
Krein’s strings whose spectral functions are
of polynomial growth
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Abstract In the case of Krein’s strings with spectral functions of polynomial growth

a necessary and sufficient condition for the Krein’s correspondence to be continuous is

given.

1. Introduction

Let M be the totality of nondecreasing, right-continuous functions on [0,∞)

satisfying

m(0−) = 0, m(x)≤∞,

and set {
l= inf{x≥ 0;m(x) =∞},
a= inf{x≥ 0;m(x)> 0}.

For m ∈M denote ϕλ(x), ψλ(x) the solutions to{
ϕλ(x) = 1− λ

∫ x

0
(x− y)ϕλ(y)dm(y),

ψλ(x) = x− λ
∫ x

0
(x− y)ψλ(y)dm(y),

and define

h(λ) = lim
x→l

ψλ(x)

ϕλ(x)
=

∫ l

0

ϕλ(x)
−2 dx.

Then it is known that there exists a unique measure σ on [0,∞) satisfying

h(λ) = a+

∫ ∞

0

1

ξ − λ
dσ(ξ),

and conversely, h determines m uniquely. Conventionally it is understood that for

m ∈M taking ∞ identically on [0,∞) the h vanishing identically corresponds,

and for m ∈M vanishing identically on [0,∞) the h taking identically ∞ cor-

responds. This is the theorem obtained by Krein [8], and m is called Krein’s

(regular) string. Later Kasahara [1] established the continuity for the correspon-

dence and applied it to show limit theorems for 1D diffusion processes with
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m their speed measures. Recently Kotani [7] extended Kasahara’s result to a

certain kind of singular strings m, namely, to m which is a nondecreasing and

right-continuous function on (−∞,∞) satisfying

m(−∞) = 0, m(x)≤∞,

and

(1.1)

∫ a

−∞
x2 dm(x)<∞

for some a. When the condition (1.1) is satisfied, the boundary −∞ is called the

limit circle type for the associated generalized second-order differential operator

d2/dmdx. In this case he introduced a new h by

h(λ) = lim
x→−∞

(
x+ϕλ(x)

∫ l

x

dy

ϕλ(y)2

)
= a+

∫ ∞

0

( 1

ξ − λ
− ξ

ξ2 + 1

)
dσ(ξ),

which satisfies

h′(λ) =

∫ l

−∞

∂

∂λ
ϕλ(x)

−2 dx,

and proved the continuity of the correspondence between m and h. Probabilistic

applications of this result were given by Kasahara and Watanabe [2], [3], and it

was interpreted from the point of view of the excursion theory by Yano [9]. In

this article we consider m satisfying a milder condition than (1.1), namely,∫ a

−∞
|x|dm(x)<∞,

and obtain the continuity result under additional conditions on m, which allows

any power growth of the spectral measures at ∞.

2. Preliminaries

Let m(x) be a nondecreasing and right-continuous function on (−∞,∞) satisfy-

ing

m(−∞) = 0, m(∞)≤∞.

Set

l= sup
{
x >−∞,m(x)<+∞

}
, l+ = supsuppdm, l− = inf suppdm.

Note that m(l) =∞ if l <∞. Assume that

(2.1)

∫ a

−∞
|x|dm(x)<∞

with some a ∈ (l−, l+). Let E be the totality of nondecreasing functions m sat-

isfying (2.1). We exclude m vanishing identically on (−∞,∞) from E . One can

regard dm as a distribution of weight, and in this case m works as a string. On the

other hand, one can associate a generalized diffusion process with generator L:
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L=
d

dm

d

dx

if we impose a suitable boundary condition if necessary. The condition (2.1) is

called an entrance condition in 1D diffusion theory developed by W. Feller, so

we say that m satisfies (2.1), a string of entrance type. For an entrance type m,

it is easy to show that for λ ∈C an integral equation

ϕ(x) = 1− λ

∫ x

−∞
(x− y)ϕ(y)dm(y)

has a unique solution, which is denoted by ϕλ(x). Introduce a subspace

L2
0(dm) =

{
f ∈ L2(dm); suppf ⊂ (−∞, l)

}
,

and for f ∈ L2
0(dm) define a generalized Fourier transform by

f̂(λ) =

∫ l

−∞
f(x)ϕλ(x)dm(x).

Krein’s spectral theory implies that there exists a measure σ on [0,∞) satisfying

(2.2)

∫ l

−∞

∣∣f(x)∣∣2 dm(x) =

∫ ∞

0

∣∣f̂(ξ)∣∣2 dσ(ξ) for any f ∈ L2
0(dm);

σ is called a spectral measure for the string m. The nonuniqueness of such σ

occurs if and only if

(2.3) l+ +m(l+)<∞.

The number l(≥ l+) possesses its meaning only when (2.3) is satisfied, and in

this case there exists a σ satisfying (2.2) with the boundary condition

f(l+) + (l− l+)f
+(l+) = 0

at l+. Here f+ is the derivative from the right-hand side. If l = ∞, then this

should be interpreted as

f+(l+) = 0.

At the left boundary l− no boundary condition is necessary if l− =−∞, and if

l− >−∞, then we impose the reflective boundary condition, namely,

f−(l−) = 0 the derivative from the left.

Generally, for a string m of entrance type it is known that for λ < 0 there exists

uniquely f such that{
−Lf = λf, f > 0, f+ ≤ 0, f(l−) = 0,

f(x)ϕ+
λ (x)− f+(x)ϕλ(x) = 1.

This unique f is denoted by fλ and contains information of the boundary condi-

tion we are imposing on −L at the right boundary l+, and fλ can be represented

by ϕλ as

(2.4) fλ(x) = ϕλ(x)

∫ l

x

dy

ϕλ(y)2
.
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The right-hand-side integral is always convergent for λ < 0, because if suppdm �=
φ, then choosing a ∈ suppdm, we see for x > a,

ϕλ(x)≥ 1− λ

∫ x

−∞
(x− y)dm(y)≥ 1− λ

∫ a

−∞
(x− y)dm(y)≥ 1− λ(x− a)m(a);

hence ∫ l

x

dy

ϕλ(y)2
≤
∫ l

x

dy

(1− λ(y− a)m(a))2
<∞

for x > a. If suppdm= φ, then l <∞ and

(2.5) m(x) =

{
0 for x < l,

∞ for x > l,

which implies

ϕλ(x) =

{
1 for x < l,

∞ for x > l,

and ∫ l

x

dy

ϕλ(y)2
= l− x <∞.

