

We denote the ideal class group of K by Clg, and we fix a decomposition

k
Clx =P Za;
=1

of Clg into a direct sum of cyclic subgroups, where @; is the ideal class of a
prime ideal a; of Ok for each 7. We denote the order of a; in Clg by n;, and fix
a generator a; of the principal ideal a;".

Let F be a finite extension field of K. For an integer N > 1, let SX™°(F)
be the set of all prime ideals [ of O satisfying the following conditions:

(1) [ does not divide #0%;
N N
(2) [ splits completely in F(upzv,a}/p ,...,a,lc/p )/ K.
We denote the set of all square-free integral ideals n of O such that all prime
divisors of n belong to SY'"™°(F) by Sy(F). For simplicity, we put Sk :=
SN (Kyp) and Sy :=Sn(Kp). Recall the following lemma in [Ru2].

LEMMA 3.1 ([Ru2, LEMMA 3])
prime

Let N be a positive integer. For any L€ Sy, there exists a cyclic extension
Ko(;N) of F of degree p™¥ contained in the composite field Ko - K(I), which is
totally ramified at all primes above I, and unramified at all primes not dividing .

DEFINITION 3.2

Let F be a finite extension field of K contained in K., and N a positive integer.
Let n € Sy (F) be any element, and assume n is decomposed as n = [];_, [;, where
l1,...,. are distinct prime ideals of Ok . For each [;, let Ko(I;) = Ko(l;; N) be as
in Lemma 3.1.

. We denote the composite field F'- Ko(l1; N)--- Ko(l; N) by F(n; N), or by
F(n) for simplicity. In particular, we put F(Ok) :=F.
- We put
Hn = Hn,N = Gal(Ko(n)/Ko) .
Note that Ko(l1),...,Ko(l,) and F are linearly disjointed over K, we have the
natural isomorphism

Gal(F(n)/F) o My~ My x -+ X Hy,,

and we identify them by this natural isomorphism.

As in Section 2.2, we regard K as a subfield of C by the fixed embedding
00t K — C. We put ¢, :=e*™/" ¢ K for any positive integer n. Let F be a
finite extension field of K contained in K., and [ € Sﬁ,rime(F). Recall Hi=H(n
is a cyclic group of order pY. We take a generator o of H| as follows:
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Note that since the prime ideal | splits completely in Ko(p,~)/K, we have
(Ko)ix, = Ky and (v € Ki. We put L:= Ko()i - We identify Gal(L/Ky) with
Hi by the isomorphism induced by the embedding

[KO([) : Ko([) — L

fixed in Section 1. Let w be a uniformizer of Op. We fix a generator oy of H,
such that

7 =~ (mod my),

where my is the maximal ideal of Op. Note that the definition of o; does not
depend on the choice of .

Let n € Sy (F). We define the element D,, of the group ring Z[H,] as follows.

DEFINITION 3.3
Let n=[[;_, l; € Sn(F) such that [; € SPme(FY) for i=1,...,r. We define
pN -1
Dy, := Y kof € Z[My] C Z[H.]
k=1

fori=1,...,r, and

D, = H Dy, € Z[M,).
=1

The following lemma is well known.

LEMMA 3.4

Let a and § be ideals of Ok satisfying the condition (I) in Definition 2.3. Let
ny,ny € Sy(F). Assume [ € S¥™(F(ny)) for each prime divisor | of ng. We
put n=nyny. Then, the image of 4z;(F, n)Pr2 in F(n)>* /pN s fized by Hy, =
Gal(F(n)/F(ny)).

The Kolyvagin derivative class
Kia(FNsm) € F(ng)™ /p"

is an element of F(ny)*/p"™ such that its image in F(n)*/p" by the natural
homomorphism
v F(m)* pN — (F)*/pV) ™

coincides with the class of 4z;(F,n)Pr2. Note that the natural homomorphism
¢ is not injective or surjective in general, so the inverse image L_l(aZf(F, n)Pn2)
may not be a singleton. In order to construct Kolyvagin derivative classes, we
recall the notion of universal Euler systems. Let F), N,f,a and n =nin, be as in
Lemma 3.4. Let YVp(n,)(n2) be the free Z[H,,]-module whose basis is symbols

{y(0) |0 is an ideal of Ok dividing ny}.
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We write the group law multiplicatively. Let Zp(,,)(n2) be the Z[H,,]-submodule
of YVp(n,)(n2) generated by

{y(0)7! |0 is an ideal of O dividing ny, and o € Gal(F(n)/F(n;2))}

U {y<o>le<a/I>Fﬂ1

where Ny:=)_ 4 0 € Z[H], and Fr; is the arithmetic Frobenius at [ in H,, /.
(Note that we regard H.,,/ as a subgroup of Hy,.) Then, we define the module
Xp(ny)(n2) of universal Euler systems at F'(ny) by

Xy (02) = Vr@n,)(02)/ Zp ;) (n2).

In order to define Kolyvagin derivatives, we use the following lemma.

_1 | 0is an ideal of Ok dividing no,
and [ is a prime ideal of Ok dividing 0 |’

LEMMA 3.5 ([Ru1, LEMMA 2.1])
(i) The Z[Hn,]-module Xp(y,)(n2) is torsion-free.
(ii) For any ideal ® of O dividing n and any o € H,,, we have

N

Y)Y € Xpny) (m2)? .
By Lemma 2.4, we define a homomorphism
d: XF(nl)(nQ) — F(H)X
of Z[Hx,]-modules by d(y(9)) := q2;(F(n1),n10) for each ideal d of O dividing
ny. Then, by Lemma 3.5, we (uniquely) define a 1-cocycle c¢: Hy, — F(n)™ by
g— 1 N
o(0) i=5((y(@) =P,

By Hilbert’s Theorem 90, there exists an element 8 € F(n)™ such that 87~ =
¢(o) for any o € Ha,.
Now, we define the Kolyvagin derivative class K?’la(F, N;n).

DEFINITION 3.6
Let F,N,f,a,n=niny be as in Lemma 3.4. We define

/@‘f‘,la(F,N;n) = uzf(F,n)D“2 /,BPN € F(nl)x/pN.

Note that the definition of Ii?la(F ,N;n) is independent of the choice of 5. When
n; = Ok, the element /1?;‘ (F,N;n) is denoted by ks q(F,N;n).

3.2

Let F be a finite extension field of K contained in K.,. We put Rpy :=
Z/pN[Gal(F/K)] and Rp N, = Rrn ®z,[a] Ox for any character x € A. Let
n be an element of Sy (F). Here, for each [ € SY™°(F(n)), we define two homo-
morphisms

[']B’,MX: (FX/pN)X —> Rp N,y (cf. Definition 3.7)
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and

‘Z)%(n),N,X: (F(n)x/pN)X — Rp,nx[Ha] (cf. Definition 3.8),

which play important roles in Euler system arguments.
First, we define []LINX Let F' be an algebraic number field. We define
I :=Div(Spec(Or))
to be the divisor group, and we write its group law additively. We define the
homomorphism (+)p: F* — Zp by

(x)p = Z ordy (x)A,
A

where A runs through all prime ideals of O, and ordy: F* —» Z is the normal-
ized valuation of \. For any prime ideal [ of O, we define Z}, to be the subgroup
of Zr generated by all prime divisors above [. Then, we define (-)%: F* — T},
by

(z)% = Z ordy (x)A.

All

Recall that we fix a family of embeddings {lz%: K — F[}[;prime satisfying
the condition (A) (cf. Section 1). For each prime number [ and algebraic num-
ber field F', we denote the ideal of Op corresponding to the embedding l|x
by [r. Note that [ splits completely in F/K. Then, Z% is a free Z[Gal(F/K)]-
module generated by [, and we identify Z} with Z[Gal(F/K)] by the isomor-
phism ¢: Z[Gal(F/K)] — T} defined by  — x - [ for x € Z[Gal(F/K)]. We

also denote the composite map F* — 7% L Z|Gal(F/K)] by (-)%.

