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Abstract We study the moduli stack of oriented orthogonal sheaves on a nodal curve

and prove a factorization theorem.

1. Introduction

For a complex smooth projective curve C, let UC(n,d) be the moduli space of

semistable vector bundles of rank n and degree d on C. The vector space of

global sections of a line bundle on UC(n,d) is called a space of generalized theta

functions. Suppose the curve C degenerates to an irreducible nodal curve C0,

and consider the moduli space UC0(n,d) of semistable torsion-free sheaves of

rank n and degree d on C0. The factorization theorem says that the space of

generalized theta functions on UC0(n,d) decomposes as a direct sum of spaces of

generalized theta functions on the moduli spaces of parabolic vector bundles on

the normalization C̃0 (see [NR], [Sun], [K2] for precise statements).

In this paper we prove a factorization theorem for the space of generalized

theta functions on the moduli stack of oriented orthogonal sheaves. An orthogo-

nal sheaf on C0 is a torsion-free sheaf E (of rank n) on C0 with a nondegenerate

symmetric bilinear form, and its orientation is a morphism ∧nE →OC0 satisfy-

ing a certain compatibility condition. (Giving an oriented orthogonal locally free

sheaf is equivalent to giving a principal SO-bundle.) The main theorem (Theo-

rem 6.1) in this paper describes how the space of global sections of a power of

the determinant line bundle on the moduli stack of oriented orthogonal sheaves

on C0 decomposes as a direct sum of spaces of global sections of a line bundle

on the moduli stack of parabolic oriented orthogonal bundles on C̃0. (Precisely

speaking, we restrict our attention to a certain open substack of the moduli stack

of oriented orthogonal sheaves C0.)

The reason why we are interested in the moduli of oriented orthogonal bun-

dles comes from the so-called strange duality phenomena. The most typical

strange duality, proven by Belkale [Bel] and Marian and Oprea [MO], is a duality

between the space of level r generalized theta functions on the moduli space of
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SLn-bundles and that of level n generalized theta functions on the moduli space

of GLr-bundles. The author proved the strange duality for symplectic bundles

in [A2] and [A3]. In its proof, the factorization theorem for symplectic bundles

played an important role. In [Beu], Beauville proved a strange duality between the

space of generalized theta functions on the moduli of SOn-bundles and that on

the moduli of SO2(=Gm)-bundles. It is tempting to search for a strange duality

for SOn-bundles and SOm-bundles. We do not know yet even how to formulate

such a (SOn,SOm)-strange duality but hope that the factorization theorem for

SO-bundles in this paper gives a first step towards it.

The proof of the factorization theorem for SO-bundles in this paper is sim-

ilar to that for symplectic bundles in [A1], but we comment on a difference.

The moduli stack of sheaves on a nodal curve has singularity at points corre-

sponding to nonlocally free sheaves. Whereas the singular locus has, generically,

normal singularity in the symplectic bundle case, the singular locus has, generi-

cally, normal-crossing singularity in the SO-bundle case. So we not only describe

moduli-theoretically the normalization of the moduli stack of SO-sheaves on a

nodal curve, but also consider how the normalization of the moduli stack of SO-

sheaves is glued to form the normal-crossing singularity of the moduli stack of

SO-sheaves. (In the symplectic case, we did not need the gluing argument.) The

argument of describing the gluing data is similar to that given in [K2], but not

the same. In the SO-case, the notion of ι-transform, introduced in Section 2.2,

plays an important role.

Related questions. In order to compute the dimension of the space of generalized

theta functions on the moduli of SO-bundles by induction on the genus using

a degeneration argument, it is necessary to establish that the dimension of the

space of generalized theta functions does not jump as a smooth curve degenerates

to a singular one. We do not address this problem in this paper.

Let G be a simple algebraic group over C, and let ĝ be the affine Lie algebra

associated to g := Lie(G). Tsuchiya, Ueno, and Yamada [TUY] established the

factorization for the conformal block of ĝ. When G is simply connected, the

conformal blocks are isomorphic to spaces of generalized theta functions on the

moduli of parabolic G-bundles (cf. [LS]). When G is not simply connected, like

SO, the author does not know what representation-theoretic spaces associated

to ĝ are isomorphic to spaces of generalized theta functions.