Here note that we have excluded m= 0 identically on (−∞,∞); hence l <∞. If

m is a nondecreasing function of (2.5) the spectral measure vanishes identically

on [0,∞). If m is ∞ identically on (−∞,∞), then the spectral function σ is

defined to be 0 identically on [0,∞). Conversely, if a spectral measure vanishes

identically on [0,∞), then the associated string m should be of (2.5). We note

that ϕλ(x) is an entire function of minimal exponential type as a function of

λ and the zeros of ϕλ(x) coincide with the eigenvalues of −L defined as a self-

adjoint operator on L2(dm, (−∞, x]) with the Dirichlet boundary condition at x,

which means that ϕλ(x) has simple zeros on (0,∞). The Green function gλ for

−L on L2(dm) is given by

gλ(x, y) = gλ(y,x) = fλ(y)ϕλ(x)

for x≤ y. The relationship between σ and gλ is described by an identity∫ l

−∞

∫ l

−∞
gλ(x, y)f(x)f(y)dm(x)dm(y) =

∫ ∞

0

|f̂(ξ)|2
ξ − λ

σ(dξ)

for any f ∈ L2(dm), and

gλ(x, y) =

∫ ∞

0

ϕξ(x)ϕξ(y)

ξ − λ
dσ(ξ),

through which σ is determined uniquely from the string m. Distinct m’s may

give an equal σ; namely, for a ∈R a new string

ma(x) =m(x+ a)

defines the same σ, because

ϕa
λ(x) = ϕλ(x+ a), fa

λ (x) = fλ(x+ a),
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and hence

gaλ(x,x) = ϕa
λ(x)f

a
λ (x) = gλ(x+ a,x+ a) =

∫ ∞

0

ϕξ(x+ a)2

ξ − λ
dσ(ξ).

On the other hand,

gaλ(x,x) =

∫ ∞

0

ϕa
ξ (x)ϕ

a
ξ (x)

ξ − λ
dσa(ξ) =

∫ ∞

0

ϕξ(x+ a)2

ξ − λ
dσa(ξ);

hence an identity

σa(ξ) = σ(ξ)

should be held. Conversely, we have the following.

THEOREM 1 (SEE KOTANI [5], [6])

If two strings m1 and m2 of E have the same spectral measure σ, then m1(x+c) =

m2(x) for a c ∈R.

If we hope to obtain the continuity of the correspondence between m and σ, we

have to keep the nonuniqueness in mind. Namely, for m of E a sequence {mn}n≥1

of E defined by

mn(x) =m(x− n)

converges to the trivial function 0 as n → ∞. However, the associated σ’s are

independent of n. Therefore, we shall give several alternative definitions of con-

vergence by imposing certain extra conditions (related to tightness) in addition

to pointwise convergence. Set

M(x) =

∫ x

−∞
(x− y)dm(y) =

∫ x

−∞
m(y)dy.

Then, the condition (2.1) is equivalent to

M(x)<∞

for x < l. Using a convention

[−∞, a) = (−∞, a), (a,∞] = (a,∞) and so on,

we can see that M is a nondecreasing convex function on (−∞,∞) satisfying⎧⎨⎩
M(x) = 0 on (−∞, l−],

continuous and strictly increasing on [l−, l),

M(x) =∞ on (l,∞).

For a fixed positive number c, we assume that

(2.6) 0 ∈ (l−, l] and M(l)≥ c

and normalize such an m by

(2.7) M(0) = c.
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Denote by E(c) the set of all elements of E satisfying (2.6), (2.7), and set

E+ =
⋃
c>0

E(c).

In this definition of E+ among functions satisfying (2.1) any function m defined

by (2.5) for some l ≤ ∞ is excluded from E+. Therefore, E\E+ consists of m

satisfying (2.5) for some l <∞. The uniqueness of the correspondence between

m and σ holds under this normalization. Set

S = the set of all spectral measures for strings of E .

Any suitable characterization of S is not known yet; however, any measure on

[0,∞) with polynomial growth at ∞ belongs to S .
We prepare a basic estimate for ϕλ; ϕλ can be represented as

(2.8) ϕλ(x) =

∞∑
n=0

(−λ)nφn(x),

where {φn}n≥0 are

φn(x) =

∫ x

−∞
(x− y)φn−1(y)dm(y), φ0(x) = 1.

Then, the convergence of the above series can be shown by the following lemma.

LEMMA 1

ϕλ is given by an absolute convergent series (2.8) and satisfies∣∣ϕλ(x)
∣∣≤ exp

(
|λ|M(x)

)
.

Proof

First we show that for any k ≥ 0,

(2.9) φk(x)≤
M(x)k

k!

holds. Observe that

φ1(x) =

∫ x

−∞
(x− y)dm(y) =M(x).

Assuming (2.9) for some k, we have

φk+1(x)≤
1

k!

∫ x

−∞
(x− y)M(y)k dm(y)

=
1

k!

∫ x

−∞

(
M(y)− k(x− y)M ′(y)

)
M(y)k−1M ′(y)dy

≤ 1

k!

∫ x

−∞
M ′(y)M(y)k dy =

M(x)k+1

(k+ 1)!
,

which proves (2.9) for general k. Then the estimate of ϕλ is clear. �
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Here we clarify the convergence of a sequence of monotone functions taking value

∞. For a nonnegative and nondecreasing function m which may take ∞, set

m̂(x) =
2

π
tan−1m(x), x ∈R.

Then we have

m̂(x) ∈ [0,1]

and a right-continuous nondecreasing function satisfying

0≤ m̂(−∞)≤ m̂(x)≤ m̂(l−)≤ m̂(l) = 1,

if l <∞. A sequence of nonnegative and nondecreasing functions mn is defined

to converge to m as n→∞ if

(2.10) m̂n(x)→ m̂(x)

holds at any point of continuity of m̂(x).

LEMMA 2

Suppose that mn ∈ E converges to m ∈ E as n→∞. Then it holds that

lim
n→∞

ln ≥ l.

Proof

Let x < l be a point of continuity for m̂. Then

m̂n(x)→ m̂(x)< 1;

hence

m̂n(x)< 1

for every sufficiently large n, which implies x < ln and completes the proof. �

The continuity of the correspondence from E to S is not hard to show. Let mn,m

be strings of E , and define the convergence of mn to m by

(A) mn(x)→m(x) for every point of continuity of m,

(B) limx→−∞ supn≥1Mn(x) = 0.

THEOREM 2

Suppose that mn ∈ E converge to m ∈ E . Then, for every λ < 0 the Green func-

tions g
(n)
λ (x, y) of the string mn converge to the Green function gλ(x, y) of m for

any x, y < l. In particular the spectral functions σn(ξ) converge to σ(ξ) at every

point of continuity of σ.

