
On the geometry of the
Lehn–Lehn–Sorger–van Straten eightfold

Evgeny Shinder and Andrey Soldatenkov

Abstract In this article wemake a few remarks about the geometry of the holomorphic

symplectic manifold Z constructed by Lehn, Lehn, Sorger, and van Straten as a two-

step contraction of the variety of twisted cubic curves on a cubic fourfold Y ⊂ P5. We

show that Z is birational to a component of the moduli space of stable sheaves in the

Calabi–Yau subcategory of the derived category of Y . Using this description we deduce

that the twisted cubics contained in a hyperplane section YH = Y ∩H of Y give rise to a

Lagrangian subvariety ZH ⊂ Z. For a generic choice of the hyperplane, ZH is birational

to the theta-divisor in the intermediate Jacobian J(YH).

1. Introduction

We work over the field of complex numbers. Throughout the article Y ⊂ P5 is

a smooth cubic fourfold not containing a plane. In [14] the variety M3(Y ) of

generalized twisted cubic curves on Y was studied. It was shown that M3(Y )

is 10-dimensional, smooth, and irreducible. By starting from this variety, an

8-dimensional irreducible holomorphic symplectic (IHS) manifold Z was con-

structed. More precisely, it was shown that there exist morphisms

(1.1) M3(Y )
a−→ Z ′ σ−→ Z

and

(1.2) μ : Y ↪→ Z,

where a is a P
2-fiber bundle and σ is the blowup along the image of μ. It was

later shown in [1] that Z is birational—and hence deformation equivalent—to a

Hilbert scheme of four points on a K3 surface.

In this article we present another point of view on Z. We show that an open

subset of Z can be described as a moduli space of Gieseker-stable torsion-free

sheaves of rank 3 on Y .

Kuznetsov and Markushevich [12] have constructed a closed two-form on

any moduli space of sheaves on Y . Properties of the Kuznetsov–Markushevich

form are known to be closely related to the structure of the derived category
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of Y . The bounded derived category Db(Y ) of coherent sheaves on Y has an

exceptional collection OY , OY (1), OY (2) with right-orthogonal AY , so that

Db(Y ) = 〈AY ,OY ,OY (1),OY (2)〉. The category AY is a Calabi–Yau category

of dimension 2, meaning that its Serre functor is the shift by 2 (see [11, Sec-

tion 4]).

It was shown in [12] that the two-form on moduli spaces of sheaves on Y is

nondegenerate if the sheaves lie in AY . The torsion-free sheaves mentioned above

lie in AY . This gives an alternative description of the symplectic form on Z.

THEOREM 2.8

The component MF of the moduli space of Gieseker-stable rank 3 sheaves on Y

with Hilbert polynomial 3
8n

4 + 9
4n

3 + 33
8 n2 + 9

4n is birational to the IHS mani-

fold Z. Under this birational equivalence the symplectic form on Z defined in [14]

corresponds to the Kuznetsov–Markushevich form on MF .

A similar approach relying on the description of an open part of Z as a mod-

uli space was used by Addington and Lehn [1] to prove that the variety Z is

a deformation of a Hilbert scheme of four points on a K3 surface. Ouchi [16]

considered the case of cubic fourfolds containing a plane. He proved that one can

describe (a birational model of) the Lehn–Lehn–Sorger–van Straten variety as a

moduli space of Bridgeland-stable objects in the derived category of a twisted

K3 surface. Moreover, in this situation one also has a Lagrangian embedding of

the cubic fourfold into the Lehn–Lehn–Sorger–van Straten variety as in (1.2).

Another similar construction has been proposed by Lahoz, Macr̀ı, and Stellari

[13], who proved that Z is birational to a component of the moduli space of stable

vector bundles of rank 6 on Y .

Using the birational equivalence between Z and the moduli space of sheaves

on Y , we show that twisted cubics lying in hyperplane sections YH of Y give

rise to Lagrangian subvarieties in Z, and we discuss the geometry of these sub-

varieties.

THEOREM

Denote by ZH the image in Z of twisted cubics lying in a hyperplane section

YH = Y ∩ H under the map a from (1.1). If Y and H are generic, then ZH

is a Lagrangian subvariety of Z which is birational to the theta-divisor of the

intermediate Jacobian of YH .

Proof

See Proposition 2.9 and Theorem 3.3. �

This is analogous to the case of lines on Y : it is well known that lines on Y form

an IHS fourfold, and lines contained in hyperplane sections of Y form Lagrangian

surfaces in this fourfold (see, e.g., [17]).
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2. Twisted cubics and sheaves on a cubic fourfold

2.1. Twisted cubics on cubic surfaces and determinantal representations
Let us recall the structure of the general fiber of the map a : M3(Y ) → Z ′ in

(1.1). We follow [14] in notation and terminology, and we refer to [5] and [14] for

all details about the geometry of twisted cubics.

Consider a cubic surface S = Y ∩ P3, where P3 is a general linear subspace

in P
5. There exist several families of generalized twisted cubics on S. Each of the

families is isomorphic to P
2, and these are the fibers of the map a. The number

of families depends on S. If the surface is smooth, then there are 72 families,

corresponding to 72 ways to represent S as a blowup of P2 (and to the 72 roots

in the lattice E6). Each of the families is a linear system which gives a map to P
2.

If S is singular, then generalized twisted cubics on it can be of two different types.