DEFINITION 3.7
We define the Ry -homomorphism
[rvx: (FX/pN)X — (IF/pN)X
to be the homomorphism induced by (-)%: F* — Zp. For each [ € SY™(F),
we define the Rp n y-homomorphism
(e vac: (B /pY)x — Reny

to be the homomorphism induced by (-)%.: F* — Z[Gal(F/K)].

Second, we will define Q_S;’(n),N,x' Let [ € Sy(F(n)). Note [ splits completely in
F(n)/K, so we have F(n)) = K| for any prime ideal A of F' above I. The groups
@D, F(n)y and @, H: are regarded as Z[Gal(F(n)/K)]-modules by the iden-
tification

Prm; =Trhm @K’ and  PHi=Thu @ Hi,
AL AL
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respectively. (Here, we regard K[ as a Z[Gal(F(n)/K)]-modules on which the
group Gal(F'(n)/K) acts trivially.) We denote by

dre, s K — Gal(K (1)1, /Ki) = Gal(K(1)/K) = H,

52905}
the homomorphism induced by the reciprocity map

P K[ — Gal(K/K))
of local class field theory. (Let 7 be a uniformizer of K; and k([) := O/I. Then

¢ () induces the N(I)-power map on k(I).) The homomorphism
Ppwy: F(n)* — Z[Gal(F(n)/K)] @ H,

is defined to be the composite of the three homomorphisms of Z[Gal(F'(n)/K)]-
modules:

diag: F(n)* — @F(n)x,

A1
Pox: PFrm; — P,
AT Al

1t @PH > Z[Gal(F(n)/K)] @ H,,
All
which are defined as follows:
(1) the first homomorphism diag is the diagonal inclusion;
(2) the second homomorphism €D ¢, is the direct sum of the reciprocity
maps;
(3) the third isomorphism Ll}l is the inverse of the isomorphism

10 Z[Gal(F(n)/K)] @ Hi — @) Hi=Tp () @ Hu,
Al
which is induced by the isomorphism
v: Z[Gal(F(n)/K)| = Tpoy

given by z+—— 1z - [p).

DEFINITION 3.8
Let [ € Sy(F(n)). We define

Ot (F)[pY), — Z/p" [Gal(F(n)/K)] @ Hy

to be the homomorphism of Rp n [Hn]-modules induced by ¢§,(n). The choice
of a generator oy of H induces the Rp n [Hn|-homomorphism

Prmyny: (F) /pN)X — Z[Gal(F(n) /K)]X = Re Ny [Ha-

The following formulas on Kolyvagin derivative classes are well known. (For
example, see [Rul, Proposition 2.4] for the proof. Note that our @; Ny 18 the
map ¢ in [Rul].)
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PROPOSITION 3.9

Let a and § be ideals of Ok satisfying the condition (I) in Definition 2.3. Let
ny,ng € Sn(F). Assume [ € Sy (F(ny)) for each prime divisor | of ny. We put
n=mninsg.

(1) If X is a finite place of K not dividing ng, the A-component of [H;la(F,N;
n)yJr N,y is 0. In particular, if g € SN (F) is a prime ideal of Ox not dividing
Ny, we have

(K50 (Fy N3y qF,N’X =0.

(2) Let I be a prime ideal of Ok dividing n. Then,

[0 (F N3y ] o v = Ol (5. (F N3 /D))

To prove our main theorem, we need not only Proposition 3.9 but another rela-
tions of Kolyvagin derivative classes (cf. Proposition 3.11). As in [Ku, Section 6.2],
we need the notion well ordered.

DEFINITION 3.10

Let n € Sy(F). We call n well ordered if and only if n has a factorization n =
[Ti—, i with [; € S§™(F) for each 4 such that [;4; splits in F([T;_, l;)/K for
i=1,...r—1.

PROPOSITION 3.11
Let a and § be ideals of Ok satisfying the condition (I) in Definition 2.3. Let
n € Sny(F) be prime to af. If n is well ordered, then

d_);‘“,N,X (nfya(F, N; n)x) =0

for each prime ideal | of Ok dividing n.

Proof
In the theory of Kolyvagin systems, this proposition is proved in more general
situation. (For example, see [MR, Theorem A.4] for the case of Euler systems
over Q.) But in our case, we can give a more elementary proof by using the
similar method to [Ku, Lemma 6.3].

We may assume n # Og. Since n is well ordered, we put n=[]'_, [;, where
[;’s are elements of Sy™°(F) satisfying liy1 splits in F(ITj= )/ K for i =
1,...,7—1. Assume [ = [;, and put ny := H;;ll [;. If I=1y, then we put [; = Og.)
Note that the image of k; «(F, N;n) in F(n;)* /p" coincides with Ky (F N n)Pni,
Since the diagram
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[ INK2S
(F(n) @k K1) /pN =Tk, ®z (KX /p") s Tl @z (Hi/PV)

J J

(SN
(Fox K)*/p"N =Tk 0z (K /pY) A Th@g (He/pN)

commutes, in order to prove our proposition, it is sufficient to show that

(1) gz—’%’(nl),N,X (H;L(F,N;U)X) =0.

Let A be a place of F(ny) above I, and A a place of F(nl) above A\. We
fix a uniformizer 7’ of F(ni[)x and put @ = Np(n,1),,/F(n,),, (7). We denote the
residue field of F(n;) by k(\) and fix a generator a of a cyclic group k* /p™.
Then, we have a decomposition F(n)5 /pY = (%) x (a), where 7 is the image of
min F(ny)5/pN. Let

Sy F)X /o™ — Hi/p"™

be the local reciprocity map. To prove (1), it is sufficient to prove that the image
of m}”a (F,N;n) is contained in Ker(¢p(y),) for all A above . By local class field
theory, we have Ker(¢p(y),) = (7) since the image of norm map

Np(miny/Fn)y P D)5 /oY — Fng)5 /o

coincides with (7). Note that we can check easily that the kernel of the natural
homomorphism

i ) o™ = K /p™ — F(mD3 /o™
is also (7). So, it is sufficient to prove that the image of vy(kj (F, Nin)) = 1.
The image of «{, (£, N;n) in F(m 0% /PN coincides with n;‘fal(F,N;n)D’, so let
us prove Ii?l[(F7 N;n)Pr=11in F(n 1)}, /pY. By Proposition 3.9(1), we have

,a

K{(F,N;n) € (Op(n,n ® Ok1) ™,

where O | is localization of Ok at [. The group H;= Gal(F(nl)/F(n;1)) acts
trivially on

O/l OFm)) " =T, @z (Ok /D)™

since all prime ideals above [ ramifies completely in F'(ni[)/F(n;). Therefore, we
have

KL (F, Nim) = k] (F, Nym) P
— n}“u[(F, N; n)ZiZfl kof
— ,ﬁ;‘la[(F’N;n)pN(prl)/?

=1
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in F(ni)/F(ny). This implies the image of '} (F, N;n) belongs to Ker(y) =
Ker(¢p),) for all places A of F'(ny) above [, and completes the proof. O

3.3.
In this subsection, we will define some elements z, 4(1,a) € (F*/p"™),, which
are analogues of Kurihara’s elements defined in [Ku, Section 7] for elliptic units.
Elements x, q(7,a) become a key of the proof of our main theorem for the one-
variable cases.

Let F be a finite extension field of Ky contained in K., Cond(F') the conduc-
tor ideal of F/K, and N a positive integer. We consider an elliptic unit 1 € Cp.
Let a be a map

(Zx)? = {nonzero ideals of O }* — Rp N ; (f,a) — aj,q
satisfying the following condition (R):

(R) We have asq =0 for all but finitely many (a,f), and there exists an
element ¢ € (OF )iors satisfying

n=¢ H azj(F)*7e.
(f,0)€(ZK)?