Proof

Under the conditions it is easy to see that the ϕ-functions ϕ
(n)
λ (x) of mn con-

verge to the ϕ-function ϕλ(x) of m compact uniformly with respect to (x,λ) ∈
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(−∞, l) × C from the uniform bound for ϕ
(n)
λ due to Lemma 1. Moreover, if

m(a) > 0 at some a, a point of continuity of m, then there exists a positive

constant C such that

ϕ
(n)
λ (y)≥ 1− λMn(y)≥ 1 +C(y− a)

holds for any y > a; hence

f
(n)
λ (x) = ϕ

(n)
λ (x)

∫ ln

x

1

ϕ
(n)
λ (y)2

dy

also converge to fλ(x). If suppm= φ, namely, m(x) = 0 identically on (−∞, l),

then

f
(n)
λ (x)→ l− x

if l <∞. The case l=∞ is excluded. Consequently, we have

g
(n)
λ (x, y) = ϕ

(n)
λ (y)f

(n)
λ (x)→ ϕλ(y)fλ(x) = gλ(x, y)

for any y ≤ x < l. The identity

g
(n)
λ (x, y) =

∫ ∞

0

ϕ
(n)
ξ (x)ϕ

(n)
ξ (y)

ξ − λ
dσn(ξ)

shows the last statement of the theorem. �

3. Scales and estimates by trace

The straight converse statement of Theorem 2 is hopeless to be true, because

there is no characterization for a measure σ on [0,∞) to be a spectral measure of

a string m ∈ E . Therefore we prove the converse continuity of the correspondence

by imposing a condition on {σn}. In the process of the proof we have to estimate

ϕλ(x)
−2 in terms of m. A better way to investigate ϕλ(x)

−2 is to use probabilistic

methods. Recall that for each fixed a, ϕλ(a) has simple zeros {μn}n≥1 which are

eigenvalues of −L on (−∞, a] with Dirichlet boundary condition at x= a. Since

the Green function for this operator is

a− (x∨ y),

we see that

(3.1)

∞∑
n=1

μ−1
n = tr(−L)−1 =

∫ a

−∞
(a− x)dm(x) =M(a)<∞.

Choosing a b < l, we denote by φb
λ(ψ

b
λ) the solutions of

− d

dm

d

dx
f = λf, with f(b) = 1, f ′(b) = 0

(
f(b) = 0, f ′(b) = 1

)
, respectively.

Then we see that an identity

ϕλ(x) = ϕλ(b)φ
b
λ(x) +ϕ′

λ(b)ψ
b
λ(x)

holds. Lemma 1 implies that ϕλ(b) and ϕ′
λ(b) are entire functions of at most

exponential type M(b) as functions of λ. On the other hand, φb
λ(x) and ψb

λ(x)
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are entire functions of order at most 1/2 as functions of λ. Therefore we know

that ϕλ(x) is an entire function of minimal exponential type, which combined

with (3.1) shows that

ϕλ(a) =
∞∏

n=1

(
1− λ

μn

)
.

For the detail refer to [5, p. 441]. Now let {Xn}n≥1 be independent random

variables, each of which has an exponential distribution of mean 1. Then, an

identity

E exp
(
λ

∞∑
n=1

μ−1
n Xn

)
=

∞∏
n=1

(
1− λ

μn

)−1

= ϕλ(a)
−1

holds. Therefore, letting {X̃n}n≥1 be independent copies of {Xn}n≥1 and setting

Yn =Xn + X̃n, X =

∞∑
n=1

μ−1
n Yn,

we have

(3.2) ϕλ(a)
−2 =E exp(λX).

We denote X =X(a) if necessary, because the eigenvalue {μn}n≥1 depends on

the boundary a.

LEMMA 3

Suppose that the spectral measure σ of an m ∈ E satisfies

p(t) =

∫ ∞

0

e−tξ dσ(ξ)<∞ for any t > 0.

Then, for any nonnegative Borel measurable function f on [0,∞),

(3.3)

∫ l

−∞
Ef

(
X(x)

)
dx=

∫ ∞

0

p(t)f(t)dt

holds by permitting the integrals to take the value ∞ simultaneously.

Proof

From (2.4) it follows that for any x < l and λ < 0.∫ l

x

EeλX(y) dy =EeλX(x)

∫ ∞

0

ϕξ(x)
2

ξ − λ
dσ(ξ) =

∫ ∞

0

Eeλ(X(x)+t)p(t, x, x)dt

holds, where p(t, x, y) is the transition probability density defined by

p(t, x, y) =

∫ ∞

0

e−tξϕξ(x)ϕξ(y)dσ(ξ).

Hence a functional monotone class theorem shows that the identity below holds

for any nonnegative bounded continuous function f on [0,∞):

(3.4)

∫ l

x

E
(
f
(
X(y)

)
eλX(y)

)
dy =

∫ ∞

0

E
(
f
(
X(x) + t

)
eλ(X(x)+t)

)
p(t, x, x)dt.
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Since, for t > 2M(x),

p(t, x, x) =

∫ ∞

0

e−ξtϕξ(x)
2 dσ(ξ)≤

∫ ∞

0

e−ξte2ξM(x) dσ(ξ) = p
(
t− 2M(x)

)
holds, assuming f(t) = 0 for t < ε, we see that∫ l

−∞
E
(
f
(
X(y)

)
eλX(y)

)
dy =

∫ ∞

0

f(t)eλtp(t)dt

by letting x→−∞. Here we have used the fact that

X(x)→ 0 as x→−∞.

The rest of the proof is routine. �

Now we define a scale function φ on [0,1] as a function satisfying the following

properties:

(S.1) φ is strictly increasing, convex and φ(0) = 0, φ′(1−)<∞;

(S.2) for each x > 0,

lim
y↓0

φ(xy)

φ(y)
<∞;

(S.3) for each x ∈ (0,1],

lim
y↓0

φ(xy)

φ(y)
> 0.

The property (S.1) enables us to extend φ linearly to [1,∞), namely,

φ(x) = φ(1) + φ′(1−)(x− 1)

for x > 1. Then φ becomes a nonnegative, convex, and nondecreasing function

on [0,∞). Throughout the paper φ is always extended to [1,∞) linearly in this

way. A regularly varying function at 0 satisfies the conditions (S.2) and (S.3).

Set

C+(x) = sup
y>0

φ(xy)

φ(y)
<∞, C−(x) = inf

y∈(0,1]

φ(xy)

φ(y)
> 0.

Then C+ becomes nonnegative, convex, and nondecreasing on [0,∞). It satisfies

the submultiplicative property

C+(xy)≤C+(x)C+(y)

for any x, y > 0; hence, setting

α+ = sup
x>1

logC+(e
x)

x
∈ [0,∞)

we see that

C+(x)≤ xα+
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holds for any x ≥ e. We note that α+ should not be less than 1 due to the

convexity of C+. Since

φ(xy)≤C+(x)φ(y)

holds for any x, y > 0, we have

φ(x)≥ φ(1)

C+(1/x)
≥ φ(1)xα+

for any x ∈ [0,1/e]. Therefore the property (S.2) restricts φ not to decay faster

than with a power order:

(3.5) φ(xy)≤C+(x)φ(y).

