Krein’s strings whose spectral functions are
of polynomial growth

Shinichi Kotani

Abstract In the case of Krein’s strings with spectral functions of polynomial growth
a necessary and sufficient condition for the Krein’s correspondence to be continuous is
given.

1. Introduction

Let M be the totality of nondecreasing, right-continuous functions on [0, 00)
satisfying

and set

I =inf{z > 0;m(z) = oo},
a = inf{z > 0;m(x) > 0}.

For m € M denote @ (x),¥x(x) the solutions to
{ pa(r) =1=Af5 (z = y)ealy) dm(y),
Oa(z) =2 = Afy (x — y)a(y) dm(y),
and define

h()) = lim ¥a() = /l oa(z) "% da.
0

=1 O) (:C)

Then it is known that there exists a unique measure o on [0,00) satisfying

h(X) :a+/ooogiAdo(€),

and conversely, h determines m uniquely. Conventionally it is understood that for
m € M taking oo identically on [0,00) the h vanishing identically corresponds,
and for m € M vanishing identically on [0,00) the h taking identically oo cor-
responds. This is the theorem obtained by Krein [8], and m is called Krein’s
(regular) string. Later Kasahara [1] established the continuity for the correspon-
dence and applied it to show limit theorems for 1D diffusion processes with
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m their speed measures. Recently Kotani [7] extended Kasahara’s result to a
certain kind of singular strings m, namely, to m which is a nondecreasing and
right-continuous function on (—oo,00) satisfying

m(—00) =0,  m(z) < oo,
and
(1.1) /_ 2% dm(r) < oo

for some a. When the condition (1.1) is satisfied, the boundary —oo is called the
limit circle type for the associated generalized second-order differential operator
d?/dmdz. In this case he introduced a new h by

!

b = tim_ (o oaa) [ ) =+ /000(5%A — ) 4016

x

which satisfies

/ : a —2
h'(N\) [maAcpA(x) dz,
and proved the continuity of the correspondence between m and h. Probabilistic
applications of this result were given by Kasahara and Watanabe [2], [3], and it
was interpreted from the point of view of the excursion theory by Yano [9]. In
this article we consider m satisfying a milder condition than (1.1), namely,

a
/ || dm(z) < oo,
— 00

and obtain the continuity result under additional conditions on m, which allows
any power growth of the spectral measures at co.

2. Preliminaries
Let m(x) be a nondecreasing and right-continuous function on (—o0, 00) satisfy-
ing
m(—o0) =0, m(oo) < oo.
Set
l= sup{x > —oo,m(x) < —%—oo}7 l4+ = supsuppdm, [_ =inf suppdm.

Note that m(l) = oo if [ < co. Assume that

(2.1) / | dm(z) < oo

— 00
with some a € (I_,11). Let £ be the totality of nondecreasing functions m sat-
isfying (2.1). We exclude m vanishing identically on (—o00,00) from £. One can
regard dm as a distribution of weight, and in this case m works as a string. On the
other hand, one can associate a generalized diffusion process with generator L:



Krein's strings whose spectral functions are of polynomial growth 789

_d d

" dmdx
if we impose a suitable boundary condition if necessary. The condition (2.1) is
called an entrance condition in 1D diffusion theory developed by W. Feller, so
we say that m satisfies (2.1), a string of entrance type. For an entrance type m,
it is easy to show that for A € C an integral equation

o) =1-7[ (= p)ety)dmiy)

— 00

has a unique solution, which is denoted by ¢ (x). Introduce a subspace
L2(dm) = {f € L*(dm);supp f C (—oo,l)},

and for f € LZ(dm) define a generalized Fourier transform by

R !
o= / F(@)pr () dim(z).

Krein’s spectral theory implies that there exists a measure o on [0, c0) satisfying

l oo
(2.2) / £ ()|} dm(z) = / F©)Pdoe) for any f e L3(dm);

o is called a spectral measure for the string m. The nonuniqueness of such o
occurs if and only if
(2.3) Iy +m(ly) < oo.

The number (> [l1) possesses its meaning only when (2.3) is satisfied, and in
this case there exists a o satisfying (2.2) with the boundary condition

U+ =1)fT (1) =0

at l,. Here fT is the derivative from the right-hand side. If [ = co, then this
should be interpreted as

S =0,
At the left boundary /_ no boundary condition is necessary if [ = —oo, and if
l_ > —o0, then we impose the reflective boundary condition, namely,

f7(-)=0 the derivative from the left.