Further, if as o # 0, then the pair (f,a) satisfies f | Cond(F') and the condition (I)
in Definition 2.3.

By the definition of elliptic units, there exists such a map a. We define the ideal
a(n;a) of O by the product of the all ideals a satisfying a;,q # 0 for some §. We
put

k(n,a;n) HlifaFN e FXpl.

Note that for any character x € A satisfying x # w, we have
M = K0, a; O ) € (FX /™).

DEFINITION 3.12
Let gn=gq H::1 l; € Sy, where q,[1,..., [ are distinct prime ideals of Ok prime
to a(n;a). For any ideal d of O dividing n, we define the element &g, q3(7) €

(F* /™) @ (Qyo He) by

Fifo,qy(1,0) == K(n,a;90) @ (®a[)

o

Fix a character x € A. Let qn € Sy be an ideal of O satisfying (n,a(n;a)) =1
and assume qn is well ordered. Assume that for each prime number [ dividing
n, an element wy € Rp N, @ H; is given. Then, we have an element w; € Rr n y
such that wy =@ ® o(. Note that we will take {w;}, explicitly later, but here,
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we take arbitrary one. For any ideal ? of Ok dividing n, we define
Wy i= ®w[ ERp Ny ® (®7‘[[>
1o 1o

We also define the element wy € Ry, N,y by wo = o ® (&), 01).-

DEFINITION 3.13
We write the group law of (F*/pV), @ (&) H1) multiplicatively. We define the
element Z, 4(n) by

fn,q(ma) = Hwa & R{n/a,q}(%a)x € (FX/PN)X ® <®H[)~
on o
Note that we naturally identify the Rp,n -module (F* /pN), & (@, H1) with
RFJV»X ® (®H[) ®RF,N,X (FX/pN)X'
o

The element z, 4(1,a) € (F*/p™), is defined by Zpn 4(1,a) = Tn,q(n,a) ® () 00)-
The following formulas follows from Proposition 3.9 straightforward.

PROPOSITION 3.14 (CF. [Ku, PROPOSITION 5.2])
Letn € F be an elliptic unit as above, and let nq € Sy (F). Fiz a map a: (Ix)?> —
Rp N satisfying the condition (R) for n. We assume that nq is well ordered.

(1) If X is a prime ideal of K not dividing n, the A-component of [Tn q]F N,y
is 0. In particular, if s is a prime ideal of O not dividing nq, we have
5
[xn,q(,'% a)] F,N,x =0.

(2) Let [ be a prime ideal of Ok dividing n. Then, we have

[ —
[mn,q (1, a)] FNx ¢57,N,X (xn/[,q(na CL))
(3) Let [ be a prime ideal of Ok not dividing n. Then, we have

(E%JV;X (xﬂ/hq (n, a)) = wl(ﬁ%,]\f,x (xn/[,q (n, a)) .

3.4.
Recall that we fix a family of embeddings {lzz: K < K{}.prime satisfying the
condition (A) for families of embeddings as follows.

(A) For any subfield L C K which is a finite Galois extension field of K and
any element o € Gal(L/K), there exist infinitely many prime numbers | such
that [ is unramified in L/K and (I, L/K) = o, where ly, is the prime ideal of L
corresponding to the embedding 7L .

Note that the existence of such a family of embeddings follows from the Cheb-
otarev density theorem. Here, we prove the following proposition, which plays
key roles in induction arguments in the proof of our main theorem.
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PROPOSITION 3.15

Let F' be an intermediate field of Koo /K satisfying K Cy F, and let x € Abea
nontrivial character. If Ko contains p,, we assume x #w and x # x ‘w. Let q
be a nonzero prime ideal of Ok, and let n € Sy (F') be an ideal of Ok prime to
q. Assume that n has a factorization w=[];_, l; into the product of prime ideals.
Suppose the following are given:

- a finite Rp N y-submodule W of (F*/p™)y;
- an R n-homomorphism A\: W — Rp N .

Then, there exist infinitely many q' € Sy (F(n)) which have the following proper-
ties:

(1) the class of q'p in Ap, coincides with that of qp;
(2) there exists an element z € (F'* ® Zyp)y such that

(2)rx = (aF — qr)x € (Zr ® Zp)xs

and

(ZS[I;,N,X(Z) =0

foreachi=1,... r;
(3) the group W is contained in the kernel of H?’,N,x’ and

)\(.’E) = é%,N,x(x)
for any x e W.

Proof

Let F' be an intermediate field of K /K satisfying K C; F'. For a finite place v
of F', we denote the valuation ring of the completion F, of F' at v by O, and
put

Op, :=={z|z=1 modm,},

where m, is the maximal ideal of OF,. We denote the residue field of F' at v by
k(v).

In the first step of the proof, by using global class field theory, we construct
a finite Galois extension Ly and an element o € Gal(Ly/F'), which are related to
conditions (1) and (2) in the assertion of Proposition 3.15. Let F{n} be the maxi-
mal abelian p-extension of F' unramified outside n. Note that F'{n} is Galois over
K. By global class field theory, we have the Gal(F'/K)-equivariant isomorphism

(H’U‘HFUX/O};'U) X (@ufn F?j /Oé‘u)
the image of F'*

® Z, — Gal(F{n}/F),

where u runs all finite places outside n. We naturally regard Gal(F'{n}/F), as a
quotient group of Gal(F{n}/F'). Let F{n}, be the intermediate field of F'{n}/F
satisfying Gal(F{n},/F) = Gal(F{n}/F),.
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Recall that we fix a decomposition

k
Clk = P Za;
=1

of Clg into a direct sum of cyclic subgroups. We denote the order of a; in Clg
by n; and fix a generator a; of the principal ideal a;'*. We put

1/pN 1/pN
F’::F(upzv,al/p ...,ak/p ).

Let Ly := F{n}, - F’ - F(n) be the composite field.

We put A’ := Gal(Ko(pp)/K). By the natural surjection A’ —» A, we
regard y as a character of A’. Note that the subgroup A’ of Gal(F/K) acts on
Gal(F{n},/F) (resp., Gal(F(p,~) - F(n)/F) and Gal(F'/F(pu,~))) via x (resp.,
trivial character and w). Since we assume that x is nontrivial and x # w, we have

F{n}, NF'-F(n)=F.
Then, we take the element o € Gal(Ly/F’ - F(n)) such that

olriny, = (@rny,, F{n}y/F).

In the second step, by using Kummer theory, we construct a finite Galois
extension Lo /F’ and an element A’ € Gal(Ls/F"), which are related to condition
(3) in the assertion of Proposition 3.15. We define a projection pr: Rpny —

Z/pNZ by
Z agg — an,
g€Gal(F/K)

where a, € Z/pNZ for all g € Gal(F/K), and 1 € Gal(F/K) is the identity ele-
ment. We define X € Hom(W, p,,~ ) by

T — (CpN )pro)\(w)

for all x € W. (Recall that (,~ is a primitive p™Vth root of unity defined in
Section 3.1.) We use the following well-known lemma.

LEMMA 3.16
Let P: Homg,, . (W,Rp,N, ) — Hom(W,Z/pN7Z) be the map given by f+—
pro f. Then, P is bijective.

Indeed, the inverse of P is given by

h+— (:vn—> Z h(g_lx)g) € Hompg,, v (W, RrNx),
g€Gal(F/K)

for h € Hom(W,Z/pNZ). The group A’ acts on W via x, so we have
HomRF,N (I/V, RF,N) = HOHIRF,N’X (VV7 RF,N,x)-
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Note that A" acts on H*(F(u,~)/F,p,n~) and HO(F'/F(uyn ), HY (F', pu,n))
via the trivial character. Since we assume that x is nontrivial, we have

HY(F'/F, pipyn )y =0.
So, the natural homomorphism
W C (F* /™)y — (™ /pY)y

is injective. Then, we regard W as a subgroup of (F'*/pM),. Let Ly be the
extension field of F’ generated by all p’Vth roots of elements of F'* whose image
in F*/p" is contained in W. We consider the Kummer pairing

Gal(La/F') x W — ppn.
This pairing induces a Gal(F(u,~ )/ K )-equivariant isomorphism
Hom (W, pu,v ) ~ Gal(Ly/F").