Curves of the first type are arithmetically Cohen–Macaulay (aCM), and those of

the second type are non-CM. A detailed description of their geometry on surfaces

with different singularity types can be found in [14, Section 2]. For our purposes

it is enough to recall that the image in Z ′ of non-CM curves under the map

a is exactly the exceptional divisor of the blowup σ : Z ′ → Z in (1.1) (see [14,

Proposition 4.1]).

In this section we deal only with aCM curves, and we also assume that the

surface S has only ADE singularities. In this case every aCM curve belongs to a

2-dimensional linear system with smooth general member, just as in the case of

smooth S (see [14, Theorem 2.1]). Moreover, these linear systems are in one-to-

one correspondence with the determinantal representations of S. Let us explain

this in detail.

Let S be a cubic surface in P
3 with at most ADE singularities. Let α : S ↪→ P3

denote the embedding, and let p : S̃ → S be the minimal resolution of singular-

ities. Take a general aCM twisted cubic C on S, and let C̃ ⊂ S̃ be its proper

preimage. Let L̃=OS̃(C̃) be the corresponding line bundle, and let L= p∗L̃ be

its direct image.

LEMMA 2.1

The sheaf L has the following properties:

(1) H0(S,L) =C
3, Hk(S,L) = 0 for k ≥ 1; Hk(S,L(−1)) =Hk(S,L(−2)) =

0 for k ≥ 0;

(2) we have the following resolution:

(2.1) 0−→OP3(−1)⊕3 A−→O⊕3
P3 −→ α∗L−→ 0,

where A is given by a (3× 3)-matrix of linear forms on P
3, and the surface S is

the vanishing locus of detA;

(3) Extk(L,L) = 0 for k ≥ 1.
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Proof

We note that the map α ◦ p : S̃ → P
3 is given by the anticanonical linear system

on S̃, so we will use the notation KS̃ =OS̃(−1).

(1) First we observe that Rmp∗L̃= 0 for m≥ 1. This follows from the long

exact sequence of higher direct images for the triple

(2.2) 0−→OS̃ −→ L̃−→OC̃ ⊗ L̃−→ 0,

because the singularities of S are rational, so that Rmp∗OS̃ = 0 for m≥ 1, and

the map p induces an embedding of C̃ into S, so that Rmp∗ vanishes on sheaves

supported on C̃ for m≥ 1.

Analogously, Rmp∗L̃(−1) = Rmp∗L̃(−2) = 0 for m ≥ 1. Hence, it is enough

to verify the cohomology vanishing for L̃.

The linear system |L̃| is 2-dimensional and basepoint free (we refer to [14,

Section 2, in particular, Proposition 2.5]). We also know the intersection products

L̃ · L̃= 1, L̃ ·KS̃ =−3, and KS̃ ·KS̃ = 3. Using Riemann–Roch we find χ(L̃) =

3 and χ(L̃(−1)) = χ(L̃(−2)) = 0. We have H0(S̃, L̃(−1)) = H0(S̃, L̃(−2)) = 0,

which is clear from (2.2), since L̃|C̃ = OP1(1) and OS̃(1)|C̃ = OP1(3). By Serre

duality we have H2(S̃, L̃) =H0(S̃, L̃∨(−1))∗ = 0, H2(S̃, L̃(−1)) =H0(S̃, L̃∨)∗ =

0 because L̃∨ is the ideal sheaf of C̃, and H2(S̃, L̃(−2)) =H0(S̃, L̃∨(1))∗ = 0. The

last vanishing follows from the fact that C is not contained in any hyperplane

in P
3. It follows that H1(S̃, L̃) =H1(S̃, L̃(−1)) =H1(S̃, L̃(−2)) = 0.

(2) We decompose the sheaf α∗L with respect to the full exceptional collec-

tion Db(P3) = 〈OP3(−1),OP3 ,OP3(1),OP3(2)〉. From part (1) it follows that α∗L

is right-orthogonal to OP3(2) and OP3(1). The left mutation of α∗L through OP3

is given by a cone of the morphism O⊕3
P3 → α∗L induced by the global sections

of L. This cone is contained in the subcategory generated by the exceptional

object OP3(−1). Hence, it must be equal to OP3(−1)⊕3[1], and we obtain the

resolution (2.1) for α∗L.

(3) Since L is a vector bundle outside of the singular points of S, the sheaves

Extk(L,L) for k ≥ 1 must have 0-dimensional support. It follows that it will be

sufficient to prove that Extk(L,L) = 0 for k ≥ 0.

We first compute Extk(α∗L,α∗L). Applying Hom(−, α∗L) to (2.1) we get

the exact sequence

0 −→ Hom(α∗L,α∗L)−→H0(P3, α∗L)
⊕3 −→H0

(
P
3, α∗L(1)

)⊕3

−→ Ext1(α∗L,α∗L)−→ 0,

where we use that Hk(P3, α∗L(m)) = 0 for k ≥ 1 and m ≥ 0, which is clear

from (2.1). This also shows that Extk(α∗L,α∗L) = 0 for k ≥ 2. We have

dimHom(α∗L,α∗L) = 1, and from the sequence above and (2.1), we compute

dimExt1(α∗L,α∗L) = 19.