Generally, for a string m of entrance type it is known that for A < 0 there exists
uniquely f such that
{_Lf:/\f7 f>07f+§07f(l_):07
F@)p) (x) = fH(z)pa(z) = 1.
This unique f is denoted by f) and contains information of the boundary condi-
tion we are imposing on —L at the right boundary I, and f) can be represented
by ¢» as
1
dy

2.4 f>\m=<p>\x/—.
(24) (@) (@) « PA(Y)?
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The right-hand-side integral is always convergent for A < 0, because if supp dm #
¢, then choosing a € supp dm, we see for x > a,

%(@Zl—)\/

— 00

a

(- g)dm)=1-2 [ (- y)dn(y) 21 - A - am(a);

—0Q0

xT

hence

Ly ! dy
/m PNOE S/x - Ay —aym(@) =

for x > a. If suppdm = ¢, then | < co and
0 forx<l
2. = ’
(25) m(z) { oo for z >1,
which implies

1 forzx<l
ealz) =

oo for x>,

and

l
dy
/ISDA(Z/V

Here note that we have excluded m = 0 identically on (—o0,00); hence [ < co. If
m is a nondecreasing function of (2.5) the spectral measure vanishes identically
on [0,00). If m is oo identically on (—o00,00), then the spectral function o is
defined to be 0 identically on [0,00). Conversely, if a spectral measure vanishes
identically on [0,00), then the associated string m should be of (2.5). We note
that @y (x) is an entire function of minimal exponential type as a function of
A and the zeros of py(z) coincide with the eigenvalues of —L defined as a self-
adjoint operator on L?(dm, (—oc,]) with the Dirichlet boundary condition at =,
which means that ¢y (x) has simple zeros on (0,00). The Green function g, for
—L on L?(dm) is given by

9x(z,y) = gx(y, ) = fa(y)ea(2)
for x <y. The relationship between o and g is described by an identity

l l 0o | 7 2
| [ swni@imant i - [ HE
for any f € L?(dm), and

o) = [ 22 do(e),

through which o is determined uniquely from the string m. Distinct m’s may
give an equal o; namely, for a € R a new string

me(z) =m(z+a)
defines the same o, because

@) =palz+a),  f(@) =z +a),
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and hence
a a a oo r+a 2
9/\(5575”):wA(x)fA(x):gA(l"-Fa,:r—f—a):/ %(54/\)
0 _

On the other hand,
00 , AG a [e%e] 2
ey = [ gy g [T ),
0 0

hence an identity

do(€).

7a(§) =0(8)
should be held. Conversely, we have the following.

THEOREM 1 (SEE KOTANI [5], [6])
If two strings m1 and mq of £ have the same spectral measure o, then my(z+c) =
ma(x) for a c€R.

If we hope to obtain the continuity of the correspondence between m and o, we
have to keep the nonuniqueness in mind. Namely, for m of £ a sequence {my, },>1
of £ defined by

my(x) =m(x —n)

converges to the trivial function 0 as n — co. However, the associated o’s are
independent of n. Therefore, we shall give several alternative definitions of con-
vergence by imposing certain extra conditions (related to tightness) in addition
to pointwise convergence. Set

@) = [ =yt = [ )y

— 00 — 00

Then, the condition (2.1) is equivalent to
M(z) < oo
for x < I. Using a convention
[—00,a) = (—0,a), (a,00] = (a,00) and so on,
we can see that M is a nondecreasing convex function on (—oo,00) satisfying

M(z) =0 on (—o0,l_],
continuous and strictly increasing on [I_,1),
M (z) = o0 on (I,00).

For a fixed positive number ¢, we assume that
(2.6) 0e(l-,]] and M()>c
and normalize such an m by

(2.7) M(0) =c.
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Denote by £(¢) the set of all elements of £ satisfying (2.6), (2.7), and set
& = U g
c>0

In this definition of £, among functions satisfying (2.1) any function m defined
by (2.5) for some [ < oo is excluded from &;. Therefore, E\E; consists of m
satisfying (2.5) for some ! < co. The uniqueness of the correspondence between
m and ¢ holds under this normalization. Set

S =the set of all spectral measures for strings of £.

Any suitable characterization of S is not known yet; however, any measure on
[0, 00) with polynomial growth at co belongs to S.
We prepare a basic estimate for ¢y; @) can be represented as

oo

(2.8) oa@) = 3 (X" 6n (@),
where {¢,, }n>0 are

6ue) = [ =) r@amty), ool =1,

— 00

Then, the convergence of the above series can be shown by the following lemma.

LEMMA 1
©x 18 given by an absolute convergent series (2.8) and satisfies

|ox ()] < exp(]A[M(2)).

Proof
First we show that for any k>0,

M (z)*
(2.9) oula) < M)

holds. Observe that

Assuming (2.9) for some k, we have

ben@) < [ =) am()

& | ) = ke - W) ) ) dy
, B M(x)k'H
> k'/ M'( dy W,

which proves (2.9) for general k. Then the estimate of ¢, is clear. ]
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Here we clarify the convergence of a sequence of monotone functions taking value
0. For a nonnegative and nondecreasing function m which may take oo, set

2
m(x) = - tan"!'m(z), x€R.

Then we have
m(x) € [0,1]
and a right-continuous nondecreasing function satisfying
0 <m(—o0) <m(z) <m(l—)<m(l)=1,

if [ < oo. A sequence of nonnegative and nondecreasing functions m,, is defined
to converge to m as n — oo if

(2.10) My () = m(z)

holds at any point of continuity of m(z).

LEMMA 2
Suppose that m,, € £ converges to m € £ as n — oo. Then it holds that

n—oo

Proof
Let 2 <[ be a point of continuity for m. Then
M (z) = m(x) < 1;
hence
My () <1

for every sufficiently large n, which implies < [,, and completes the proof. [

The continuity of the correspondence from £ to S is not hard to show. Let m,,,m
be strings of £, and define the convergence of m,, to m by

(A) my(z) — m(z) for every point of continuity of m,
(B) limg oo sup,,>1 My (x) =0.