(Note that Lo is Galois over K since W is stable by the action of Gal(F'/K).)
We regard X\ as an element of Gal(Ly/F") by this isomorphism.

In the final step, we complete the proof. By the isomorphism Hom(W, ju,,~ ) ~
Gal(Ly/F"), the group A’ acts on Gal(Lg/F')) via xy~'w. Comparing the action
of A, we obtain

LiNLy=F'.

We put the composite field L := L;Ly. By condition (A), there exist infinitely
many prime numbers q" such that

(9%,,L1/K) =0 € Gal(L1 /F"),
(), L2/K) = N~" € Gal(L, /F").

Let us prove that each of such ¢’ unramified in L/K satisfies conditions (1)-(3)
of Proposition 3.15.

First, we show that ¢’ satisfies conditions (1) and (2). Let a = (), € A} be
an idele whose qp-component is a prime element of Fy,., and other components
are 1. Let 8= (8,), € A} be an element whose qp-component is a uniformizer
of Fyp,
image in

and other components are 1. By definition, ideles o and 8 have the same

FX/OL ) x FX/O%
((H'u|n / Fl,) (@u’[n / Fu) ®Zp) ZGa,l(F{n}X/F)
the image of F* X
This implies that there exist z € (F* ® Z,), such that

a=z0 in (<(1|_[FUX/O}%) X (@F;/o;u)) ®Zp)x.

Hence, we have (2)r, = (4% — qr)y, and gf);ﬁ%’N,X(z) =0 for any i=1,...,r. The
prime ideal q" of Ok satisfies conditions (1) and (2).

Next, we shall prove that ¢’ satisfies condition (3). Since ¢’ is unramified in
L/K, the group W is contained in the kernel of [];‘;NX Since (g7, La/K) =N"1,
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for any = € W, we have
(CPN)pro)\(w) — )\/(.’E) _ (l,l/pN)lfFrq/’

where Fry € Gal(L/K) is the arithmetic Frobenius at ¢’, and 2/ e Ly is a
pVth root of 2. Then, we obtain

(Con )P = =N@N/PY (mod ).

Let 7 be a uniformizer of M := F(q’) By the definition of o4/, we have

9" F(q’)"
77"l =(n  (mod myy),

where m;; is the maximal ideal of M. Recall that W is contained in the kernel
of []qFNX By [Se, Chapter XIV, Proposition 6], we have

(CPN)pw%}l,N,X(r) = 79@) =1 = p(=N@N/PY (1nod my,)

for all x € W, where we put

rodl T

¢($) = a;), Orn ).
Hence, we obtain
(CpN)pro/\(w) _ (CpN)proag“p/,N,X(m)

for all x € W. By Lemma 3.16, we have \ = é?«“/,N,X|W- Therefore q’ satisfies
condition (3) of Proposition 3.15, and the proof is complete. |
4. Analogue of Kurihara'’s ideals for elliptic units
Let x € A be an arbitrary character. In this section, we define ideals el of Ay

for each i € Z>( by using elliptic units and prove Theorem 1.1 for ¢ = 0.

4.1.

Let F be a finite extension field of K contained in K., and let IV be a positive
integer. Let n € Sy (F') with a decomposition n=[];_, [;, where [; € Si,rime(F)
for each i. We put e(n) :=r. Namely, ¢(n) is the number of prime divisors of
n. We denote by Sy° (F) the set of all elements in n € Sy (F) which are well
ordered. We define the Rp ny-submodule Wg n ,(n) of (FX/pN)X to be the
Rp N -submodule generated by the image of

{k(n,a;n) | n€Cp, (n,a(n;a)) =1 for some a satisfying (R) in Section 3.3}
U (O;)tors-
We put
HWF,N,X (n) = HOHIRF’N,X (WF,N,X(Y‘), RRN’X).

DEFINITION 4.1
We define Qf‘fl}, Ny Fo be the ideal of Rp n , generated by the union of the images
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of all f € HWp n,(n), where n runs through all elements of SY° (F') satisfying
e(n) <r.

REMARK 4.2

Note that Rp n,y is injective as an Rp n,-module, since the Rp, n-module
Homyz(Rp, Ny, Q/Z) is injective and free of rank 1. In particular, for any n €
S¥N°(F), the restriction map

HomRF,N‘X ((FQX /pN)X7 RF,N,X) — HWRN,X (n)

is surjective. This implies that the ideal G‘ill Nox coincides with the ideal of Rr n

generated by
U U f(WFvN:X(n)) )
nof

where n runs through all elements of S¥* (F) satisfying e(n) <r, and f runs
through all elements of Homp,, v ((F5/p™ )y, REny)-

In order to define the ideal Qlfl; of A, we need the following lemma.

LEMMA 4.3
Let Ny, Ny be integers satisfying N1 < Na, and let Fy C Fy be finite extension

fields of Ky contained in K.,. Then, the image of Qﬁf}}%]\,z’x by the natural pro-

. . . . . el]
jection Rp, N, x — BFy Ny x 18 contained in €55 N, -

Proof

It is sufficient to show our lemma in the following two cases: (1) Fy = Fy,
(2) N1 = Ns. The first case is clear, so let us prove our lemma in the second case.
Assume N; = Ny = N. We put the natural surjection pr: Rp, vy — Rr Ny
By Lemma 2.4, we have

N, /r, (We,nx (1)) S Wey vy (1)

for any n € Sy (F3). So, it is sufficient to show the following claim.

CLAIM 4.4
For any homomorphism

f2 S HomRFQ,N,X ((F2>< /pN)X7 RFQ,N,X)a

there exists a homomorphism

fl S HOIHRFITN ((le /pN)XvRFl,NJ()

which makes the diagram
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. f
(F2></p )X $ RF2,N,X

NFl,FQ\L lpr

n f
(le/p )X - 71} RF1,N,X

commute.

For each elements o € Gal(Fy/K), we fix a lift & € Gal(Fy/K) of 0. We have
(R, ) G2/ ) = { Z ayon ‘ as € Z/pN},
c€Gal(Fy /K)
where n is an element of Ry, v defined by
e Y -
TEGal(FQ/Fl)

Gal(

We define the isomorphism ¢: (Rp, n,y) Fa/F) =, Rp, Ny of Rpy Ny -modules

by
Z Uy0N — Z As0.

o€Gal(F1 /K) o€Gal(Fi/K)
Let ¢: (FY/pN)y — (F5'/p™)y be the natural homomorphism. We have
pro fo=po fy oo Np,/p -
Since Rp, v,y is an injective R, n,-module, there exists a homomorphism
fre (B /)y — Re v
satisfying
TNy oy (e ppy =90 f200

By the definition of f1, we obtain the commutative diagram

. £
(Fy /p")x —— BRp, Ny

NFI,FQ\L \LPT

n h
(Fy/p Jx — == Br Ny

as desired. This completes the proof of the claim, and our lemma follows from
the claim immediately. ]

Now, we can define the ideals Q‘fli( of A

higher Stickelberger ideals 656}{2 in [Ku] for elliptic units.

x» which are analogues of Kurihara’s
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DEFINITION 4.5
We define the ith elliptic ideal Qfli( to be the ideal of A, by @‘fli = ljﬂlc?}}?w,xv

where the projective limit is taken with respect to the system of the natural

homomorphisms &; r, v,y — Qz‘?,lllf’l,lex for integers N7, No satisfying Ny > Ny

and intermediate fields Fi, Fs of Ko /K satisfying Ko Cy Fy Cf Fy C K.