The object Lα∗α∗L is included in the triangle Lα∗α∗L→ L→ L(−3)[2]→
Lα∗α∗L[1] (see [12, Lemma 1.3.1]). Applying Hom(−,L) to this triangle and

using Extk(Lα∗α∗L,L) = Extk(α∗L,α∗L) we get the exact sequence

0−→ Ext1(L,L)−→ Ext1(α∗L,α∗L)−→Hom
(
L,L(3)

)
−→ Ext2(L,L)−→ 0.
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The arrow in the middle is an isomorphism. To see this, note that Hom(L,L(3)) =

H0(S,NS/P3) = C
19 and that all the deformations of α∗L are induced by the

deformations of its support S. It follows that Ext1(L,L) = Ext2(L,L) = 0. As we

have mentioned above, the sheaves Extk(L,L) have 0-dimensional support for

k ≥ 1, and from the local-to-global spectral sequence we see that Extk(L,L) =

H0(S,Extk(L,L)) for k ≥ 1. It follows that Ext1(L,L) = Ext2(L,L) = 0. To prove

the vanishing of higher Ext’s we construct a quasiperiodic free resolution for L.

From (2.1) we see that the restriction of the complex OP3(−1)⊕3 A−→ O⊕3
P3 to

S will have cohomology L in degree 0 and L(−3) in degree −1. Hence, L is

quasi-isomorphic to the complex of the form

· · · −→ OS(−7)⊕3 −→OS(−6)⊕3 −→OS(−4)⊕3 −→OS(−3)⊕3

−→OS(−1)⊕3 −→O⊕3
S −→ 0.

This complex is quasiperiodic of period 2, with subsequent entries obtained by

tensoring by OS(−3). Applying Hom(−,L) to this complex we see that the

Extk(L,L)’s are also quasiperiodic, and vanishing of the first two of these sheaves

implies vanishing of the rest. �

Starting from L, we have constructed the determinantal representation of S. Con-

versely, given a sequence (2.1), generalized twisted cubics corresponding to this

determinantal representation can be recovered as vanishing loci of sections of L.

A more detailed discussion of determinantal representations of cubic surfaces

with different singularity types can be found in [14, Section 3].

2.2. Moduli spaces of sheaves on a cubic fourfold
Let S = Y ∩ P

3 be a linear section of Y with ADE singularities, and let L be

a sheaf which gives a determinantal representation of S as in (2.1). Denote by

i : S ↪→ Y the embedding. We consider the moduli space of torsion sheaves on Y

of the form i∗L to get a description of an open subset of Z.

LEMMA 2.2

For any u ∈ Ext1(i∗L, i∗L) its Yoneda square u ◦ u ∈ Ext2(i∗L, i∗L) is zero, so

that the deformations of i∗L are unobstructed.

Proof

Recall that L is a rank 1 sheaf on S. The unobstructedness is clear when S is

smooth, because L is a line bundle in this case. Then the local Ext’s are given by

Extk(i∗L, i∗L) = i∗Λ
kNS/Y (see [12, Lemma 1.3.2] for the proof of this). In the

case when S is singular and L is not locally free we can use the same argument

as in [12, Lemma 1.3.2] to obtain a spectral sequence Ep,q
2 = i∗(Ext

p(L,L) ⊗
ΛqNS/Y )⇒ Extp+q(i∗L, i∗L). Now we can use Lemma 2.1(2) to conclude that in

this case Extk(i∗L, i∗L) = i∗Λ
kNS/Y as well.

We have NS/Y =OS(1)
⊕2 and Hm(S,OS(k)) = 0 for k ≥ 0, m≥ 1, and from

the local-to-global spectral sequence we deduce that Extk(i∗L, i∗L) =
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H0(S,ΛkNS/Y ). The algebra structure is induced by the exterior product

ΛkNS/Y ⊗ΛmNS/Y → Λk+mNS/Y (see [12, Lemma 1.3.3]). The exterior square

of any section of NS/Y is zero, and unobstructedness follows. �

The sheaf i∗L has Hilbert polynomial P (i∗L,n) =
3
2n

2 + 9
2n+ 3, which is easy

to compute from (2.1). Denote by ML the irreducible component of the moduli

space of semistable sheaves with this Hilbert polynomial containing i∗L.

Let us denote by V the 6-dimensional vector space, so that Y ⊂ P(V ) = P
5.

Denote by G the Grassmannian Gr(4, V ). Recall from [14] that we have a closed

embedding μ : Y ↪→ Z, and the open subset Z\μ(Y ) corresponds to aCM twisted

cubics. There exists a map π : Z\μ(Y )→ G which sends a twisted cubic to its

linear span in P5. If we consider linear sections S = Y ∩P3, then S can have non-

ADE singularities, but the codimension in G of such linear subspaces is at least

4 by [14, Propositions 4.2, 4.3]. Denote by G◦ ⊂G the open subset consisting of

U ∈G such that Y ∩P(U) has only ADE singularities. Let Z◦ = π−1(G◦) be the

corresponding open subset in Z\μ(Y ). The complement of this open subset has

codimension 4.

LEMMA 2.3

There exists an open subset M◦
L ↪→ ML isomorphic to Z◦. The sheaves on Y

corresponding to points of M◦
L are of the form i∗L, where L gives a determinantal

representation for a linear section S = Y ∩ P
3 with ADE singularities.

Proof

Denote by U the universal subbundle of OG ⊗ V . Let p : P(U)→G be the pro-

jection, and let H=Homp(OP(U)(−1)⊕3,O⊕3
P(U)). We have H� (U∨)⊕9. We will

denote by the same letter H the total space of the bundle H. By construction,

over H×G P(U) we have the universal morphism

OP(U)(−1)⊕3 A−→O⊕3
P(U).

Denote by H◦ the open subset in the total space of H where det(A) 
= 0. Consider

the closed embedding j :H◦×GP(U) ↪→H◦×P(V ) and the sheafM= coker(j∗A)

on H◦×P(V ). Let q :H◦×P(V )→H◦ be the projection. For a point A ∈H◦ the

restriction M|q−1(A) is a sheaf that defines a determinantal representation of a

cubic surface in P(U)⊂ P(V ). The condition that this surface is contained in Y

defines a closed subvariety W ⊂H◦.