THEOREM 2

Suppose that m,, € E converge to m € £. Then, for every A <0 the Green func-
tions gg\n) (x,y) of the string m,, converge to the Green function gx(x,y) of m for
any x,y <l. In particular the spectral functions o, (€) converge to o(§) at every

point of continuity of o.

Proof
Under the conditions it is easy to see that the ¢-functions goE\")(x) of m,, con-
verge to the p-function ¢y (x) of m compact uniformly with respect to (z,\) €
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(—00,1) x C from the uniform bound for @&n) due to Lemma 1. Moreover, if
m(a) >0 at some a, a point of continuity of m, then there exists a positive
constant C' such that

P (y) =1 =AM, (y) > 1+ Cy —a)
holds for any y > a; hence

l
() (n) to 1
£ () = <x>/ L
» o\ ()2

also converge to fy(z). If suppm = ¢, namely, m(z) =0 identically on (—o0,l),
then
in) () =l—=

if I < o0o. The case | = oo is excluded. Consequently, we have

g\ (@y) = o0 WA (2) = oay) fa(z) = galz, y)

for any y < <. The identity

s (M) () (M)
ggn)(%y):/o Wdon(@

shows the last statement of the theorem. O

3. Scales and estimates by trace

The straight converse statement of Theorem 2 is hopeless to be true, because
there is no characterization for a measure o on [0,00) to be a spectral measure of
a string m € £. Therefore we prove the converse continuity of the correspondence
by imposing a condition on {o,}. In the process of the proof we have to estimate
©a(z)7? in terms of m. A better way to investigate o, (x) ™2 is to use probabilistic
methods. Recall that for each fixed a, ¢ (a) has simple zeros {j, }n>1 which are
eigenvalues of —L on (—o0,a] with Dirichlet boundary condition at « = a. Since
the Green function for this operator is

a—(zVy),
we see that
(3.1) > ot =tr(=L)7" :/_a (a —x)dm(z) = M(a) < oc.

Choosing a b < I, we denote by ¢5(¢?) the solutions of

d d . ! _ _ / — 1
,%%f:)\ﬂ with f(b) =1, f/(b) =0 (f(b) =0, f'(b) =1), respectively.

Then we see that an identity
pA(@) = oa(0)d} (2) + A ()Y (2)

holds. Lemma 1 implies that ¢x(b) and ¢} (b) are entire functions of at most
exponential type M (b) as functions of . On the other hand, ¢5(x) and % (z)
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are entire functions of order at most 1/2 as functions of A. Therefore we know
that p)(x) is an entire function of minimal exponential type, which combined
with (3.1) shows that

er@=T1(1-2)

n=1 Hn

For the detail refer to [5, p. 441]. Now let {X,},>1 be independent random
variables, each of which has an exponential distribution of mean 1. Then, an
identity

EeXp(Aiﬂﬁl n) = ﬁ (1 - H%)_l =pa(a)”!

holds. Therefore, letting {)N(n}nzl be independent copies of { X, },>1 and setting
Yo=Xpo+ X,  X=) 'Y,
n=1
we have

(3.2) oala)™? = Eexp(AX).

We denote X = X (a) if necessary, because the eigenvalue {fy, }n>1 depends on
the boundary a.

LEMMA 3

Suppose that the spectral measure o of an m € £ satisfies
(oo}
p(t) :/ e do(€) <oo for anyt>0.
0

Then, for any nonnegative Borel measurable function f on [0,00),

l %)
(3.3) /_ Ef(X(x)) do = /O p(t) f(t)dt

holds by permitting the integrals to take the value oo simultaneously.

Proof
From (2.4) it follows that for any « <[ and A <0.

1 oo @g(x)Q S
/ Ee)\X(y) dy _ Ee)\X(w) / g—A dO’(f) _ / EeA(X(I)H)p(t, x, x) dt
T 0 o 0

holds, where p(t,x,y) is the transition probability density defined by

plt,,y) = / e e (2) e (y) do (€).

Hence a functional monotone class theorem shows that the identity below holds
for any nonnegative bounded continuous function f on [0,00):

(3.4) /l E(f(X(y))e)‘X(y)) dy = /00 E(f(X(z)+ t)eMX(m)H))p(t,x,x) dt.

0
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Since, for t > 2M (x),

plt, ) = / T e () do(€) < / o626 do() = p(t - 2M (2))

holds, assuming f(t) =0 for ¢t < ¢, we see that

l oo
| BGE@)S ) dy= [ e
—o0 0
by letting  — —oo. Here we have used the fact that
X(z) =0 asxz— —oc0.

The rest of the proof is routine. O

Now we define a scale function ¢ on [0,1] as a function satisfying the following
properties:

(S.1) ¢ is strictly increasing, convex and ¢(0) =0, ¢'(1—) < oo;
(S.2) for each = >0,

m—-% < o0o;

v10 6(y)
(S.3) for each z € (0,1],

i 2Y)
w0 9(y)

The property (S.1) enables us to extend ¢ linearly to [1,00), namely,
p(z) =o(1) + ¢'(1-)(z — 1)

for £ > 1. Then ¢ becomes a nonnegative, convex, and nondecreasing function
on [0,00). Throughout the paper ¢ is always extended to [1,00) linearly in this
way. A regularly varying function at 0 satisfies the conditions (S.2) and (S.3).
Set

> 0.