4.2,
Recall that the Iwasawa main conjecture says

chary, (Xoo,y) = charp (Eoo,x/Coo,x)-

In order to obtain the ¢ = 0 part of our main theorem (Theorem 1.1), we compare
QZSI}X with chara, (Eec,y/Coo,y)-

PROPOSITION 4.6
Let x € A be an arbitrary character. Then, we have the following:

(1) Ze yTe xTe,x charp, (Eso,x/Coox) € Q:Sl,lx;
(2) if the character x is nontrivial on Da , for any p € T, we have

¢8171X C charp (Eoo,x/Coo.x)-

Proof
We fix a generator 0, € A, with charpy (€oc,y/Coo,y)- First, let us prove that €§
contains Zg  Je yZe,x chary, (Eco,y/Coo,y)- It is sufficient to show that

éxjf,xj&xjcyx - CSI,IF,N,X
for any intermediate field F' of K. /K satisfying K C; F and for any positive
integer N, where 6, (resp., Zg v, Je,y, and Z¢ ) is the image of 0, (resp., Zg v,
Jex, and e ) in Rpn y-
Fix a homomorphism ¢: £, — A, with pseudo-null cokernel, and let

oc € I(Coo,x; ¢)C Zex

11
X

be an arbitrary element. Note that by the definition of Z(Cw y; @), we have dc6,, €
©(Coo,)- We fix elements o7 € Zg and d7 € Je. Let F be an intermediate field
of Koo /K satistying K Cy F', and let N be a positive integer. Then, there exists
a homomorphism : (£r/p"), — Rp N, which makes the diagram

087 PF,N

Coor) P/ —— (Escn)r/p" - Riny

| LT

We N x(Ox) —— (Er/p")x

commute, where ¢r n: (s )r /P — Rp N, is a homomorphism of Ry -
modules induced by . This implies

32678c8y € 02670 rN ((Coo ) F/PY) = V(Wi N (OK)) € €op -
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Vary a homomorphism ¢ and elements §7 € Z¢ and 6 7 € Je, and we have
T 7T 1
0xZe xTe xTex S ¢87F,N,X'

Therefore, taking the projective limit, we obtain

1
cSA,F,N,X 2 Le Je xLe,x chary, (Eso,x/Coo,x)-

Next, let us prove that €' is contained in chary (£soy/Coo,y)- Here, we

assume that the character x is nontrivial on Da , for any p € T. Under this
assumption, Lemma 2.4 implies that the natural homomorhism C, — Cr,y
is surjective. (Recall that Cp is the Z,[F/K]-submodule of £ generated by the
image of the group Cr of elliptic units.)

Fix a homomorphism ¢: £, — A, of pseudo-null cokernel. Let ¢ € Ker¢
and ¢’ € Coker . Let F be an intermediate field of K, /K satisfying K C; F,
and let N be a positive integer. Let @p n: (Esoy)r/PY — Rr N, be a homo-
morphism induced by ¢. Let f: Wg n 1 (Okx) — Rp Ny be an arbitrary Rp n -
homomorphism. Since Rp, v, is an injective Rp y,-module, there exists a homo-
morphism f: (Er/PpN)y — Rp N, whose restriction to Wpg n ,(Ok) coincides
with f. Then, we have an element a € Rp v, which makes the diagram

58" @PrN
Coory — (goo,x)F/pN z Rpny
$ ‘o
f N
(CF/pN)X - (gF/pN)X ****** > Rpnx
\ /

v

We N+ (Ok)

commute, where xa is the homomorphism multiplying a. This diagram implies
that

FWrnx(Ok)) =080'aprn ((Cr/pY)y) € ad8'Tely Ri Ny C Oy RiN -
Then, we have QZSI’IF’ Nx © éXRF, N,x- Taking the projective limit, we obtain
Co,x SO Ay =charp (Eoox/Coox)-
This completes the proof. O

Theorem 1.1 for ¢ =0 follows from Proposition 4.6 and the Iwasawa main con-
jecture.

COROLLARY 4.7 (THEOREM 1.1 FOR I = 0, PRECISE FORM)
Let x € A be any character. Assume one of the following:

- p splits completely in K/Q;
- p does not split in K/Q, and for the element p € T, the character x is
nontrivial on Da .
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Then, the following hold:

(1) TenTe e Fitta, o(Xy) S EEL;
(2) if the character x is nontrivial on Da , for any p € T, we have

¢l CFitta, o(Xy).

REMARK 4.8
By Proposition 2.1, there exists a height-two ideal Jy , of A, satisfying

3
Le xTe xLex = Jox Ly y-

So, Corollary 4.7 implies Theorem 1.1 for ¢ =0.

5. Proof of the main theorem for the one-variable case

Here, we prove our main theorem for I' ~ Z,. First, we recall the notation and
state the precise assertion of our main theorem. In this section, we assume that
I':= Gal(K/Ko) ~ Z,. The A-module X is defined by the projective limit X :=
1(i£1 Ap with respect to norm maps, where F' runs through all finite extension fields
of K contained in K, and Ag is the p-Sylow subgroup of the ideal class group
of F. The A-module X’ is defined by X’ := X/ Xz, where Xy, is the maximal
pseudo-null A-submodule of X.

We denote the ideal of A, generated by ith power of elements of Z 4 (resp.,
JA) by Za,; (resp., Ja,) for each i € Z;>o. The precise assertion of our main
theorem for the one-variable case is as follows.

THEOREM 5.1
Let x € A be a nontrivial character. If Ko contains p,, we assume X # w and

X # X lw. Assume one of the following:

- p splits completely in K/Q;
- p does not split in K/Q, and for the element p € T, the character x is
nontrivial on D .

Further, we assume that I' >~ Z,. Then, the following hold:
(1) if the character x is nontrivial on Da , for any p € T, we have
¢81,1X C Fitta, 0(X});
(2) ZeTexZexTaiTa, FittAXﬂ-(X)’() C Qﬁfl; for any i € Z>g.

We have already proved Theorem 1.1 for ¢ =0 in the last section. Here, we prove
the second assertion for 7 > 1.

5.1.
We spend this subsection on the setting of notations. Fix a nontrivial character
X € A. we assume that y # y"'w and y # w if Ko contains ,. Since X, has no
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nontrivial pseudo-null submodules, we have an exact sequence
h f o an 9 ’
(2) 0— Ay — Ay — X, —0,

by Lemma 2.11. Let M be the matrix corresponding to f with respect to the
standard basis (e;)"_; of AZ. Let {m,...,mp} and {n1,...,n} be permutations
of {1,...,h}. For any integer i satisfying 1 <i < h — 1, consider the matrix M;
which is obtained from M by eliminating the n;th rows (j =1,...,4) and the
mith columns (k=1,...,4). If det M; =0, it is trivial that det M; € @fl; So
we assume that det M; # 0. If necessary, we permute {my,...,m;} and assume
det M, # 0 for all integers r satisfying 0 <r <1i.

We fix a finite extension field F' of Ky contained in K, and we put the group
I'r:=Gal(Ks/F) and the integer Np := max{#Ar,#(X})r}. (Recall that we
denote the T'p-coinvariants of a A-module M by Mp.) We fix a positive integer
N > Np, and we put, for simplicity, R :=Z,[Gal(F/K)], and Ry = Rp N =
Z/pN[Gal(F/K)]y. Let Apgn, be the image of Xg,, in A, by the natural
homomorphism.

Let ez € 74, and €7 € J 4,5 be any nonzero elements. Then, we can consider
a homomorphism

leres ' AFx/AFfiny — (X;()F§ [a]y —> e1b

of R-modules, where b € (X ) is an element whose image by the natural homo-
morphism (X} )r — Apy/AFfiny is €7[a]y. Note that the cokernel of ¢, .,
is annihilated by Z4,,J4,y. From the exact sequence (2), we obtain the exact
sequence,
0— R" L R" s (X1)p — 0,

by taking the I' p-coinvariants. Note that the injectivity of the homomorphism
f follows from the finiteness of (X3 )r. This injectivity become a key of our
argument.