Let β :W × Y ↪→H◦ × P(V ) be the closed embedding. Define L=M|W×Y ,

and consider the open subset G◦ ⊂ G of subspaces U ⊂ V such that P(U) ∩ Y

has ADE singularities. Let W◦ be the preimage of G◦ under the natural map

W →G. The sheaf L on W◦ × Y is flat over W◦, since Hilbert polynomials of

its restrictions to the fibers are the same (see [8, Chapter III, Theorem 9.9]). We

obtain a morphism ψ :W◦ →ML. Denote its image by M◦
L. Consider the fiber

WU of the map W◦ →G◦ over a point U ∈G and the restriction of L to WU ×Y .

Over a point w ∈WU the sheaf L defines a determinantal representation of the
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surface Y ∩P(U). The general structure of determinantal representations (see [14,

Section 3]) implies that each connected component of the fiber WU is a single

(GL3×GL3)/C
∗ orbit (see [14, Corollary 3.7]). Connected components of WU are

in one-to-one correspondence with nonisomorphic determinantal representations

of Y ∩ P(U). The restriction of L to each connected component of WU × Y is a

constant family of sheaves, so the map ψ contracts connected components of the

fiber WU . From the explicit description of Z◦ given above, we see that M◦
L is

isomorphic to Z◦. The properties stated in the lemma are clear from construction.

We also see that W◦ is a (GL3 ×GL3)/C
∗-fiber bundle over Z◦. �

The sheaves i∗L are not contained in the subcategory AY . To show that the

closed two-form described in [12] is a symplectic form on M◦
L, we are going to

project the sheaves i∗L to AY and then show that this projection induces an

isomorphism of open subsets of moduli spaces respecting the two-forms (up to a

sign).

LEMMA 2.4

The sheaves i∗L are globally generated and lie in the subcategory 〈AY ,OY 〉. The
space of global sections H0(Y, i∗L) is 3-dimensional, and the sheaf FL, defined

by the exact triple

(2.3) 0−→ FL −→O⊕3
Y −→ i∗L−→ 0,

lies in AY .

Proof

From Lemma 2.1 we deduce that i∗L is right-orthogonal to OY (1) and OY (2),

so that i∗L lies in 〈AY ,OY 〉. It also follows from Lemma 2.1 that i∗L is globally

generated, that the global sections are 3-dimensional, and that the higher coho-

mology groups of L vanish. Thus, FL is (up to a shift) the left mutation of i∗L

through the exceptional bundle OY , and in particular, it lies in AY . �

LEMMA 2.5

Consider the &&& exact triple (2.3) where i∗L is in M◦
L. Then FL is a Gieseker-

stable rank 3 sheaf contained in AY with Hilbert polynomial P (FL, n) =
3
8n

4 +
9
4n

3 + 33
8 n2 + 9

4n.

Proof

By Lemma 2.3 the sheaf i∗L is right-orthogonal to OY (2) and OY (1). The sheaf

FL is a shift of the left mutation of i∗L through OY ; hence, it is contained if AY is.

The Hilbert polynomial can be computed using the Hirzebruch–Riemann–Roch

formula. It remains to check the stability of FL.

The sheaf FL is a subsheaf of O⊕3
Y ; hence, it has no torsion. In order to

check the stability we consider all proper saturated subsheaves G ⊂ FL. We have

to make sure that p(G, n)< p(FL, n), where p is the reduced Hilbert polynomial
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(see [9] for all the relevant definitions). We use the convention that the inequalities

between polynomials are supposed to hold for n� 0.

We denote by P the nonreduced Hilbert polynomial. We have P (OY , n) =

a0n
4 + a1n

3 + · · · + a4, with the leading coefficient a0 = 3
4! . From the exact

sequence (2.3) we see that P (FL, n) = 3P (OY , n)− P (i∗L,n). Since i∗L has 2-

dimensional support, the degree of P (i∗L,n) is 2, and hence, the leading coeffi-

cient of P (FL, n) equals 3a0. So we have

(2.4) p(FL, n) = p(OY , n)−
1

3a0
P (i∗L,n).

Let G̃ be the saturation of G inside O⊕3
Y . Then G̃ is a reflexive sheaf and we

have a diagram:

In this diagram H is a torsion sheaf which injects into i∗L because FL/G is

torsion-free. Note that O⊕3
Y is Mumford polystable, so c1(G) ≤ c1(G̃) ≤ 0. If

c1(G)< 0, then G is not destabilizing in FL because c1(FL) = 0.

Next we consider the case c1(G) = c1(G̃) = 0. In this case G̃ = O⊕m
Y where

m= 1 or m= 2. This is clear if rk G̃ = 1, since a reflexive sheaf of rank 1 is a line

bundle. If rk G̃ = 2, then we can consider the quotient O⊕3
Y /G̃ which is torsion-

free, globally generated, and of rank 1 and has zero first Chern class. It follows

that the quotient is isomorphic to OY and then G̃ =O⊕2
Y .

We have an exact triple 0−→G −→O⊕m
Y −→H−→ 0 with m equal to 1 or 2.

We see that p(G, n) = p(OY , n) − 1
ma0

P (H, n). Note that H is a nonzero sheaf

which injects into i∗L, and the sheaf L on the surface S is torsion-free of rank 1.