) _ e Oy
GO < T e

Then C; becomes nonnegative, convex, and nondecreasing on [0, 00). It satisfies
the submultiplicative property

Ci(zy) < Cy(z)Ci(y)

for any z,y > 0; hence, setting

logC, (e”
a+:supL+(€) e [0,00)
z>1 X
we see that

Cy(x) <zt
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holds for any x > e. We note that a4 should not be less than 1 due to the
convexity of C. Since

P(xy) < Cy ()9 (y)

holds for any z,y > 0, we have

P(1) ay
¢(x) > (1)) >o(l)x

for any x € [0,1/e]. Therefore the property (S.2) restricts ¢ not to decay faster
than with a power order:

(3.5) P(zy) < Co(2)9(y).
C_ satisfies
C_(zy) =2 C_(x)C_(y)
for any x,y € [0,1]. Typical examples for functions satisfying (S.1)~(S.3) are
¢(z) =a%,  x%(c—logx),
where o > 1 and c is a sufficiently large positive constant.

LEMMA 4

Let {Y,, }n>1 be a sequence of identically distributed nonnegative random variables
with mean p, let {\,}n>1 be a nonnegative sequence satisfying

o0
Z Ap < 00,
n=1

and set

X = i MY
n=1

Then, we have the following.
(1) If ¢ satisfies (S.1), then
o(EX) < Bo(X).
(2) If ¢ satisfies (S.1) and (S.2), then

Bo(x) < (BCy (32))o(EX).

Proof

Jensen’s inequality implies the inequality in (1). To show the second inequality
we set

o0
mnzm_l)\n, m:E -
k=1
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Then (3.5) implies
— Y, =Y,
(X)) = ¢(mun§—1 mnz) < p(mu)Cy (ng_l mnz)

Since the function C is convex, we have

o (gflmn%) S AL

n=1

and

Bo(X) < d(mp) 3" maEC, () =exBCy (3F).

n=1

Let X be defined as in (3.2), and set

Y o0
C¢:EC+<;1> :/0 te 'C (t/2) dt < co.

LEMMA 5
We have the following.

(1) If ¢ satisfies (S.1), then

E(@(0M) 2 or(a) o [ " oa@)dm(a) / Coat) ).

—00 x

(2) If ¢ satisfies (S.1) and (S.2), then

B)eY) < Can(@)20( [ er@Pamia) [ ertn) 2 ay).

— 00 x

a

Proof
For a fixed A <0 let Z be a nonnegative random variable satisfying

Eet? = priu(a)pa(a)’ = ﬁ (1 - £ >_2-

n=1 Hn — )\
Then, note an identity
(3.6) E(¢(X)er) = pr(a) 2E(8(2)),
which can be shown from the observation
ok o
—2

W%(a)_2 =px(a) o (errn(a)*or(a)?) =0

for any k > 0, because this implies the identity when ¢(z) = 2. To apply Lemma 4
to Z we need to compute EZ. If we denote the Green operator for L on (—o0,a)
with Dirichlet boundary condition at a by G, then

a

Ga(,y) = @A(y)w(a?)/ pr(2)"2dz for x> y.

x
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Hence
_ L _ [ 2 ¢ -2
=trGy = ex(x) dm(z) | ea(y) " dy
— M — A —o00 T
holds, and we have the inequalities in the statement. O

The right-hand side of the inequalities in Lemma 5 can be estimated further.

LEMMA 6
For A <0 the following inequalities are valid:

1) [* _oa(@)?dm(z) [ ea(y) 2 dy > M(a)pxr(a)~2,
f_ooww2dm )[oa(y)~2dy < M(a) A (2822,

Proof
Inequality (1) and the first inequality of (2) follow from the monotonicity of
©a(2); namely, we have

/a o) 2dy > pa(a)2(a - ), /am@/)-?dysSoA(m)-?(a—x),

which implies

a

| e@rant) [ o aze@? [ @-dn = @M

— 00

and

| esaran) [ o)< [ (- odnt@) = M),

— 00 x — 00

The second inequality of (2) follows by using the equation satisfied by ¢y (z),

de\(y) = =Apaly) dm(y),
which yields

L]
- [ s [ o

= oA (1) (v) / oa(x)2d|"

Y

*/j w&(y)zdy/a¢x(2)’2d2+/f gig‘zi dy.

A0 [ @~ )y = o

—00

Noting

we see that
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a

A ewran) [ e 2a=loge@ - [

N= dy/ oa(2) "2 dz
Yy

<logpx (a) )
which completes the proof. O

As the last lemma in this section, we have the following.

LEMMA 7
The following two estimates hold.

(1) For any function ¢ satisfying (S.1) it holds that

o) !
(Apmamwﬁzfin@wmm*wmm*m.

(2) For any function ¢ satisfying (S.1), (S.2) it holds that

[Trwswetazs [ o(me n (EAD) o0 as

¢ -2 A (% oAt
§C’¢/ gb(M(a:))(pA(x) dx+c¢50')\(a)/0 o(t)e dt.