The image of e, in R" is denoted by eEF). We define ¢; :=g(e1),...,cp =
g(en), and we define ¢ to be the image of ¢, in (X} ) r, namely, = g(e£F)).

We take sufficiently large F', and we may assume C(TF) #* ch) if r#s. We fix a
lift égF) € Ap, of CSF) and define

Pri={le SR™(F) |ty e, ([trly) =€},

where [[], is the class of [r in Ag,. We define

P.= LZJ P,
r=1

and we define Pr to be the set of all the prime ideals of F' above P. Let J be
the subgroup of Zr generated by Pp, and let the R-submodule F of (F* ® Zy),
be the inverse image of (J ® Zj), by the homomorphism (-)p: (F* ® Zy), —
(Zr ® Zy)y. We define a surjective homomorphism

a: (J®Zy)y — R"
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by IF — e, for each [ € P, and r with 1 <r < h. We define
Q. :=pr,oaq: (J®Zp)xi>Rh&>R

to be the composite of o and the rth projection pr,..
We define the homomorphism 3: F — R" to make the diagram

(')F,x

F —% (J®Zy)y —2= Apy/AFfiny

(3) lﬁ i l

0 R" Rh g

|

anny (X)) — 0

commute, where can is induced by the canonical homomorphism
(4) J — A/F’X = AF,x/AF,ﬁn,X-

Note that since the second row of the diagram is exact, § is well defined. We
define
Br :=pr,0p0:" FL g P R

to be the composite of 8 and the rth projection pr,.
We consider the diagram (3) by taking (— ®Z/pNZ). We use the following
lemmas.

LEMMA 5.2

The canonical homomorphism
F/pN — (F* /o)y

18 injective.

Proof

Let = be an element in the kernel of the homomorphism F/p" — (F*/p"),,
and let & be a lift of x in F. Then, there exists y € (F* ®Z,),, such that Z = g
Since (Z)r,y € (J ®Zp)y and (Zr @ Zy)/(J @ Zy) is a torsion-free Zy-module, we
have (y)py € (J ® Zp)y. Hence, y € F, and we obtain z = 1. O

The Ry-module F/p" is regarded as a submodule of (F* /p"), by Lemma 5.2.
We regard (F*/pY), as a A,-module. For an element z € (F*/pY), and
0 € A, we write x? for the scalar multiple of = by 4.

LEMMA 5.3
Let [-]r,n,y be the homomorphism
(F* /™) — (Zr /o)y

induced by (-)p: F* — Ip. Letx be an element of (F* /pN ), satisfying [x]p N €
(J/pN)y. Then, x° is contained in F/p™N C (F* /pN), for any § € anny, (Xfin,y)-
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Proof
We consider the natural exact sequence

0—P—Ixk — A — 0,

where P is defined by P = F*/Oj:. By the snake lemma for the commutative
diagram

0 P Ir Ap ——= 0
e
0 P Ip Ap ——= 0

we obtain the exact sequence

0—s Ap —P/pN I TN A o,

(Recall that we assume p” > #Ar.) Let Bp be the image of J in Ap, and let
Py =F/Of. Then, we have the exact sequence

0—Py—J— Br —0,

and by a similar argument as above, we obtain the exact sequence

N0

0 —s Br — Po/p™ 2% J/pN s B 0.
Now, we obtain two commutative diagrams

[In,0

0 BF Po/pN I Im[~]N’0 — 0
(5) \[1 jz st
0 Ap Py I iy —— 0

0 — Im[|nyo —— J/pN ———= Bp ——= 0

(6) v[fa \[4 Jl
0 —— Im[]y —— Zp/pY ——= Ap ——= 0

whose all rows are exact, and all vertical arrows are injective.

Let = be an element of P/p" satisfying [z]y € Im fy = J/p”~, and let § be
an arbitrary element of anny (Xfin,y)- Let us show that xf belongs to Im fo =
Po/pY. By the snake lemma for the diagram (6), we have an exact sequence

0 = Ker f; — Coker f3 — Coker fy,
so we obtain [z]y € Im f3. The exact sequence
Coker f; — Coker fo — Coker f3 — 0

follows from the diagram (5). Then, we obtain z° € Im fy = Py/p since the
surjection (4) implies that ¢ annihilates Coker f;. O



Higher Fitting ideals and elliptic units 877

The following corollary follows as a by-product of the proof of Lemma 5.3.

COROLLARY 5.4
The kernel of the homomorphism

[rac: F/p™ — J/pN

is finite.

Let n be an element of Sy (F') whose prime divisors are in P. We define P} to
be the set of all elements of P dividing n. We define J, to be the subgroup of J
generated by P2, and the submodule F, x of F/pY is the inverse image of J,
by the restriction of [-]p n y tO F/p~. Note that Fu,n is a finite Ry-submodule
of (F*/p"), by Corollary 5.4. We have obtained the following commutative
diagram:

[']F,x

Fan —— (Ju/pN)X

\LB \LEIEJQ

RY Ry

|

5.2.

First, we take a prime ideal q of O by the following way. For each integer r with
1 <r < h, we fix a prime number g, € P,.. We put  := Hle q- € Sny(F). We
fix a homomorphism ¢: £, — A, with pseudo-null cokernel. By the Iwasawa
main conjecture, we have

(Coo,y) = (det Mp) - Z(Coo x; )
Then, we fix elements dc € Z(Cwo,y; ) and 1 := (nr ) rr € Coo satisfying ¢(n, ) =
dc det My. Let a be a map
(Zk)* — RrN.; (f,a) — aj,q
satisfying the condition (R) in Section 3.3 for the elliptic unit n:=nr € Cp. We
assume x # w, so we have
e =ka;0k) = [  az(F)Y" € (F*/pN)y
(f,0)€(Zk)?
We fix nonzero elements éz € Zg and 07 € Je. Then, as in the proof of

Proposition 4.6, there exists a homomorphism 1 : (£x/p")x — Ry which makes
the diagram

0787 PF,N
(COO,x)F/pN - (Sooo()F/pN A Ry

7
_
_
_
_
///
-

We N x(Okr) —— (Er/p")x




878 Tatsuya Ohshita

commute, where ¢r N : (oo y)F/ pg — Ry is a homomorphism of Ry-modules
induced by . By Proposition 3.15, we can take a prime ideal q € S5 ™(F) prime
to a(n; a) satisfying the following two conditions:

(ql) The class of qp in Ap, coincides with the class of qy 5.
(q2) For all x € (£x/p")y, we have

¢%(x) = (x).

(Note that the natural homomorphism (Ep/pY ), — (F* /p™V), is injective, and
we regard (Ep/pY )y as an Ry-submodule of (F* /pY), by this homomorphism.)
In particular, we have

¢q(77x) = ¢(nx) = (;IfsJQF,N(T’X)
= 515]6@ det Mo.

Next, we shall take n and {w},. We fix an element dg, € anny (Xqyn). First,
we consider the homomorphism

ﬁml : ]:Qq’]\[ — Rn.