Hence, the leading coefficient of P (H, n) is the same as that for P (i∗L,n), and this

implies that 1
ma0

P (H, n) > 1
3a0

P (i∗L,n). From this and (2.4) we conclude that

p(G, n)< p(FL, n); hence, G is not destabilizing. This completes the proof. �

Let us consider the moduli space of rank 3 semistable sheaves on Y with Hilbert

polynomial P (FL, n). Denote by MF its irreducible component which contains

the sheaves FL from (2.3).

LEMMA 2.6

The left mutation of i∗L through OY gives an open embedding M◦
L →MF .

Proof

Recall from the proof of Lemma 2.3 that M◦
L was defined as the image of a map

W◦ →ML, where W◦ was a fiber bundle over Z◦. On X =W◦ × Y a universal

sheaf L flat over W◦ was constructed. Denote by π : X →W◦ the projection.

By the definition of M◦
L and from Lemma 2.1 it follows that π∗L is a rank

3 vector bundle and we have an exact sequence 0→FL → π∗π∗L→L→ 0. The
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family of sheaves FL defines a map W◦ → MF which factors through M◦
L →

MF . We will show that the differential of the latter map is an isomorphism.

For a sheaf i∗L corresponding to a point of M◦
L and any tangent vector

u ∈ Ext1(i∗L, i∗L), we have the unique morphism of triangles

(2.5)

The uniqueness of u′ follows from Ext1(OY , FL) = 0. Moreover, u is uniquely

determined by u′ because Ext1(i∗L,OY ) = Ext3(OY , i∗L(−3))∗ = 0. This shows

that the mutation induces an isomorphism of Ext1(i∗L, i∗L) and Ext1(FL, FL).

Finally, let us prove that the map M◦
L →MF is injective. It follows from

Grothendieck–Verdier duality that Ext2(i∗L,OY ) = i∗L
∨(2). Then from (2.3) we

see that Ext1(FL,OY ) = i∗L
∨(2), and hence, L can be reconstructed from FL. �

2.3. The symplectic form and Lagrangian subvarieties
Let us recall the description of the two-form on the moduli spaces of sheaves

on Y from [12]. Given a coherent sheaf F on Y we can define its Atiyah class

AtF ∈ Ext1(F ,F ⊗ ΩY ). The Atiyah class is functorial, meaning that for any

morphism of sheaves α : F →G we have AtG ◦ α= (α⊗ id) ◦AtF .
We define a bilinear form σ on the vector space Ext1(F ,F). Given two ele-

ments u, v ∈ Ext1(F ,F) we consider the composition AtF ◦ u ◦ v ∈ Ext3(F ,F ⊗
ΩY ) and apply the trace map Tr: Ext3(F ,F⊗ΩY )→ Ext3(OY ,ΩY ) =H1,3(Y ) =

C to it:

(2.6) σ(u, v) = Tr(AtF ◦ u ◦ v).

Note that, when the Kuranishi space of F is smooth, then for any u ∈
Ext1(F ,F) we have u ◦ u = 0 and then σ(u,u) = 0. In this case σ is antisym-

metric. Hence, the formula (2.6) defines a two-form at smooth points of moduli

spaces of sheaves on Y . This form is closed by [12, Theorem 2.2].

LEMMA 2.7

The formula (2.6) defines a symplectic form on M◦
L which coincides up to a

nonzero constant with the restriction of the symplectic form on Z under the

isomorphism M◦
L � Z◦.

Proof

By Lemma 2.2 the sheaves i∗L from M◦
L have unobstructed deformations, so

that (2.6) indeed defines a two-form.

Recall from Lemma 2.6 that we have an open embedding M◦
L ↪→MF . Let us

show that this embedding respects (up to a sign) symplectic forms on ML and

MF given by (2.6). Note that by the functoriality of Atiyah classes the following
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diagram gives a morphism of triangles:

For any pair of tangent vectors u, v ∈ Ext1(i∗L, i∗L) we have two morphisms of

triangles as in (2.5). If we compose these two morphisms of triangles with the

one induced by Atiyah classes, then we get the following:

This diagram is a morphism of triangles, and the additivity of traces implies that

σ(u, v) =−σ(u′, v′).

By [12, Theorem 4.3] the form σ on MF is symplectic, because the sheaves

FL are contained in AY . Hence, σ is a symplectic form on M◦
L. But M◦

L is

embedded into Z as an open subset with complement of codimension 4. This

implies that the symplectic form on M◦
L is unique up to a constant, because Z

is IHS. This completes the proof. �

THEOREM 2.8

The component MF of the moduli space of Gieseker-stable sheaves with Hilbert

polynomial P (FL, n) is birational to the IHS manifold Z. Under this birational

equivalence the symplectic form on Z defined in [14] corresponds to the

Kuznetsov–Markushevich form on MF .

Proof

This follows from Lemmas 2.3, 2.5, 2.6, and 2.7. �

Now we explain how hyperplane sections of Y give rise to Lagrangian subvarieties

of Z. Let H ⊂ P
5 be a generic hyperplane, so that YH = Y ∩H is a smooth cubic

threefold. Twisted cubics contained in Z form a subvariety M3(Y )H ⊂ M3(Y )

whose image in Z we denote by ZH . Its open subset Z◦
H = ZH ∩ Z◦ consists of

sheaves i∗L whose support is contained in H .

PROPOSITION 2.9

We have that ZH is a Lagrangian subvariety of Z.