C− satisfies

C−(xy)≥C−(x)C−(y)

for any x, y ∈ [0,1]. Typical examples for functions satisfying (S.1)∼(S.3) are

φ(x) = xα, xα(c− logx),

where α≥ 1 and c is a sufficiently large positive constant.

LEMMA 4

Let {Yn}n≥1 be a sequence of identically distributed nonnegative random variables

with mean μ, let {λn}n≥1 be a nonnegative sequence satisfying

∞∑
n=1

λn <∞,

and set

X =
∞∑

n=1

λnYn.

Then, we have the following.

(1) If φ satisfies (S.1), then

φ(EX)≤Eφ(X).

(2) If φ satisfies (S.1) and (S.2), then

Eφ(X)≤
(
EC+

(Y1

μ

))
φ(EX).

Proof

Jensen’s inequality implies the inequality in (1). To show the second inequality

we set

mn =m−1λn, m=
∞∑
k=1

λk.
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Then (3.5) implies

φ(X) = φ
(
mμ

∞∑
n=1

mn
Yn

μ

)
≤ φ(mμ)C+

( ∞∑
n=1

mn
Yn

μ

)
.

Since the function C+ is convex, we have

C+

( ∞∑
n=1

mn
Yn

μ

)
≤

∞∑
n=1

mnC+

(Yn

μ

)
and

Eφ(X)≤ φ(mμ)

∞∑
n=1

mnEC+

(Yn

μ

)
= φ(EX)EC+

(Y1

μ

)
.

�

Let X be defined as in (3.2), and set

Cφ =EC+

(Y1

μ

)
=

∫ ∞

0

te−tC+(t/2)dt <∞.

LEMMA 5

We have the following.

(1) If φ satisfies (S.1), then

E
(
φ(X)eλX

)
≥ ϕλ(a)

−2φ
(∫ a

−∞
ϕλ(x)

2 dm(x)

∫ a

x

ϕλ(y)
−2 dy

)
.

(2) If φ satisfies (S.1) and (S.2), then

E
(
φ(X)eλX

)
≤Cφϕλ(a)

−2φ
(∫ a

−∞
ϕλ(x)

2 dm(x)

∫ a

x

ϕλ(y)
−2 dy

)
.

Proof

For a fixed λ < 0 let Z be a nonnegative random variable satisfying

EeμZ = ϕλ+μ(a)
−2ϕλ(a)

2 =

∞∏
n=1

(
1− μ

μn − λ

)−2

.

Then, note an identity

(3.6) E
(
φ(X)eλX

)
= ϕλ(a)

−2E
(
φ(Z)

)
,

which can be shown from the observation

∂k

∂λk
ϕλ(a)

−2 = ϕλ(a)
−2 ∂k

∂μk

(
ϕλ+μ(a)

−2ϕλ(a)
2
)
|μ=0

for any k ≥ 0, because this implies the identity when φ(x) = xk. To apply Lemma 4

to Z we need to compute EZ. If we denote the Green operator for L on (−∞, a]

with Dirichlet boundary condition at a by Gλ, then

Gλ(x, y) = ϕλ(y)ϕλ(x)

∫ a

x

ϕλ(z)
−2 dz for x≥ y.
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Hence

EZ =

∞∑
j=1

1

μj − λ
= trGλ =

∫ a

−∞
ϕλ(x)

2 dm(x)

∫ a

x

ϕλ(y)
−2 dy

holds, and we have the inequalities in the statement. �

The right-hand side of the inequalities in Lemma 5 can be estimated further.

LEMMA 6

For λ < 0 the following inequalities are valid:

(1)
∫ a

−∞ϕλ(x)
2 dm(x)

∫ a

x
ϕλ(y)

−2 dy ≥M(a)ϕλ(a)
−2,

(2)
∫ a

−∞ϕλ(x)
2 dm(x)

∫ a

x
ϕλ(y)

−2 dy ≤M(a)∧ ( logϕλ(a)
−λ ).

Proof

Inequality (1) and the first inequality of (2) follow from the monotonicity of

ϕλ(z); namely, we have∫ a

x

ϕλ(y)
−2 dy ≥ ϕλ(a)

−2(a− x),

∫ a

x

ϕλ(y)
−2 dy ≤ ϕλ(x)

−2(a− x),

which implies∫ a

−∞
ϕλ(x)

2 dm(x)

∫ a

x

ϕλ(y)
−2 dy ≥ ϕλ(a)

−2

∫ a

−∞
(a− x)dm(x) = ϕλ(a)

−2M(a)

and ∫ a

−∞
ϕλ(x)

2 dm(x)

∫ a

x

ϕλ(y)
−2 dy ≤

∫ a

−∞
(a− x)dm(x) =M(a).

The second inequality of (2) follows by using the equation satisfied by ϕλ(x),

dϕ′
λ(y) =−λϕλ(y)dm(y),

which yields

−λ

∫ a

−∞
ϕλ(y)

2 dm(y)

∫ a

y

ϕλ(z)
−2 dz

=

∫ a

−∞
ϕλ(y)dϕ

′
λ(y)

∫ a

y

ϕλ(z)
−2 dz

= ϕλ(y)ϕ
′
λ(y)

∫ a

y

ϕλ(z)
−2 dz

∣∣∣a
−∞

−
∫ a

−∞
ϕ′
λ(y)

2 dy

∫ a

y

ϕλ(z)
−2 dz +

∫ a

−∞

ϕ′
λ(y)

ϕλ(y)
dy.

Noting

ϕλ(y)ϕ
′
λ(y)

∫ a

y

ϕλ(z)
−2 dz ∼

y→−∞
−λm(y)(a− y) →

y→−∞
0,

we see that
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−λ

∫ a

−∞
ϕλ(y)

2 dm(y)

∫ a

y

ϕλ(z)
−2 dz = logϕλ(a)−

∫ a

−∞
ϕ′
λ(y)

2 dy

∫ a

y

ϕλ(z)
−2 dz

≤ logϕλ(a),

which completes the proof. �

As the last lemma in this section, we have the following.

LEMMA 7

The following two estimates hold.

(1) For any function φ satisfying (S.1) it holds that∫ ∞

0

p(t)φ(t)eλt dt≥
∫ l

−∞
φ
(
M(x)ϕλ(x)

−2
)
ϕλ(x)

−2 dx.

(2) For any function φ satisfying (S.1), (S.2) it holds that∫ ∞

0

p(t)φ(t)eλt dt≤Cφ

∫ l

−∞
φ
(
M(x)∧

( logϕλ(x)

−λ

))
ϕλ(x)

−2 dx

≤Cφ

∫ a

−∞
φ
(
M(x)

)
ϕλ(x)

−2 dx+Cφ
−λ

ϕ′
λ(a)

∫ ∞

0

φ(t)eλt dt.

Proof

All we have to show is an estimate of the integral∫ l

a

φ
( logϕλ(x)

−λ

)
ϕλ(x)

−2 dx.