Applying Proposition 3.15, we can take ly € S¥™°(F(Qq)) prime to a(ng;a)
such that [ € P,,, [ # q2, and

¢ (2) = By (2)

for all x € Faq,n. We put ny :=Og.
In the case i =1, we put n:=n; = Ok, and

Tn,qg = LOk,q = “(77’@)~

It follows from Proposition 3.14(1) and Lemma 5.3 that J;%K q 1s an element of
Faq,N-

Suppose i > 2. To take n and {wi}(,, we choose prime ideals I, for each
r with 2 <r <+¢+ 1 by induction on r as follows. Let r be an integer sat-
isfying 2 < r <7+ 1, and suppose that we have chosen distinct prime ideals
[, € SY™(F(Qqns_1)) for each s with 2 < s <r—1. We put n,_; := [[1_s [,. We
consider the homomorphism f3,,, : Faqn,_,,v — Rn. Applying Proposition 3.15,
we can take [, € S\ (F(Qqn,_1)) prime to a(n;a) satisfying the following condi-
tions:

(x1) L, € P, ,and I, #q,;

(x2) there exists b, € (F'* ® Z,), such that (br)ry = (I, r — qr,7)y and
@' (b,) =0 for any s with 2 < s <7;

(x3) @' (2) =B, () for any = € Fagn,_,.n-
Thus, we have taken l3,...,[; 11, and we put n:=n; = HLZ [, € SN(F). Note
that the ideal n of Ok satisfies (n,a(n;a)) = 1. For each r with 2 <r <, we put

wy, == —¢"(b,) € Ry ® Hy,, and we obtain

Tn,q 1= Tn,q(n, @) € (FX/pN)X
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(see Definition 3.13, Section 3.3). It follows from Proposition 3.14(1) and
Lemma 5.3 that I?If,ic? is an element of Fa, n. Note that qn is well ordered.

LEMMA 5.5 (CF. [Ku, LEMMA 10.2])
Suppose i > 2. Then,

(1) Bm._, (zﬂf‘a‘) =0 for all v with 2 <r <i;
(2) aj([znqlry) =0 for any j#na,....n;.
Proof
Assertion (2) of this lemma follows straightforwardly from Proposition 3.14(1).

Let us prove assertion (1). We have a([b,]r,) =0 for any r satisfying 2 <r <4
since (b;)ry = (Ir r — qr,7)y. By definition of 3, we have 3(b,) =0. We put

[
=g [

S=T

then we have ﬁ(mﬁf‘g;) = B(yl). So, let us show SB,,, _, (y?) = 0 for any r satisfying
2 <r <. Note that by Proposition 3.14(2), we have [y;]r N € Jan,_,. Then,
we have y‘s“" € Fan,_,,N. Therefore, we obtain

860" (Yr) = B,y (y2™)

by the condition (x3). Since ¢ (bs) = 0 for all integers s satisfying r +1<s<i
by the condition (x2), we have

B (yr) = B (o gt ).
By Proposition 3.14(3), we have
q{)[,ﬂ(Imqbf“(ﬂfrn/u,q)) _ &[T(mn,q) Jr(glr(bf”(mn/lm))
= wi, @ (Tn/1,.q) + O (Tns1,,q)0" (br)
= =" (0r)0" (€ns1,.q) + O (Tus,,q)0" (br)
=0.
Hence, we obtain f,,,_, (xiﬁigl‘) = 6gn®" (yr) = 0, and this completes the proof. [

As in the fourth step of the proof of [Ku, Theorem 2.1] in Section 10.2, we obtain
the following proposition from Lemma 5.5.

PROPOSITION 5.6
We have the following equalities on elements of Ry -

(1) bsn(det M) - ¢ (20, 4) = +0andrd 716 7 - (det M) - o n(1);
(2) for any integer r satisfying 2 <r <1, we have
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i (det My _q) - QEIT‘H (xnmq) = +ianezey - (det M) - (Z)[T (xmuhq)'
The signs &+ in (1) and (2) do not depend on F.

Proof
For simplicity, we put

x(M .= Bz’ ) € R, and y( = =ezega(xy 5““ ) € R

nrq

for each integer r satisfying 1 <r <14, and we regard them as column vectors.
Then, we have y(") = Mx(") in Rh

First, we prove assertion (1) of this proposition. Note that a:af’“

is an element
of Fy n. By Proposition 3.9(2) and condition (q2), we have

W =bnezes - [kowa(Mx]py o8

— Stnezes - 3 (ny)el)

y

= Stinczes - 0267 - PrN (y)el).
Let/]l] be the matrix of cofactors of M. Multiplying the both sides of y(*) = Mx(1)
by M, and comparing the m;th components, we obtain

(=1)" ™ Sindzdgezey (det M) - G () = (det M)B, (a5, o)-

By condition (x3) for I3, we have (,,, (x%fK )=

(1) follows.

Next, we assume ¢ > 2 and show the second assertion. This can be proved
similarly to the proof of assertion (1). It is sufficient to prove the assertion when
r=1i. We write x =x and y = y®. Let x' € R% "' be the vector obtained
from x by eliminating the m;th rows for j=1,...,¢—1, and let y’ be the vector
obtained from y by eliminating the ngth rows for £ =1,...,7—1. Since the m,th
rows of x are 0 for all » with 1 <r <i—1 by Lemma 5.5(1), we have y’ = M;_1x’.
We assume that the m/th component of x’ corresponds to the m;th component
of x, and the n}th component of y’ corresponds to the n;th component of y. By
Lemma 5.5(2) and Proposition 3.14(2), we have

Smem®2 (Toy q)- Then, assertion

y' = 6inezes - 0" (Ta, ,,q)€ /(F)v

where (e (F))h 1 denotes the standard basis of Rh 1 Let M;_1 be the matrix

(2

of cofactors of M;_;. Multiplying the both sides of y’ = M;_1x’ by Ml_l, and
comparing the m/th components, we obtain

(—1)™*™i (det M;)dgneze s - 0" (T, .q) = (det M _1) - B, (2 bim).

By condition (x3) for [;11, and since xﬁf‘" is an element of Fqqn,n, we have

5m7( n,q ) S6in " 1 (Tnq)-
This completes the proof. O
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5.3.
Now we prove the main theorem.

Proof of Theorem 5.1
Here, we vary F' and N. So, the element

@+ (2n, q) € Ry = Rpny = (Z/p") [Gal(F/K)] X

defined in Section 5.2 is denoted by ¢"+1(zy, 4)F.N-
Let D be a set of pairs (F,N) of an intermediate field F' of K., /K, finite
over K and a positive integer IV satisfying the following property.

(D) For any intermediate field F of Koo /Ko satisfying Ko C ¢ F', there exists
a positive integer Ng such that (F,N) € D for any integer N satisfying N > Np.

Let b be an element of A, and let by be the image of b for any intermediate
field F of K /K satisfying K Cy F' and any positive integer N. We say that a
sequence (ap,N)rnyep converges to b= (bp,y) € A if and only if there exists a
subset D’ of D satisfying condition (D) such that ap y =bp n for any (F,N) €
D'. If a sequence (ar,N)(r,n)ep converges to b, we write lim(ar n) :=b.

By induction on r, we shall prove that

lim(gg[*+1 (xnr,q)F,N)F,N =307 70c(ezes)" det M, € A,
First, we consider the equality
Sandet M - ¢ (20, 4) = £0an070 7676 7 det M, - @rn (7).
Since the right-hand side converges to
+0a,076 70ceze 7 det My - det M
and dg, det M is a nonzero element, we obtain
lim(¢" (20, ,)FN)  y = £07070c22 7 det M.

(Note that the sign + does not depend on F’; see Proposition 5.6.)
Next, we assume

lim(g' (@n,_1,0)FN) gy = £02070c(e287)" " det M,y
Then, the right-hand side of
Seindet M1 - @'+ (z, q) = £danezes det My - @ (zn, , 4)
converges to
+0an070 70¢c(eze7)" det M, - det M,._;.
Since we take det M,._; # 0, we obtain
lim(él“rl (xnmq)p’N) PN +07070c(eze7)" det M.
By induction, in particular, we conclude that (¢'+1 (2n,q)F,n) converges to

i(SI(Sj(Sc(EIEJ)i det Mi.
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Since (xy,q)F N is contained in an Ry-submodule of (F*/pY), generated by
U Wrena (@)
ogqn
with e(qn) =14, we have g?)[i+1(xn7q)p,N € €; Ny for any finite extension field F
of K contained in K., and any positive integer N. Hence we have

(51(53(55 (€I€j)i det M; € Q:i,xa

and this completes the proof of Theorem 5.1. ]

6. Higher Fitting ideals for two-variable cases

Here, let us consider the two-variable case. We assume I' ~ Zg. Note that for any
prime ideal p of Ok above p, the decomposition subgroup D, in G has finite
index by the global class field theory. So, the height of the ideal Zp, of A, is
at least two if I' ~ Zg. In the two-variable case, our main theorem is stated only
in the following form, which is weaker than the results in the one-variable case,
Theorem 5.1.