— 00

Proof
All we have to show is an estimate of the integral

[ (22D s

Noting the monotonicity of ¢x(z), ¢} (z), and px(z) > 1, we see that

[ ) s o
B ex(l) log 2 1
a /w(a) ¢( =A )z%&(wil(@) *

1 ) logzy dz -\ [ At
< — — < t dt.
__wﬂWA%¢AW»)%;m)¢(—A)ZQ__wﬂaLA olt)e 0

4. Continuity of the correspondence from S to £

In this section we give a partial converse of Theorem 2. The lemma below will
be useful later.

LEMMA 8
Let m,, € £, and let oy, be its spectral function. Suppose that
(4.1) nh_)n;o M, (,)=0

holds. Then c,,(§) — 0 for any £ > 0.
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Proof
Since M, (l,,) < 0o, we have [,, < 0o. Set My, (z) = my(x +1,). Then

(4.2) M, (0) — 0,
and its spectral measure coincides with o,. Since the condition (4.2) implies

0 for z <0,
oo for x>0

My () — {
in £, Theorem 2 shows o, — 0. O

THEOREM 3

Let my, € £, and let o, be its spectral function satisfying

Dn(t) :/ e do,(§) <oo  foranyt>0
0

and

(4.3) sup/0 pn(t)o(t) dt < 0o

n>1

for a function ¢ satisfying (S.1). Assume that there exists a nontrivial measure
o on [0,00) satisfying

on(§) = o (§)
at every point of continuity of o. Then
lim pn(t) :p(t)a lim Mn(ln) >0
n—0o0 n—00

hold. Choose ¢ such that
0<c< lim M,(l,),

n—oo

and define a, by the solution M, (a,) = c. Then there exists a unique m € A0
with spectral measure o, and it holds that m,(- + a,) = m in &; hence 0 € S.

Proof
For any € >0 and any N > 0,

[ mmtwetorae= [ oot [~ in @z e [T ean [ o

N
holds, and the condition (4.3) implies that there exists a constant C. such that

r im0

—2€e§
. e *%do, (&) <e ot~ ¢

is valid for any n, N, which yields

(4.4) pult) — p(t) = / T e do(e)
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as n — oo. Applying (3.3) to ¢(t)e* for A < 0 shows that

ln oo
/ E(¢(Xn(2))eM ) d = / ()N p(t) dt

—o0 0

SApMWWMﬂﬁ+MMZW@%@ﬁSC

with a constant C, where X,,(x) is defined by the eigenvalues {u,(x)},;>1 corre-
sponding to m,. Since we assume that the limiting spectral measure o is non-
trivial, Lemma 8 shows

lim M, (I,) > 0.

n—roo

For ¢ such that
0<c< lim M,(l,),

n—oo
define a,, by the solution M, (a,) = ¢, and set
mp(z) =my(z + ay).
Then m,, € £(®) and an inequality (1) of Lemma 7 imply

In In
/ E(¢(Xn(x))6AX"L(I))d$Z/ B (@) 20 (Ma()3" () 7?) da,

— 00 — 00

and from Lemma 1 we have

/_ N(n)( )~ (z)( (z )~(n)( )~ 2) dx>/_ln ezAM”(I)(b(Mn(x)eQAM”(I))d(E

0
> / 62/\C¢(]\A/[/n(x)62/\c) dx.

— 00

Thus

0
/ eZACQZ)(Mn(x)eZ)‘C) dr <C

— 00

is valid for any n > 1. Therefore, for any = < 0,

0
62)\6(—58)(25(]/\2”(13)62)\6) S/ e2Ac¢(Mn(y)e2Ac) dyS c,

which implies that {m,},>1 has a convergent subsequence in the sense of the
convergence in £, namely, the convergence under conditions (A) and (B). Since we
have proved (4.4), the uniqueness of the spectral measure in £ (©) and Theorem 2
complete the proof. O

COROLLARY 1
Suppose that a measure o on [0,00) satisfies

prwwﬁ<m
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with a function ¢ on [0,1] satisfying (S.1). Then, there exists an m € € with
spectral measure o in S.

Proof
Define o, by

Un(g){a(g) for £ <mn,

o(n) for &€ >n.

Then this o, satisfies all the conditions of Theorem 3. Applying the theorem we
easily obtain the corollary. O

This corollary provides a plenty of spectral measures in S growing faster than
any power order at oo.

5. Continuity of the correspondence between &£; and S,

In this section we give a necessary and sufficient condition for the continuity of
the correspondence by restricting the order of growth of spectral measures at co.
We call ¢ a scale function if it satisfies conditions (S.1), (S.2), and (S.3). For a
scale function ¢ set

5¢:{m€€;[

5¢_ /¢> d£<oo}

a6 = /0 e gty dt

a

¢(M () dz < oo for Ja € (l_,l+)},

and
where

It is easy to see that

/ qb o(df) <oo<:>/ t)dt < 0.

Moreover, from the properties of scales, it is always valid that for o € Sy,

/Ooﬁfafla(dﬁ) < o0
1

for an a > 1. On the other hand, if m € £,, Lemma 7(2) yields

/Oop(t)gb(t)e*tdtg@/a o(M(z))pr(z)"? da:+C¢ / P(t)e dt
0

— 00

§C¢/a o(M ())d$+0¢ /cb )eM dt.