Organization of the paper. In Section 2 we gather what we use in the following

sections. In Section 2.1 we define an orthogonal sheaf and its orientation. In

Section 2.2 we introduce the ι-transformation, which associates to an orthogonal

bundle E with a 1-dimensional isotropic subspace of the fiber E|P at a point P

an orthogonal bundle Eι together with a 1-dimensional isotropic subspace of the

fiber Eι|P . In Section 2.3 we gather basic facts about orthogonal Grassmannians.

In Section 3 we study the deformation theory of oriented orthogonal sheaves on

a formal neighborhood of a node. In Section 4 we study the structure of the
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moduli stack of oriented orthogonal sheaves on C0. Using the results in Section 3

we can see immediately its local structure. We find that the singularity of the

moduli stack is generically normal crossing. We restrict our attention to a certain

normal-crossing open substack and describe its normalization and gluing data in

terms of the moduli stack of oriented orthogonal bundles on C̃0. In Section 5

we define a certain compactification of an orthogonal group and study the space

of global sections of line bundles on it. In Section 6, combining the results in

Sections 4 and 5, we prove the factorization theorem for SO-bundles.

The results that lead up to the factorization theorem Theorem 6.1 are Propo-

sitions 4.5 and 4.10 and Lemma 2.1(2), Proposition 5.10, and Theorem 5.14.

NOTATION AND CONVENTION

• In this paper, 2 is invertible; that is, every scheme is over SpecZ[1/2] and

the characteristic of a field is not 2. When we write
√
−1, it is a fixed solution

of x2 =−1 in an algebraically closed field.

• For integers a < b, we denote by [a, b] the set {a, a+ 1, . . . , b}. When it is

clear from the context, the ordered set (a, a+ 1, . . . , b) is also denoted by [a, b].

For ordered sets I = (i1, . . . , ia) and J = (j1, . . . , jb), the ordered set (i1, . . . , ia,

j1, . . . , jb) is denoted by I ∪ J .

• Let S be a scheme, and let ∗ be an object (such as a sheaf, a scheme, a

morphism, etc.) over S. For an S-scheme T , we denote by (∗)T or ∗T the base

change of ∗ by T → S.

• If X is a stack over an algebraically closed field k and A is an object of

X (Speck), then we write [A] ∈ X or A ∈ X . If ρ :X →Y is a morphism of stacks

and A is an object of X (S) for a k-scheme S, then we denote by ρ(A) the image

of A in Y(S).

2. Preliminaries

2.1. Oriented orthogonal sheaves
An orthogonal sheaf of rank n on a scheme X is a pair (E,γ), where E is

a coherent OX -module such that it is generically locally free of rank n on each

component of X , and γ is a nondegenerate symmetric bilinear form E⊗E →OX ,

where nondegenerate means that the induced morphism E →HomOX
(E,OX) is

an isomorphism.

An orientation of an orthogonal sheaf (E,γ) of rank n on X is a morphism

δ : ∧nE →OX of OX -modules such that the diagram

(2.1)

∧nE ⊗∧nE
δ⊗δ

�nγ

OX ⊗OX

�

OX OX

commutes, where �nγ is defined by

(2.2) e1 ∧ · · · ∧ en ⊗ f1 ∧ · · · ∧ fn 	→ det
(
γ(ei, fj)

)
.
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The triple (E,γ, δ) is called an oriented orthogonal sheaf. When E is locally free,

we say (oriented) orthogonal bundle instead of (oriented) orthogonal sheaf. An

isomorphism between oriented orthogonal sheaves (E1, γ1, δ1) and (E2, γ2, δ2) is

an isomorphism E1 
E2 compatible with the bilinear forms and orientations.