Proof

It is clear that ZH has dimension 4, since the Grassmannian of 3-dimensional

subspaces in H is P
4. Consider a sheaf i∗L whose support S is smooth and

contained in YH . Since L is a locally free sheaf on S we have Extk(i∗L, i∗L) =
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i∗Λ
kNS/Y (see, e.g., [12, Lemma 1.3.2]). The higher cohomologies of the sheaves

Extk(i∗L, i∗L) vanish for k ≥ 0, because NS/Y =OS(1)
⊕2 and the sheaves OS(k)

have no higher cohomologies for k ≥ 0. Hence, from the local-to-global spec-

tral sequence we find that Ti∗LML = Ext1(i∗L, i∗L) =H0(S,NS/Y ). Moreover,

the Yoneda multiplication on the Ext’s is given by the map H0(S,NS/Y ) ×
H0(S,NS/Y )→H0(S,Λ2NS/Y ), which is induced from the exterior product mor-

phism NS/Y ⊗NS/Y →Λ2NS/Y (see [12, Lemma 1.3.3]). Now, the tangent space

to ZH at i∗L is H0(S,NS/YH
). But the exterior product NS/YH

⊗ NS/YH
→

Λ2NS/YH
= 0 vanishes because NS/YH

is of rank 1. So the Yoneda product van-

ishes on the corresponding subspace of Ext1(i∗L, i∗L), and from the definition

of the symplectic form (2.6) we conclude that the tangent subspace to ZH is

Lagrangian. This holds on an open subset of ZH , so ZH is a Lagrangian subva-

riety. �

In the next section we give a description of the subvarieties ZH in terms of

intermediate Jacobians of the threefolds YH .

3. Twisted cubics on a cubic threefold

In this section we assume that the cubic fourfold Y and its hyperplane section

YH are chosen generically, so that YH is smooth and all the surfaces obtained by

intersecting YH with 3-dimensional subspaces have at worst ADE singularities.

For general Y and H this indeed will be the case, because for a general cubic

threefold in P
4 its hyperplane sections have only ADE singularities. One can

see this from dimension count by considering the codimensions of loci of cubic

surfaces with different singularity types (see, e.g., [14, Sections 2.2, 2.3]).

The cubic threefold YH has an intermediate Jacobian J(YH), which is a

principally polarized abelian variety. We will show that if we choose a general

hyperplane H , then the Abel–Jacobi map

AJ: ZH → J(YH)

defines a closed embedding on an open subset Z◦
H and the complement ZH\Z◦

H

is contracted to a point. The image of AJ is the theta-divisor Θ⊂ J(YH).

Recall from the description of Z that we have an embedding μ : Y ↪→ Z.

We have Z◦
H � ZH \ μ(Y ) and ZH ∩ μ(Y ) � YH . Hence, the Abel–Jacobi map

AJ: ZH → J(YH) gives a resolution of the unique singular point of the theta-

divisor, and the exceptional divisor of this map is isomorphic to YH . This explicit

description of the singularity of the theta-divisor first obtained in [2] implies

Torelli’s theorem for cubic threefolds. The fact that ZH is birational to the theta-

divisor in J(YH) also follows from [10] (see also [3, Proposition 4.2]).

3.1. Differential of the Abel–Jacobi map
As before, we will identify the open subset Z◦

H with an open subset in the moduli

space of sheaves of the form i∗L, where i : S ↪→ YH is a hyperplane section and

L is a sheaf which gives a determinantal representation (2.1) of this section.
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The Abel–Jacobi map AJ: Z◦
H → J(YH) can be described as follows. We use the

Chern classes with values in the Chow ring CH(YH). The second Chern class

c2(i∗L) ∈ CH2(YH) is a cycle class of degree 3. Let h ∈ CH1(YH) denote the

class of a hyperplane section. Then c2(i∗L) − h2 is a cycle class homologous

to zero, and it defines an element in the intermediate Jacobian. Since c2(i∗L)

can be represented by corresponding twisted cubics, the map above extends to

AJ : ZH → J(YH).

LEMMA 3.1

The differential of the Abel–Jacobi map dAJi∗L : Ext
1(i∗L, i∗L)→H1,2(YH) at

the point corresponding to the sheaf i∗L is given by

(3.1) dAJi∗L(u) =
1

2
Tr(Ati∗L ◦ u),

for any u ∈ Ext1(i∗L, i∗L).

Proof

We apply the general formula for the derivative of the Abel–Jacobi map (see

Appendix, Proposition A.1). We have c1(i∗L) = 0, so that the second Segre class

equals s2(i∗L) =−2c2(i∗L), which yields the 1
2 factor in the statement. �

It will be convenient for us to rewrite (3.1) in terms of the linkage class of a

sheaf (see [12]). We recall its definition in our particular case of the embedding

j : YH ↪→ P
4. If F is a sheaf on YH , then the object j∗j∗F ∈Db(YH) has nonzero

cohomologies only in degrees −1 and 0. They are equal to F ⊗N∨
Y/P4 = F(−3)

and F , respectively. Hence, the triangle

F(−3)[1]−→ Lj∗j∗F −→F −→F(−3)[2].

The last morphism in this triangle is called the linkage class of F and will be

denoted by εF : F →F(−3)[2]. The linkage class can also be described as follows

(see [12, Theorem 3.2]): let us denote by κ ∈ Ext1(ΩYH
,OYH

(−3)) the extension

class of the conormal sequence 0→OYH
(−3)→ΩP4 |YH

→ΩYH
→ 0; then we have

εF = (idF ⊗ κ) ◦AtF .
Note that composition with κ gives an isomorphism of vector spaces

H1,2(YH) = Ext2(OYH
,ΩYH

) and Ext3(OYH
,OYH

(−3)) = H0(YH ,OYH
(1))∗.