Noting the monotonicity of ϕλ(x), ϕ
′
λ(x), and ϕλ(x)≥ 1, we see that∫ l

a

φ
( logϕλ(x)

−λ

)
ϕλ(x)

−2 dx

=

∫ ϕλ(l)

ϕλ(a)

φ
( log z

−λ

) 1

z2ϕ′
λ(ϕ

−1
λ (z))

dz

≤ 1

ϕ′
λ(ϕ

−1
λ (ϕλ(a)))

∫ ϕλ(l)

ϕλ(a)

φ
( log z

−λ

)dz
z2

≤ −λ

ϕ′
λ(a)

∫ ∞

0

φ(t)eλt dt. �

4. Continuity of the correspondence from S to E

In this section we give a partial converse of Theorem 2. The lemma below will

be useful later.

LEMMA 8

Let mn ∈ E , and let σn be its spectral function. Suppose that

(4.1) lim
n→∞

Mn(ln) = 0

holds. Then σn(ξ)→ 0 for any ξ > 0.
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Proof

Since Mn(ln)<∞, we have ln <∞. Set m̃n(x) =mn(x+ ln). Then

(4.2) M̃n(0)→ 0,

and its spectral measure coincides with σn. Since the condition (4.2) implies

m̃n(x)→
{
0 for x < 0,

∞ for x > 0

in E , Theorem 2 shows σn → 0. �

THEOREM 3

Let mn ∈ E , and let σn be its spectral function satisfying

pn(t) =

∫ ∞

0

e−tξ dσn(ξ)<∞ for any t > 0

and

(4.3) sup
n≥1

∫ 1

0

pn(t)φ(t)dt <∞

for a function φ satisfying (S.1). Assume that there exists a nontrivial measure

σ on [0,∞) satisfying

σn(ξ)→ σ(ξ)

at every point of continuity of σ. Then

lim
n→∞

pn(t) = p(t), lim
n→∞

Mn(ln)> 0

hold. Choose c such that

0< c < lim
n→∞

Mn(ln),

and define an by the solution Mn(an) = c. Then there exists a unique m ∈ E(c)

with spectral measure σ, and it holds that mn(·+ an)→m in E ; hence σ ∈ S.

Proof

For any ε > 0 and any N > 0,∫ ε

0

pn(t)φ(t)dt=

∫ ε

0

φ(t)dt

∫ ∞

0

e−tξ dσn(ξ)≥ eεN
∫ ∞

N

e−2εξ dσn(ξ)

∫ ε

0

φ(t)dt

holds, and the condition (4.3) implies that there exists a constant Cε such that∫ ∞

N

e−2εξ dσn(ξ)≤ e−εN

∫ ε

0
pn(t)φ(t)dt∫ ε

0
φ(t)dt

≤ e−εNCε

is valid for any n,N , which yields

(4.4) pn(t)→ p(t) =

∫ ∞

0

e−tξ dσ(ξ)
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as n→∞. Applying (3.3) to φ(t)eλt for λ < 0 shows that∫ ln

−∞
E
(
φ
(
Xn(x)

)
eλXn(x)

)
dx=

∫ ∞

0

pn(t)e
λtφ(t)dt

≤
∫ 1

0

pn(t)e
λtφ(t)dt+ pn(1)

∫ ∞

1

eλtφ(t)dt≤C

with a constant C, where Xn(x) is defined by the eigenvalues {μj(x)}j≥1 corre-

sponding to mn. Since we assume that the limiting spectral measure σ is non-

trivial, Lemma 8 shows

lim
n→∞

Mn(ln)> 0.

For c such that

0< c < lim
n→∞

Mn(ln),

define an by the solution Mn(an) = c, and set

m̃n(x) =mn(x+ an).

Then m̃n ∈ E(c) and an inequality (1) of Lemma 7 imply∫ ln

−∞
E
(
φ
(
Xn(x)

)
eλXn(x)

)
dx≥

∫ l̃n

−∞
ϕ̃
(n)
λ (x)−2φ

(
M̃n(x)ϕ̃

(n)
λ (x)−2

)
dx,

and from Lemma 1 we have∫ l̃n

−∞
ϕ̃
(n)
λ (x)−2φ

(
M̃n(x)ϕ̃

(n)
λ (x)−2

)
dx≥

∫ ln

−∞
e2λM̃n(x)φ

(
M̃n(x)e

2λM̃n(x)
)
dx

≥
∫ 0

−∞
e2λcφ

(
M̃n(x)e

2λc
)
dx.

Thus ∫ 0

−∞
e2λcφ

(
M̃n(x)e

2λc
)
dx≤C

is valid for any n≥ 1. Therefore, for any x < 0,

e2λc(−x)φ
(
M̃n(x)e

2λc
)
≤
∫ 0

x

e2λcφ
(
M̃n(y)e

2λc
)
dy ≤C,

which implies that {m̃n}n≥1 has a convergent subsequence in the sense of the

convergence in E , namely, the convergence under conditions (A) and (B). Since we

have proved (4.4), the uniqueness of the spectral measure in E(c) and Theorem 2

complete the proof. �

COROLLARY 1

Suppose that a measure σ on [0,∞) satisfies∫ 1

0

p(t)φ(t)dt <∞
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with a function φ on [0,1] satisfying (S.1). Then, there exists an m ∈ E with

spectral measure σ in S.

Proof

Define σn by

σn(ξ) =

{
σ(ξ) for ξ < n,

σ(n) for ξ ≥ n.

Then this σn satisfies all the conditions of Theorem 3. Applying the theorem we

easily obtain the corollary. �

This corollary provides a plenty of spectral measures in S growing faster than

any power order at ∞.

5. Continuity of the correspondence between Eφ and Sφ

In this section we give a necessary and sufficient condition for the continuity of

the correspondence by restricting the order of growth of spectral measures at ∞.

We call φ a scale function if it satisfies conditions (S.1), (S.2), and (S.3). For a

scale function φ set

Eφ =
{
m ∈ E ;

∫ a

−∞
φ
(
M(x)

)
dx <∞ for ∃a ∈ (l−, l+)

}
,

and

Sφ =
{
σ;

∫ ∞

1

φ̃(ξ)σ(dξ)<∞
}
,

where

φ̃(ξ) =

∫ ∞

0

e−tξφ(t)dt.

It is easy to see that∫ ∞

1

φ̃(ξ)σ(dξ)<∞⇐⇒
∫ 1

0

p(t)φ(t)dt <∞.

Moreover, from the properties of scales, it is always valid that for σ ∈ Sφ,∫ ∞

1

ξ−α−1σ(dξ)<∞

for an α≥ 1. On the other hand, if m ∈ Eφ, Lemma 7(2) yields∫ ∞

0

p(t)φ(t)eλt dt ≤ Cφ

∫ a

−∞
φ
(
M(x)

)
ϕλ(x)

−2 dx+Cφ
−λ

ϕ′
λ(a)

∫ ∞

0

φ(t)eλt dt

≤ Cφ

∫ a

−∞
φ
(
M(x)

)
dx+Cφ

−λ

ϕ′
λ(a)

∫ ∞

0

φ(t)eλt dt.