— 00

Therefore, it holds that

/0 T pH)p(0)e di < oo,
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which shows o € §4. Conversely, assume o € Sy. Then

oo 1 ')
6)\t — €>\t e/\t
/0 p(H)d(t)e dt / p(t)b(t)eM dt + / (DBt dt

< [ tstyar+p) [ ot dr <o

for any A < 0. Therefore,

!
| oa@er@)2)erta) o <o
holds. Since ¢ satisfies the condition (S.3)
P(M(z)pa(2) %) 2 C— (pa2)7?) (M (2))
holds. Due to
QO)\(.T)_Q > 62/\M(x)

and M(xz) — 0 as x — —o0, we easily see that
a
/ ¢(M(z)) dx < oo,
— 00
which implies that m € £;. Therefore, a string belongs to &, if and only if its
spectral measure is an element of S.

For ¢ let m,,,m be strings of £, and define the convergence of m,, to m in
5¢. by

in addition to the condition (A). The convergence of spectral measures in S, is
defined by

(A") 0,(&) = o(&) at every point of continuity of o,
(C') Hmy—soosup, >y [y ¢(§)on(d€) = 0.
An equivalent statement is possible by p(t):

(A") pp(t) — p(t) for any t >0,
(C”) limeyosup,,>, fo pn(t)d(t) dt =0.
Set
£ =€,new.

THEOREM 4
Let {0, }n>1,0 be elements of Sy, and let my,,m € S;C) be the strings correspond-

ing to op, o, respectively. Then, m, — m in Sg) if and only if 0, = 0 in Sp.

Proof
Suppose that m,, — m in Eéf). Then, Theorem 2 shows the validity of the condi-
tion (A’). Therefore we have only to check the condition (C”). From Lemma 7(2),
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0

/ o ar<c, [

—0o0

_ —A o
6 (Mo (@))\" ()72 da + Cy—gr— / o(t)e dt
ey (0)Jo
is valid. Fix € > 0, and choose a < 0 such that

C’¢/a (M (z)) dx <e

— 00

for any n > 1. Since Mn(z),gof\")(a:) converge to M(z),px(z) uniformly on
(—00,0], and the estimate

P (0) > 1 =AM, (0) =1— Ac
shows that if —X\ is sufficiently large, then

0
C’¢/ gZ)(Mn(:c))(pg\") () 2dx <e
is valid for any n > 1. Moreover, due to ¢ > 0,

lim m,, (0) >m(0—) >0

n—oo

holds; hence

— ~ At 1 o A
C¢m/0 (t)e dt§C¢mn(O)/0 S(t)eM dt < €

also holds for any n > 1 if we choose sufficiently large —\, which implies that

sup /oopn(t)qb(t)e)‘t dt < 3e.
0

n>1

From

—1/x ~
/ Pn(t)o(t)dt < 6/ P (t)d(t)eMN dt < 3ee
0 0

the condition (C”) is confirmed. Conversely, assume that o,, — ¢ in Sy. Then
Theorem 3 shows that the condition (A) holds. Hence we have only to check the
condition (C). From Lemma 7(1),

00 l
/0 Pa(t)p(t)e di > / o (M (2)o" () )" (2) * da
follows. The property (S.3) implies

O (Mo ()8 (2)72) = C (17 (@) 72) 6 (My (),
and, as was pointed out in the proof of Theorem 3, @g\") () = 1 as & = —o0 uni-

formly with respect to n. Therefore, the condition (C”) guarantees the condition
(C). O

The last theorem can be restated as the convergence in &.

THEOREM 5

Let {oy,}n>1,0 be elements of Sy, and let my,, m € &, be the strings corresponding
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to oy, o respectively. Assume that o, — o in S¢ and o is nontrivial. Then, there

ezist a sequence {an}tn>1 in R and ¢ >0 with m, (- +a,) € Séc), and

Mp(-+ an) = m

holds in E,.

Proof

Since o is nontrivial, we can apply Lemma 8. The rest of the proof is clear from
Theorem 4. ]

For applications it will be helpful to rewrite the condition (C) as Kasahara and
Watanabe did in [4].

LEMMA 9
Assume that ¢ satisfies (S.1). Then a sequence {m,}n>1 converges to m in &
if and only if {my}n>1 and m satisfy the condition below.

(D) For any x € R,
| o0nw)ar— [ s(rw)ay.

Similarly the set of conditions (A’) and (C') is equivalent to (D'), and that of
(A”) and (C") is equivalent to (D).

(D) For any A <0,
/ Ooq”s@ — N (d€) — / w%(f — Mo (d).
0 0

(D) For any A <0,
| mwowe = [ pwoe an
0 0

Proof
Assume that my, — m in ;. Then, (C) implies that there exists ¢ < such that

/ " o(Ma(y) dy < 1.