Composing the right-hand side of (3.1) with κ and using the fact that tak-

ing traces commutes with compositions, we obtain the following expression for

dAJ(u) where u ∈ Ext1(i∗L, i∗L):

(3.2) κ ◦ dAJi∗L(u) =
1

2
Tr(εi∗L ◦ u) ∈H0

(
YH ,OH(1)

)∗
.

PROPOSITION 3.2

The differential of the Abel–Jacobi map (3.1) is injective.



Geometry of the eightfold 801

Proof

As before, we will denote by i : S ↪→ YH and j : YH ↪→ P
4 the embeddings. A point

of Z◦
H is represented by a sheaf i∗L. Let us also use the notation F = i∗L. It

suffices to show that the map u �→ κ ◦ dAJi∗L(u) is injective. The proof is done

in three steps.

Step 1. Let us construct a locally free resolution of j∗F . We decompose

j∗F with respect to the exceptional collection OP4(−2), OP4(−1), OP4 , OP4(1),

OP4(2). The sheaf j∗F is already left-orthogonal to OP4(2) and OP4(1) (see

Lemma 2.1). It is globally generated by (2.1), and its left mutation is the shift

of the sheaf K from the exact triple 0 −→K −→O⊕3
P4 −→ j∗F −→ 0. From the

cohomology exact sequence we see that H0(P4,K(1)) =C
6 and Hk(P4,K(1)) = 0

for k ≥ 1. We can also check that K(1) is globally generated. (It is in fact

Castelnuovo–Mumford 0-regular, as one can see by using (2.1).) The left muta-

tion of K through OP4(−1) is the cone of the surjection OP4(−1)⊕6 →K, and it

lies in the subcategory generated by OP4(−2). Since it has rank 3, this completes

the construction of the resolution for j∗F . The resulting resolution is

(3.3) 0−→OP4(−2)⊕3 −→OP4(−1)⊕6 −→O⊕3
P4 −→ j∗F −→ 0.

Step 2. Let us show that the linkage class εF induces an isomorphism

Ext1(F ,F)→ Ext3
(
F ,F(−3)

)
.

The object Lj∗j∗F is included in the triangle

Lj∗j∗F −→F εF−→F(−3)[2]−→ Lj∗j∗F [1].

Applying Hom(F ,−) to this triangle we find the following exact sequence:

Ext1(F ,Lj∗j∗F)−→ Ext1(F ,F)
εF◦−−→ Ext3

(
F ,F(−3)

)
−→ Ext2(F ,Lj∗j∗F).

Note that by (3.3) the object Lj∗j∗F is represented by a complex of the form 0→
OYH

(−2)⊕3 →OYH
(−1)⊕6 →O⊕3

YH
→ 0. Let us check that Ext2(F ,Lj∗j∗F) = 0.

By Serre duality Extq(F ,OYH
(−p)) = Ext3−q(OYH

(−p),F(−2))∗ =

H3−q(YH ,F(p − 2))∗. From (2.1) we see that for p = 0 and 1 these cohomol-

ogy groups vanish, and for p = 2 the only nonvanishing group corresponds to

q = 3. The spectral sequence computing Extk(F ,Lj∗j∗F), obtained from the

complex representing Lj∗j∗F , implies that Extk(F ,Lj∗j∗F) = 0 for k 
= 1 and

Ext1(F ,Lj∗j∗F) =H0(YH ,F)∗ =C
3.

We conclude that the map Ext1(F ,F)
εF◦−−→ Ext3(F ,F(−3)) is surjective. It

is actually an isomorphism, because the vector spaces are of the same dimension.

The dimensions can be computed in the same way as in the proof of Lemma 2.7.

Step 3. Let us show that Tr : Ext3(F ,F(−3))→H3(YH ,OYH
(−3)) is injec-

tive. Using Serre duality we identify the dual to the trace map with

Tr∗ :H0
(
YH ,OYH

(1)
)
→Hom

(
F ,F(1)

)
.

One can show as in the proof of Lemma 2.2 that Hom(F ,F(1)) =H0(S,O(1)),

and postcomposing Tr∗ with this isomorphism gives the restriction map

H0
(
YH ,OYH

(1)
)
→H0

(
S,OS(1)

)
,
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which is surjective. We see that the composition

Ext1(F ,F)→ Ext3
(
F ,F(−3)

)
→H3

(
YH ,O(−3)

)

is injective, and the proof is finished by means of formula (3.2). �

3.2. Image of the Abel–Jacobi map

THEOREM 3.3

Assume that YH is smooth and all its hyperplane sections have at worst ADE

singularities. Then the image of the Abel–Jacobi map AJ: ZH → J(YH) is the

theta-divisor Θ⊂ J(YH). The map AJ is an embedding on Z◦
H and contracts the

divisor YH = ZH\Z◦
H to the unique singular point of Θ.

Proof

The divisor YH is contracted by the Abel–Jacobi map to a point, because YH is

a cubic threefold which has no global one-forms. To identify the image of AJ it is

enough to check that a general point of ZH is mapped to a point of Θ. The general

point z ∈ ZH is represented by a smooth twisted cubic C on a smooth hyperplane

section S ⊂ YH . Denote by C0 ⊂ S a hyperplane section of S. Then C − C0 is

a degree 0 cycle on YH , and z is mapped to the corresponding element of the

intermediate Jacobian. The cohomology class [C −C0] ∈H2(S,Z) is orthogonal

to the class of the canonical bundle KS and has square −2. Hence, it is a root

in the E6-lattice. All such cohomology classes can be represented by differences

of pairs of lines l1 − l2 in six different ways.