Therefore, it holds that ∫ ∞

0

p(t)φ(t)eλt dt <∞,
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which shows σ ∈ Sφ. Conversely, assume σ ∈ Sφ. Then∫ ∞

0

p(t)φ(t)eλt dt=

∫ 1

0

p(t)φ(t)eλt dt+

∫ ∞

1

p(t)φ(t)eλt dt

≤
∫ 1

0

p(t)φ(t)dt+ p(1)

∫ ∞

1

φ(t)eλt dt <∞

for any λ < 0. Therefore,∫ l

−∞
φ
(
M(x)ϕλ(x)

−2
)
ϕλ(x)

−2 dx <∞

holds. Since φ satisfies the condition (S.3)

φ
(
M(x)ϕλ(x)

−2
)
≥C−

(
ϕλ(x)

−2
)
φ
(
M(x)

)
holds. Due to

ϕλ(x)
−2 ≥ e2λM(x)

and M(x)→ 0 as x→−∞, we easily see that∫ a

−∞
φ
(
M(x)

)
dx <∞,

which implies that m ∈ Eφ. Therefore, a string belongs to Eφ if and only if its

spectral measure is an element of Sφ.

For φ let mn,m be strings of Eφ, and define the convergence of mn to m in

Eφ by

(C) limx→−∞ supn≥1

∫ x

−∞φ(Mn(y))dy = 0,

in addition to the condition (A). The convergence of spectral measures in Sφ is

defined by

(A′) σn(ξ)→ σ(ξ) at every point of continuity of σ,

(C′) limN→∞supn≥1

∫∞
N

φ̃(ξ)σn(dξ) = 0.

An equivalent statement is possible by p(t):

(A′′) pn(t)→ p(t) for any t > 0,

(C′′) limε↓0supn≥1

∫ ε

0
pn(t)φ(t)dt= 0.

Set

E(c)
φ = Eφ ∩ E(c).

THEOREM 4

Let {σn}n≥1, σ be elements of Sφ, and let mn,m ∈ E(c)
φ be the strings correspond-

ing to σn, σ, respectively. Then, mn →m in E(c)
φ if and only if σn → σ in Sφ.

Proof

Suppose that mn →m in E(c)
φ . Then, Theorem 2 shows the validity of the condi-

tion (A′). Therefore we have only to check the condition (C′′). From Lemma 7(2),
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∫ ∞

0

pn(t)φ(t)e
λt dt≤Cφ

∫ 0

−∞
φ
(
Mn(x)

)
ϕ
(n)
λ (x)−2 dx+Cφ

−λ

ϕ
(n)′
λ (0)

∫ ∞

0

φ(t)eλt dt

is valid. Fix ε > 0, and choose a < 0 such that

Cφ

∫ a

−∞
φ
(
Mn(x)

)
dx < ε

for any n ≥ 1. Since Mn(x), ϕ
(n)
λ (x) converge to M(x), ϕλ(x) uniformly on

(−∞,0], and the estimate

ϕ
(n)
λ (0)≥ 1− λMn(0) = 1− λc

shows that if −λ is sufficiently large, then

Cφ

∫ 0

a

φ
(
Mn(x)

)
ϕ
(n)
λ (x)−2 dx < ε

is valid for any n≥ 1. Moreover, due to c > 0,

lim
n→∞

mn(0)≥m(0−)> 0

holds; hence

Cφ
−λ

ϕ
(n)′
λ (0)

∫ ∞

0

φ(t)eλt dt≤Cφ
1

mn(0)

∫ ∞

0

φ(t)eλt dt < ε

also holds for any n≥ 1 if we choose sufficiently large −λ, which implies that

sup
n≥1

∫ ∞

0

pn(t)φ(t)e
λt dt≤ 3ε.

From ∫ −1/λ

0

pn(t)φ(t)dt≤ e

∫ ∞

0

pn(t)φ(t)e
λt dt≤ 3eε

the condition (C′′) is confirmed. Conversely, assume that σn → σ in Sφ. Then

Theorem 3 shows that the condition (A) holds. Hence we have only to check the

condition (C). From Lemma 7(1),∫ ∞

0

pn(t)φ(t)e
λt dt≥

∫ l

−∞
φ
(
Mn(x)ϕ

(n)
λ (x)−2

)
ϕ
(n)
λ (x)−2 dx

follows. The property (S.3) implies

φ
(
Mn(x)ϕ

(n)
λ (x)−2

)
≥C−

(
ϕ
(n)
λ (x)−2

)
φ
(
Mn(x)

)
,

and, as was pointed out in the proof of Theorem 3, ϕ
(n)
λ (x)→ 1 as x→−∞ uni-

formly with respect to n. Therefore, the condition (C′′) guarantees the condition

(C). �

The last theorem can be restated as the convergence in Eφ.

THEOREM 5

Let {σn}n≥1, σ be elements of Sφ, and let mn,m ∈ Eφ be the strings corresponding
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to σn, σ respectively. Assume that σn → σ in Sφ and σ is nontrivial. Then, there

exist a sequence {an}n≥1 in R and c > 0 with mn(·+ an) ∈ E(c)
φ , and

mn(·+ an)→m

holds in Eφ.

Proof

Since σ is nontrivial, we can apply Lemma 8. The rest of the proof is clear from

Theorem 4. �

For applications it will be helpful to rewrite the condition (C) as Kasahara and

Watanabe did in [4].

LEMMA 9

Assume that φ satisfies (S.1). Then a sequence {mn}n≥1 converges to m in Eφ
if and only if {mn}n≥1 and m satisfy the condition below.

(D) For any x ∈R,∫ x

−∞
φ
(
Mn(y)

)
dy→

∫ x

−∞
φ
(
M(y)

)
dy.

Similarly the set of conditions (A′) and (C ′) is equivalent to (D′), and that of

(A′′) and (C ′′) is equivalent to (D′′).

(D′) For any λ < 0,∫ ∞

0

φ̃(ξ − λ)σn(dξ)→
∫ ∞

0

φ̃(ξ − λ)σ(dξ).

(D′′) For any λ < 0,∫ ∞

0

pn(t)φ(t)e
tλ dt→

∫ ∞

0

p(t)φ(t)etλ dt.

Proof

Assume that mn →m in Eφ. Then, (C) implies that there exists c < l such that∫ c

−∞
φ
(
Mn(y)

)
dy ≤ 1.