THEOREM 6.1
Let x € A be a nontrivial character. If Ky contains p,, we assume X #w and
X #x tw. Assume I’ ~ Zg, and assume that we have one of the following:

- p splits completely in K/Q;

- p does not split in K/Q, and for the element p € T, the character x is
nontrivial on DA p.
Then, the following holds:

(1) If the character x is nontrivial on Da , for any p € T, we have

¢ql CFitty (X))
(2) For each i € Z>y, there exists a height-two ideal J; ,, of A, satisfying
Jinx Fitta (X)) C€sh.

Note that in the two-variable cases, we cannot give bounds for error factors
JLXI%% Indeed, as we will see later, our result for the two-variable cases fol-
low from the standard Euler system arguments for the proof of Iwasawa main
conjecture, so it is not so new or strong.

Proof of Theorem 6.1

The first assertion is proved in Corollary 4.7, so it is sufficient to prove the second
assertion. Note that X, is a finitely generated torsion A,-module, so we have a
pseudo-isomorphism

Lx: @Ax/fi/\x — X,

i=1
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where 7 is a positive integer, and the f;’s are nonzero elements of A, satisfying
fi'| fix1 for all i. By Example 2.10, it is sufficient to show that for any integer i
satisfying 0 <4 < — 1, there exists a height-two ideal I; of A, satisfying

(Jli[lfj) Leeh.

First, we set up the notation. Let e; € @._, A/ fiA, be the element 1 in
the ith summand A, /f;. For an intermediate field F' of K /Ky which is finite
over Ky and for any ¢ € Z satisfying 0 <7 <r, we denote the image of e; by the
composite map

@AX Jfihy 25 X, — Ap,
=1
by ¢, F € AF,x~

Fix a homomorphism ¢: &, — A, of A -modules with pseudo-null cok-
ernel. Let 0, € A, be a generator of chary, (s y/Coo,y). We put

B:= (o, - Cokerix) N (Ay - Z(Coo,xi #)),

where Zy and A are as in Proposition 2.1.

We denote the set of all continuous homomorphisms from I" to the discrete
group fipee by X. Note that any element p € X uniquely extends to a continu-
ous ring homomorphism p: A, — O, [us°]. For any f € A, we define a subset
X(f) € X and an ideal Z(f) by

X(f)={pex|p(f)=0},
Z(f) ={9€ A | p(g) =0 for any pe X(f)}.

If I C A, is a principal ideal generated by f, we define Z(I) :=Z(f). Note that
if T~ Zf” then the ideal

Z(char(Xy)) =Z(6y)

is height-two ideal of A, (see [Rul, Proposition 7.11]). We define a height-two
ideal B’ of A, by

B :=B- (Tr,NZ(0y))

and fix an element 0 € B’. Note that B’ C Z(Coo,y; ¥), S0 there exists an element

N ={nr}r € Cx,y satisfying ¢(n, ) = d6,.
Let F be an intermediate field of K, /K satisfying Ko C; F. We put Rp , :=
Z,[Gal(F/K)]y. Let N be any positive integer satisfying

PN6Rp C ([F 1 Kol#Ar 60y ) Rpy.
Let a be a map
(Zx)? = {nonzero ideals of Ok }? — Rp n .y

satisfying the condition (R) in Section 3.3 for the elliptic unit n:=np € Cp.
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By the argument in the proof of [Rul, Theorem 8.3], let us construct a
sequence {[;}71} of distinct prime ideals O prime to a(n,a) satisfying the fol-

lowing properties:

(S1) I; € SY™(F(n;_y)) for any i with 1 <i <7+ 1, where we put ng := Og
and n; := H;:l [; for i > 1;

(S2) the image of the ideal class of [; in Ag, coincides with ¢;  for any ¢
with 1 <i<r;

(S3) @Ry (K(n,050K)) = 640, ;

(S4) for any ¢ with 2 <7 <r+ 1, we have

frfi+2¢_5[}?"N7X (H(ﬂa a; ﬂz’—l)) = &;?&[X (5(77, a; nifZ)) .

First, we choose I;. By Proposition 2.1, we have § € T¢ and 62 € J¢. So, as in
the proof of Proposition 4.6, there exists a homomorphism ¢5: (€ /p™)x — Rx
which makes the diagram

PP N

(Coo) /PN — (Eson)F/PY Ry

_
-

///

- Ps

We N x(Okx) ——— (Er/p")y

commute. By Proposition 3.15, we can take the prime ideal [; of Ok prime to
a(nr,a) satisfying the following:

- the prime [; satisfies (S1) and (S2);

) ¢%,N,x|(5F/pN)x =1s.
Note that the second condition on [; implies condition (S3).

Next we choose [; for i > 2 inductively on 7. Let i be an integer satisfying
1 <i<r+1, and suppose that we have chosen distinct prime ideals {[j}é;ll
satisfying the conditions (S1)—(S4). Now let us find a prime ideal I;. Let W;_q
be the Rp ny-submodule of (F*/p"), generated by r(n,a;n;_1)y. By [Rul,
Lemma 8.2], there exists a homomorphism ;_1: W;_1 — Rp, N,y satisfying

fr—ivothi1= 54[']%,1\7,;(1 Wio1 — Rpnx.

(For details, see Lemma 8.2 and the arguments in the proof of [Rul, Theo-
rem 8.3].) By Proposition 3.15, we can find the prime ideal [; of Ok prime to
a(n,a) - n;— satisfying the following:

- the prime [; satisfies (S1);

- the prime [; satisfies (S2) if ¢ <r;

: ¢E’«£,N,X|W171 =i-1.

By the second condition on [; and Proposition 3.9, we have
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fr7i+2¢3%"N)X (fi(n, a; ﬂifl)) = fr7i+2/‘;i—l (5(77, a; nzél))

= [s(mani1)] o

= b (K0, asmi2)).

So, the sequence {I; };;11 satisfies the condition (S4). By induction on ¢, we obtain
the sequence {[; };i% satisfying the conditions (S1)—(S4).

Now, we shall vary F' and N and prove Theorem 6.1 by using the arguments
in Section 5.3. For any intermediate field F' of K /K satisfying Ky Cy F, for
any positive integer IV, and for any integer ¢ satisfying 1 <¢ <r 41, the element

@' (k(n,asmi—1)) € Rpny
is denoted by @" (k(n,a;n;—1))r n. By induction on i, we shall prove
r—i+1

hm(é[i (“(maéni—l))F,N)FN =g H fi€Ax

j=1
in the sense of Section 5.3.
First, by condition (S3), the sequence (¢" (k(n,a;no))rN)FN converges to
the element

540, = 0* T f; € A
j=1

Next, let ¢ be an integer with 1 <7 <r, and assume

r—i+1
lim (" ((, a; ni*1>)F,N)F,N =4 H fi €Ay
j=1
Then, condition (S4) implies
r—i+1

hm(fr—i-‘rl ' $[i+1 (’%(na a; ni))F,N)F,N = 64 ' H f]
=1

Since f; € A, is a nonzero element, we obtain

limggliJrl (K’(Tlv a; ni))F)N)FvN = 64 ' H f]
j=1
Therefore, by induction on i, we conclude that
B r—i+1
hm((]ﬁlt (H(n7a;ni—1))F,N)F,N = 54 H fj € AX
j=1

for any i satisfying 1 <i<r, and

lim(q_S“‘+1 (/i(n, a;nr))FﬁN)RN =5te Ay.
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This implies

([15) ocest

for any i € Z>o, where B” is the ideal of A, generated by {6 | € B'}. Note that
B" is a height-two ideal of A,, so this completes the proof. O
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