— 0o

Hence for any = < ¢,
(&

(M (2)) (c — 2) < / (M () dy < / 6(My () dy <1,

x — 00

C

which shows that

M, () <67 1 )

c—x
for any n > 1 and x < c¢. Then it is easy to see that M, (z) — M (x) at every point
x, and this together with (C) implies (D). Conversely, for any € > 0, choose ¢ < [
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such that

c
/ o(M(y)) dy <e.
Then, clearly (C) follows from (D). The condition (A) can be derived from (D)
by the monotonicity of ¢ and M,,. We omit the proof for (D’) and (D”). O

6. Application
Typical examples of m belonging to £ are

CoxP r>0if0<a<l,
ma(z) = ¢ €° reRifa=1 with 8=
Co(—2)? 2<0ifa>1,

«
b
a—1

and the spectral measures and p(t) are

a2a a2(x

dé-aa pa(t) = 7t_aa

G T(1+a)

L(1+a)?

where

o (Loya,  0<ac<l,
R = N
In this section we consider the asymptotic behavior of the spectral measures and

the transition probability densities when strings are close to the above typical
ones. If o € (0,2), the following results are already known. Here we denote

f(@)~g(x) asz10 (@ — o)

@) )
im o= (g =1)

hold, respectively. Let ¢ be a function regularly varying at 0 with exponent o —1.

THEOREM 6 (SEE [1], [4])

The following asymptotic relationship between m and p is valid.

(1) If € (0,1), then

—B)8
m(x) ~ x(go—ﬁl)(x) as 1 0o
holds if and only if
a? 1 /1
PO~ i1 a) ZSD<¥> as 1 = co.
(2) If € (1,2), then
38
m(x) ~ S as 10

holds if and only if
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a2 1

P(t) ~ m;@(%) as t — o0.

They showed an analogous result in the case o« = 1 in Kasahara and Watanabe [4].
In this section we extend their results to the case o > 2 by applying Theorem 4.
The basic idea, which was first employed by Kasahara [1], is to use the continuity
between m and p and the scaling relationship

(6.1) abm(azx) <> %p(bilt)

for any a,b > 0. The proof proceeds as in [4], especially in the case o = 1.
Let m € £ be a nondecreasing function with [ = 0; namely, let

m(z) <oo on (—o0,0) and m(z) =00 on (0,00).
Let ¢ be a regularly varying function at 0 with exponent o — 1, and set
m,(z) =ve t(v)m(ve).
Then from (6.1) we have
M, (x) =@~ (V)M (vz),
1

(6.2) po(t) =v o () el (v) 1),
o, (&) =v e () lo(e T (v)€).

To consider an extension of Theorem 6 we introduce conditions on m and o:

B8P
(63) m(sc) ~ m as T TO,
which means that
(6.4 M)~ 1
6.4 r)~-——"7—7F—— aszTO0,
(B=1)p =)
and
(6.5) p(t) = / e " do(€) <oo for any t > 0.
0
PROPOSITION 1
If m € € satisfies (6.3), then it holds that
aQa o
(6.6) o(&) ~ mﬁ as § 0.

Moreover, if m satisfies (6.5) as well, then (6.7) below holds:

a? 1 /1
Proof
Since

M) = [ )y =7 )M (w)
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holds, from (6.4) we know that
B8

M, (z)— ﬂ(—m)lfﬁ as v —0
for any « < 0, which means that {M,} satisfies the condition (B). Applying
Theorem 2 yields

a2a
—&* 0
F(1+a)2§ or any & >
as v — 0, which is equivalent to (6.6) due to (6.2). If we assume the condition
(6.5) as well on o, the Abelian theorem for the Laplace transform shows the
property (6.7). O

Uu(g) -

To obtain a converse statement to the above proposition we need the following.

LEMMA 10
Assume that o € S satisfies condition (6.5) and a condition
1
(6.8) / p(t)e(t) dt < oo
0
for a positive function ¢ on [0,1] satisfying
(6.9) P(st) < Cthp(s) for any s,t <1 for some k> a — 1.
Then {p,(t)} satisfies condition (4.3), namely,
1

(6.10) sup/ o (t)p(t) dt < 0.

v>0.J0
Proof

Since ¢ is a regularly varying function at 0 with exponent o — 1, t~1p(t71) is
regularly varying at oo with exponent —a, and there exists a slowly varying
function I(¢) such that

1 /1

- =) =t7%(1).

t? ( t) ®)
Generally a slowly varying function {(¢) has an expression

t
(6.11) 1(t) = e(t) exp(/ @du)
o U

with a positive constant a and functions c¢(t), €(t) behaving as

c(t) = ¢>0, €(t) =0 ast— oo.

Now we decompose the integral in (6.10) into two parts:

/pl,(t)qb(t)dt:y_lcp_l(u)_l/ p(ap_l(z/)_lt)(b(t)dt:h—i—lg
0 0
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with
I =v o~ (v) fNW oy e ) T)e(t) dt,
{ L=v7 e W) T b ) s dty
where N is chosen so that
le(u)| <6 for any u> N
holds with a positive ¢ satisfying § < k — (a—1). Since the condition (6.7) implies

ple” (v)™'t) :
e =

for any t > No~!(v) with some constant C’, we have

Il <C/ —1 —1( ) 1+al((p_1(1/)_1) /val(u) t_a ll((i_l((l;))_lt)) (b(t) dt.