Hence for any x < c,

φ
(
Mn(x)

)
(c− x)≤

∫ c

x

φ
(
Mn(y)

)
dy ≤

∫ c

−∞
φ
(
Mn(y)

)
dy ≤ 1,

which shows that

Mn(x)≤ φ−1
( 1

c− x

)
for any n≥ 1 and x < c. Then it is easy to see that Mn(x)→M(x) at every point

x, and this together with (C) implies (D). Conversely, for any ε > 0, choose c < l
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such that ∫ c

−∞
φ
(
M(y)

)
dy < ε.

Then, clearly (C) follows from (D). The condition (A) can be derived from (D)

by the monotonicity of φ and Mn. We omit the proof for (D′) and (D′′). �

6. Application

Typical examples of m belonging to E are

mα(x) =

⎧⎨⎩
Cαx

−β x > 0 if 0<α< 1,

ex x ∈R if α= 1

Cα(−x)−β x < 0 if α> 1,

with β =
α

α− 1
,

and the spectral measures and p(t) are

σα(dξ) =
α2α

Γ(1 + α)2
dξα, pα(t) =

α2α

Γ(1 + α)
t−α,

where

Cα =

{
( 1−α

α )
α

1−α , 0<α< 1,

(α−1
α )−

α
α−1 , 1<α.

In this section we consider the asymptotic behavior of the spectral measures and

the transition probability densities when strings are close to the above typical

ones. If α ∈ (0,2), the following results are already known. Here we denote

f(x)∼ g(x) as x ↑ 0 (x→∞)

if

lim
x↑0

f(x)

g(x)
= 1

(
lim
x→∞

f(x)

g(x)
= 1

)
hold, respectively. Let ϕ be a function regularly varying at 0 with exponent α−1.

THEOREM 6 (SEE [1], [4])

The following asymptotic relationship between m and p is valid.

(1) If α ∈ (0,1), then

m(x)∼
(−β)β

xϕ−1(x)
as x ↑∞

holds if and only if

p(t)∼
α2α

Γ(1 + α)

1

t
ϕ
(1
t

)
as t→∞.

(2) If α ∈ (1,2), then

m(x)∼
ββ

−xϕ−1(−x)
as x ↑ 0

holds if and only if
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p(t)∼
α2α

Γ(1 + α)

1

t
ϕ
(1
t

)
as t→∞.

They showed an analogous result in the case α= 1 in Kasahara and Watanabe [4].

In this section we extend their results to the case α≥ 2 by applying Theorem 4.

The basic idea, which was first employed by Kasahara [1], is to use the continuity

between m and p and the scaling relationship

(6.1) abm(ax)↔ 1

ab
p(b−1t)

for any a, b > 0. The proof proceeds as in [4], especially in the case α= 1.

Let m ∈ E be a nondecreasing function with l= 0; namely, let

m(x)<∞ on (−∞,0) and m(x) =∞ on (0,∞).

Let ϕ be a regularly varying function at 0 with exponent α− 1, and set

mν(x) = νϕ−1(ν)m(νx).

Then from (6.1) we have

(6.2)

⎧⎨⎩
Mν(x) = ϕ−1(ν)M(νx),

pν(t) = ν−1ϕ−1(ν)−1p(ϕ−1(ν)−1t),

σν(ξ) = ν−1ϕ−1(ν)−1σ(ϕ−1(ν)ξ).

To consider an extension of Theorem 6 we introduce conditions on m and σ:

(6.3) m(x)∼
ββ

−xϕ−1(−x)
as x ↑ 0,

which means that

(6.4) M(x)∼
ββ

(β − 1)ϕ−1(−x)
as x ↑ 0,

and

(6.5) p(t) =

∫ ∞

0

e−tξ dσ(ξ)<∞ for any t > 0.

PROPOSITION 1

If m ∈ E satisfies (6.3), then it holds that

(6.6) σ(ξ)∼
α2α

Γ(1 + α)2
ξα as ξ ↓ 0.

Moreover, if m satisfies (6.5) as well, then (6.7) below holds:

(6.7) p(t)∼
α2α

Γ(1 + α)

1

t
ϕ
(1
t

)
as t→∞.

Proof

Since

Mν(x) =

∫ x

−∞
mν(y)dy = ϕ−1(ν)M(νx)
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holds, from (6.4) we know that

Mν(x)→
ββ

β − 1
(−x)1−β as ν → 0

for any x < 0, which means that {Mν} satisfies the condition (B). Applying

Theorem 2 yields

σν(ξ)→
α2α

Γ(1 + α)2
ξα for any ξ > 0

as ν → 0, which is equivalent to (6.6) due to (6.2). If we assume the condition

(6.5) as well on σ, the Abelian theorem for the Laplace transform shows the

property (6.7). �

To obtain a converse statement to the above proposition we need the following.

LEMMA 10

Assume that σ ∈ S satisfies condition (6.5) and a condition

(6.8)

∫ 1

0

p(t)φ(t)dt <∞

for a positive function φ on [0,1] satisfying

(6.9) φ(st)≤Ctkφ(s) for any s, t≤ 1 for some k > α− 1.

Then {pν(t)} satisfies condition (4.3), namely,

(6.10) sup
ν>0

∫ 1

0

pν(t)φ(t)dt <∞.

Proof

Since ϕ is a regularly varying function at 0 with exponent α− 1, t−1ϕ(t−1) is

regularly varying at ∞ with exponent −α, and there exists a slowly varying

function l(t) such that

1

t
ϕ
(1
t

)
= t−αl(t).

Generally a slowly varying function l(t) has an expression

(6.11) l(t) = c(t) exp
(∫ t

a

ε(u)

u
du

)
with a positive constant a and functions c(t), ε(t) behaving as

c(t)→ c > 0, ε(t)→ 0 as t→∞.

Now we decompose the integral in (6.10) into two parts:∫ 1

0

pν(t)φ(t)dt= ν−1ϕ−1(ν)−1

∫ 1

0

p
(
ϕ−1(ν)−1t

)
φ(t)dt= I1 + I2
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with ⎧⎨⎩I1 = ν−1ϕ−1(ν)−1
∫ 1

Nϕ−1(ν)
p(ϕ−1(ν)−1t)φ(t)dt,

I2 = ν−1ϕ−1(ν)−1
∫ Nϕ−1(ν)

0
p(ϕ−1(ν)−1t)φ(t)dt,

where N is chosen so that ∣∣ε(u)∣∣≤ δ for any u≥N

holds with a positive δ satisfying δ < k− (α−1). Since the condition (6.7) implies

0<
p(ϕ−1(ν)−1t)

ϕ−1(ν)αt−αl(ϕ−1(ν)−1t)
≤C ′

for any t≥Nϕ−1(ν) with some constant C ′, we have

I1 ≤C ′ν−1ϕ−1(ν)−1+αl
(
ϕ−1(ν)−1

)∫ 1

Nϕ−1(ν)

t−α l(ϕ
−1(ν)−1t)

l(ϕ−1(ν)−1)
φ(t)dt.