Recall that the Fano variety of lines on the cubic threefold YH is a surface,

which we will denote by X . It was shown in [4] that the theta-divisor Θ⊂ J(YH)

can be described as the image of the map X ×X → J(YH) which sends a pair

of lines (l1, l2) to the point in J(YH) corresponding to the degree 0 cycle l1 − l2.

The map X ×X →Θ has degree 6. We get a commutative diagram:

It follows from the diagram above that AJ is generically of degree 1. Since AJ

is étale on Z◦
H by Proposition 3.2 and the theta-divisor Θ is a normal variety (see

[2, Section 3, Proposition 2]), we deduce that AJ : Z◦
H →Θ is an open embedding.

This completes the proof. �

Appendix: Differential of the Abel–Jacobi map

Let X be a smooth complex projective variety of dimension n. Recall that the

pth intermediate Jacobian of X is the complex torus

Jp(X) =H2p−1(X,C)/
(
F pH2p−1(X,C) +H2p−1(X,Z)

)
,
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where F • denotes the Hodge filtration. We use the Abel–Jacobi map (see [7,

Appendix A])

AJp : CHp(X,Z)h → Jp(X),

where CHp(X)h is the group of homologically trivial codimension p algebraic

cycles on X up to rational equivalence.

For a coherent sheaf F0 on X we consider integral Segre characteristic classes

sp(F0) = p! · chp(F0) ∈CHp(X,Z),

where chp(F0) is the p
′th component of the Chern character ch(F0). Segre classes

can be expressed in terms of the Chern classes using Newton’s formula (see [15,

Section 16]).

Let us consider a deformation of F0 over a smooth base B with base point

0 ∈B, that is, a coherent sheaf F on X ×B flat over B and with F0 �F|π−1
B (0).

We will denote by πB and πX the two projections from X ×B and denote by Ft

the restriction of F to π−1
B (t), t ∈B. In this setting the difference of Segre classes

sp(Ft)− sp(F0) is contained in CHp(X,Z)h, and we get an induced Abel–Jacobi

map

AJpF :B → Jp(X).

Since Segre classes are additive, it follows that if 0 → F ′ → F → F ′′ → 0 is a

short exact sequence of sheaves on X ×B flat over B, then

(A.1) AJpF =AJpF ′ +AJpF ′′ .

Recall that a coherent sheaf F0 has an Atiyah class AtF0 ∈ Ext1(F0,F0 ⊗
ΩX) (see [12, Section 1.6]). The vector space

⊕
p,q≥0Ext

q(F0,F0 ⊗ Ωp
X) has

the structure of a bi-graded algebra with multiplication induced by the Yoneda

product of the Ext’s and the exterior product of differential forms, and this

defines the p′th power of the Atiyah class

AtpF0
∈ Extp(F0,F0 ⊗Ωp

X).

Given any tangent vector v ∈ T0B we shall denote its Kodaira–Spencer class

by KSF0(v) ∈ Ext1(F0,F0), and we consider the composition AtpF0
◦KSF0(v) ∈

Extp+1(F0,F0 ⊗Ωp
X). We will also use the trace maps (see [12, Section 1.2])

Tr: Extq(F0,F0 ⊗Ωp
X)→ Extq(OX ,Ωp

X) =Hp,q(X).

PROPOSITION A.1

In the above setting the differential of the Abel–Jacobi map AJpF : B → Jp(X),

p≥ 2, at 0 ∈B is given by

(A.2) dAJpF,0(v) = Tr
(
(−1)p−1Atp−1

F0
◦KSF0(v)

)
,

for any v ∈ T0B. The right-hand side is an element of Hp−1,p(X)⊂H2p−1(X,C)/

F pH2p−1(X,C).
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Proof

We argue by induction on the length of a locally free resolution of F . The base

of induction is the case when F0 is a vector bundle. Then the result is essentially

contained in the work of Griffiths [6] (in particular, [6, (6.8)]). We will show

how to do the induction step. We note that the statement is local, so we may

replace the base B by an open neighborhood of 0 ∈B every time it is necessary.

In particular, we assume that B is affine.

By our assumptions X is projective, and we denote by OX(1) an ample line

bundle. Then we can find k big enough, so that F(k) is generated by global

sections and has no higher cohomology. We define a sheaf G on X × B as the

kernel of the natural map

0−→G −→ π∗
BπB∗

(
F(k)

)
⊗OX(−k)−→F −→ 0.

Since F is flat over B and πB∗(F0(k)) is a vector bundle on B for k large enough

(see [8, proof of Theorem 9.9]), the sheaf G is flat over B.

It follows from (A.1) that AJpG =−AJpF . Since the homological dimension of

G has dropped by 1, the induction hypothesis yields the formula (A.2) for G. It
remains to relate the right-hand side of (A.2) for G0 and for F0.

Using the functoriality of the Kodaira–Spencer classes we obtain the follow-

ing morphism of triangles:

where u=KSF0(v) ∈ Ext1(F0,F0) and u′ =KSG0(v) ∈ Ext1(G0,G0). Composing

the vertical arrows with Atp−1
F0

, Atp−1
OX(−k), and Atp−1

F0
, respectively, and using the

additivity of traces, we get Tr(Atp−1
F0

◦KSF0(v)) =−Tr(Atp−1
G0

◦KSG0(v)) because

the map in the middle is zero. This completes the induction step. �
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