First note that

v ) T (T ) ) = v e T ) T e T () e (e () = 1,

(o' () 't) o ew) [P ew)
ufo—l(u)-l)‘“p(L ¢ ’/a )

e )Tt
:exp(—/ @du)
e i)t U

<exp(dlogt™!) =172,

In (6.9) setting s =1, we have ¢(t) < C¢(1)t*; hence

1 1
I < C’/ t=t0p(t) dt < CC’¢(1)/ t=aotk g
0

Ne=1(v)

is valid. Due to (6.9) I> can be estimated as

N
I, = 1/*1/0 p(s)d)(cpfl(z/)s) ds

N N
<O e @) [ potsnds <o [ gt ds,
0 0
where 4’ > 0 can be chosen so that
-1+ LI >0
a—1

holds. Consequently, we have

1 1 N , N
[ nwetyae<ccron) [ eesthars om0 ds
0

0 0
and (6.8) implies the second assertion of (6.10). O
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REMARK 1
The property (6.9) is satisfied not only by ¢(t) =t* with k > a — 1 but also by
subexponential functions: for p > 1,¢> 0,

d(t) = exp(—c(—logt)?).

Within the knowledge of the previous sections the best converse statement to
Proposition 1 is as follows.

PROPOSITION 2

Let m € € be a nondecreasing function with | =0 and M(0) = co. Assume that
o €8 satisfies the conditions (6.5) and (6.8) with a positive function ¢ on [0,1]
satisfying (S.1) and (6.9). Then the property (6.6) (equivalently, (6.7)) implies
(6.3).

Proof
First note that (6.6) is equivalent to

a20¢

I'(1+a)?
as v — 0. Since we are assuming that M (0) = oo,

M, (0) = ¢~ (1) M(0) = 00

o, (&) = £* for any £ >0,

holds for any v > 0, and there exists uniquely a, < 0 such that
5ﬁ

MV(aI/) = ﬁ

C.

Set
M, (z) = M, (z + a, +1).

Then, taking —1 instead of 0 as a normalization point, Lemma 10 makes it
possible to apply Theorem 3, and we have the following;:

—~ c(—x)=7 for x <0,
My(x)_){oo for z >0

holds in £ as v — 0, from which

B c(—z)'=# for x <0,
(6.12) e (WM (v(z+ay +1)) — {oo for >0

follows. To simplify the involved formula (6.12) we take their inverse. Set
u=M(v(z+a,+1)), A=co t(v)
Since ¢~ (v)M (va,) = ¢, we easily see that
oA (@ +1)+ MY\ =M (u).
Denoting y = A~ tu, (6.12) is equivalent to
y— (—2)'77,
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from which
M~'(Ay) — M)
p(eA 1)

follows for any y >0 as A — oco. Since ¢ is regularly varying at 0 with exponent

=r4+1—1—y B

a—1,

@(C)‘_l) a—1 -1 _«

—c =(a—1)""a% as \— oo,

PO @y

and
. Mﬁl()‘z)iMil(/\) -1« —(a—1

(6.13) Jim SO =(a—1)"ta®(1 -z @)
follows. Then Lemma 11 below shows (6.3). O
LEMMA 11

(6.13) implies (6.3).

Proof
Assume (6.13). Since M ~!(x) has a monotone density

the monotone density theorem implies

lim (Mfl(m - Mﬁl(A))/ = ((a - 1) a1 -z~ @)Y/,

A—00 (,D()\fl)
which is
lim A =a%z™®
Asoo oA Hm(M—1(\x))
Setting x =1 and u = M ~*(\), we have
M
lim _ M =a“

u=0 (M (u) = )m(u)
For any e > 0 there exists § > 0 such that for any u € (—4,0),

e M) ()
- M(u)

is valid. Noting m(u) = M (u)’, we see that

<a %+e€

0 —1
(@™ —¢€)(—z) < / % dM(u) < (@™ +€)(—x)

for any x € (—6,0); hence

e -1 M(z)™! .
(a7 —¢)(—x) < / P) dy = /0 #(2) dz < (a™% 4 ¢€)(—x).

Since (z)/z is a regularly varying function at 0 with exponent « — 2,
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/y@dwv—(p(y) asyl 0
0 a—1

z

is valid, which implies

—1
—80(]\;[(_55)1 ) ~a *(—z) asz10;
hence
56
M(x) ~ 51 (=)' asz10.
This is equivalent to (6.3). O

In the above two propositions we stated the conditions which should be satisfied
by m € £ in terms of its spectral function o. It may be preferable to describe
the result by m itself directly. To do so, unfortunately we have to impose a more
restrictive condition on m, and combining Propositions 1 and 2 we have the
following.

THEOREM 7
Let a > 2, let k> a — 1, and let ¢ be a regularly varying function at 0 with
exponent o — 1. Let m € € be a nondecreasing function with 1 =0 and M (0) = co.
Assume that m satisfies

-1

M (z)F dz < co.
— 00
Then, the property
()~ =21 (1) t—
~————p(=) as 00
PO~ Tra+a) "\t
holds if and only if the asymptotics below is valid:
g8
~ — 0~
m(x) sy as ¢t
Proof
The proof is immediate from the above two propositions if we observe ¢(t) = t*
satisfies all the requirements needed in Proposition 2. O
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