First note that

ν−1ϕ−1(ν)−1+αl
(
ϕ−1(ν)−1

)
= ν−1ϕ−1(ν)−1+αϕ−1(ν)1−αϕ

(
ϕ−1(ν)

)
= 1,

and (6.11) shows, for t≥Nϕ−1(ν), that

l(ϕ−1(ν)−1t)

l(ϕ−1(ν)−1)
= exp

(∫ ϕ−1(ν)−1t

a

ε(u)

u
du−

∫ ϕ−1(ν)−1

a

ε(u)

u
du

)
= exp

(
−
∫ ϕ−1(ν)−1

ϕ−1(ν)−1t

ε(u)

u
du

)
≤ exp(δ log t−1) = t−δ.

In (6.9) setting s= 1, we have φ(t)≤Cφ(1)tk; hence

I1 ≤C

∫ 1

Nϕ−1(ν)

t−αt−δφ(t)dt≤CC ′φ(1)

∫ 1

0

t−α−δ+k dt

is valid. Due to (6.9) I2 can be estimated as

I2 = ν−1

∫ N

0

p(s)φ
(
ϕ−1(ν)s

)
ds

≤Cν−1
(
ϕ−1(ν)

)k ∫ N

0

p(s)φ(s)ds≤C ′′ν−1+ k
α−1−δ′

∫ N

0

p(s)φ(s)ds,

where δ′ > 0 can be chosen so that

−1 +
k

α− 1
− δ′ > 0

holds. Consequently, we have∫ 1

0

pν(t)φ(t)dt≤CC ′φ(1)

∫ 1

0

t−α−δ+k dt+C ′′ν−1+ k
α−1−δ′

∫ N

0

p(s)φ(s)ds,

and (6.8) implies the second assertion of (6.10). �
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REMARK 1

The property (6.9) is satisfied not only by φ(t) = tk with k > α− 1 but also by

subexponential functions: for p > 1, c > 0,

φ(t) = exp
(
−c(− log t)p

)
.

Within the knowledge of the previous sections the best converse statement to

Proposition 1 is as follows.

PROPOSITION 2

Let m ∈ E be a nondecreasing function with l = 0 and M(0) =∞. Assume that

σ ∈ S satisfies the conditions (6.5) and (6.8) with a positive function φ on [0,1]

satisfying (S.1) and (6.9). Then the property (6.6) (equivalently, (6.7)) implies

(6.3).

Proof

First note that (6.6) is equivalent to

σν(ξ)→
α2α

Γ(1 + α)2
ξα for any ξ > 0,

as ν → 0. Since we are assuming that M(0) =∞,

Mν(0) = ϕ−1(ν)M(0) =∞

holds for any ν > 0, and there exists uniquely aν < 0 such that

Mν(aν) =
ββ

β − 1
≡ c.

Set

M̃ν(x) =Mν(x+ aν + 1).

Then, taking −1 instead of 0 as a normalization point, Lemma 10 makes it

possible to apply Theorem 3, and we have the following:

M̃ν(x)→
{
c(−x)1−β for x < 0,

∞ for x > 0

holds in E as ν → 0, from which

(6.12) ϕ−1(ν)M
(
ν(x+ aν + 1)

)
→

{
c(−x)1−β for x < 0,

∞ for x > 0

follows. To simplify the involved formula (6.12) we take their inverse. Set

u=M
(
ν(x+ aν + 1)

)
, λ= cϕ−1(ν)−1.

Since ϕ−1(ν)M(νaν) = c, we easily see that

ϕ(cλ−1)(x+ 1) +M−1(λ) =M−1(u).

Denoting y = λ−1u, (6.12) is equivalent to

y→ (−x)1−β ,
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from which

M−1(λy)−M−1(λ)

ϕ(cλ−1)
= x+ 1→ 1− y−(β−1)

follows for any y > 0 as λ→∞. Since ϕ is regularly varying at 0 with exponent

α− 1,

ϕ(cλ−1)

ϕ(λ−1)
→ cα−1 = (α− 1)−1αα as λ→∞,

and

(6.13) lim
λ→∞

M−1(λx)−M−1(λ)

ϕ(λ−1)
= (α− 1)−1αα(1− x−(α−1))

follows. Then Lemma 11 below shows (6.3). �

LEMMA 11

(6.13) implies (6.3).

Proof

Assume (6.13). Since M−1(x) has a monotone density(
M−1(x)

)′
=

1

m(M−1(x))
,

the monotone density theorem implies

lim
λ→∞

(M−1(λx)−M−1(λ)

ϕ(λ−1)

)′
=
(
(α− 1)−1αα(1− x−(α−1))

)′
,

which is

lim
λ→∞

λ

ϕ(λ−1)m(M−1(λx))
= ααx−α.

Setting x= 1 and u=M−1(λ), we have

lim
u→0

M(u)

ϕ(M(u)−1)m(u)
= αα.

For any ε > 0 there exists δ > 0 such that for any u ∈ (−δ,0),

α−α − ε≤ ϕ(M(u)−1)m(u)

M(u)
≤ α−α + ε

is valid. Noting m(u) =M(u)′, we see that

(α−α − ε)(−x)≤
∫ 0

x

ϕ(M(u)−1)

M(u)
dM(u)≤ (α−α + ε)(−x)

for any x ∈ (−δ,0); hence

(α−α − ε)(−x)≤
∫ ∞

M(x)

ϕ(y−1)

y
dy =

∫ M(x)−1

0

ϕ(z)

z
dz ≤ (α−α + ε)(−x).

Since ϕ(z)/z is a regularly varying function at 0 with exponent α− 2,
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∫ y

0

ϕ(z)

z
dz ∼

ϕ(y)

α− 1
as y ↓ 0

is valid, which implies

ϕ(M(x)−1)

α− 1
∼ α−α(−x) as x ↑ 0;

hence

M(x)∼
ββ

β − 1
ϕ−1(−x)−1 as x ↑ 0.

This is equivalent to (6.3). �

In the above two propositions we stated the conditions which should be satisfied

by m ∈ E in terms of its spectral function σ. It may be preferable to describe

the result by m itself directly. To do so, unfortunately we have to impose a more

restrictive condition on m, and combining Propositions 1 and 2 we have the

following.

THEOREM 7

Let α ≥ 2, let k > α − 1, and let ϕ be a regularly varying function at 0 with

exponent α−1. Let m ∈ E be a nondecreasing function with l= 0 and M(0) =∞.

Assume that m satisfies ∫ −1

−∞
M(x)k dx <∞.

Then, the property

p(t)∼
α2α

Γ(1 + α)

1

t
ϕ
(1
t

)
as t→∞

holds if and only if the asymptotics below is valid:

m(x)∼
ββ

−xϕ−1(−x)
as x ↑ 0.

Proof

The proof is immediate from the above two propositions if we observe φ(t) = tk

satisfies all the requirements needed in Proposition 2. �
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