Given two oriented orthogonal sheaves (Ei, γi, δi) (i= 1,2) of rank ri, define

the bilinear form γ of E1 ⊕E2 by

γ
(
(e1, e2), (e

′
1, e

′
2)
)
:= γ1(e1, e

′
1) + γ2(e2, e

′
2)

and the orientation δ by

r1+r2∧
(E1 ⊕E2)→

r1∧
E1 ⊗

r2∧
E2

δ1⊗δ2−−−−→O⊗O
O,

where the first arrow is the projection. The oriented orthogonal sheaf (E1 ⊕
E2, γ, δ) is called the direct sum of (E1, γ1, δ1) and (E2, γ2, δ2).

Assume that X →B is a flat quasi-compact morphism of schemes such that

every geometric fiber is reduced and equidimensional. (The situation we have

in mind is the family of nodal curves.) An orthogonal sheaf (resp., oriented

orthogonal sheaf) of rank n on X/B is an orthogonal sheaf (E,γ) (resp., ori-

ented orthogonal sheaf (E,γ, δ)) on X such that E is flat over B, and for every

geometric point b of B, the restriction E|Xb
is torsion-free and (E,γ)|Xb

(resp.,

(E,γ, δ)|Xb
) is an orthogonal sheaf (resp., oriented orthogonal sheaf) of rank n

on Xb. When B = Speck with k a field and there is no confusion, we say simply

(oriented) orthogonal sheaf “on X” instead of “on X/Speck.”

2.2. ι-transform
Let X be a smooth projective curve over an algebraically closed field k, and let

S be a k-scheme. Fix a finite set
−→
P = {P1, . . . , Pm} of points of X . Let B be the

groupoid whose objects are tuples

(2.3)
(
F , γ, δ;Li ⊂F|{Pi}×S (1≤ i≤m)

)
,

where (F , γ, δ) is an oriented orthogonal bundle on X ×S and Li is an isotropic

line subbundle of F|{Pi}×S . An isomorphism between two objects (F , γF , δF ;Li ⊂
F|{Pi}×S (1 ≤ i ≤m)) and (G, γG , δG ;Mi ⊂ G|{Pi}×S (1 ≤ i≤m)) is an isomor-

phism ϕ :F →G of oriented orthogonal bundles such that (ϕ|{Pi}×S)(Li) =Mi.

Suppose that we are given an object (2.3) of B. Put

F � := Ker
(
F →

m⊕
i=1

F|{Pi}×S

L⊥
i

)
and F � := (F �)∨.

We have inclusions F � ⊂ F 
 F∨ ↪→ F �. The bilinear form γ induces a

pr∗XO
(∑m

i=1Pi

)
-valued bilinear form γ� : F � ⊗ F � → pr∗XO

(∑m
i=1Pi

)
. Since

γ�(F � ⊗F �)⊂OX×S , the bilinear form γ� induces a bilinear form

γ̄� :
F �

F �
⊗ F �

F �
→ pr∗

(O(∑m
i=1Pi

)
OX

)
.
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On each section {Pi} × S, F �/F � is an orthogonal bundle of rank 2 having

F/F � as an isotropic line subbundle. Let Ti ⊂ F �/F � be the other isotropic

line subbundle. We can find a vector bundle F ι such that F � ⊂ F ι ⊂ F � and

F ι/F � = Ti on each {Pi} × S. Let γι be the restriction of γ� to F ι. Then γι

is OX×S-valued and (F ι, γι) is an orthogonal bundle. We define its orientation

δι to be the composite detF ι 
 detF �
(∑m

i=1{Pi} × S
)

 detF δ−→ OX×S . Put

Lι
i := Ker(F ι|{Pi}×S → F �|{Pi}×S). Then Lι

i is an isotropic line subbundle of

F ι|{Pi}×S . Thus the tuple

(2.4)
(
F ι, γι, δι;Lι

i ⊂F ι|{Pi}×S(1≤ i≤m)
)

is an object of B. We call this tuple the ι-transform over
−→
P of the tuple (2.3). The

construction of the ι-transform shows that the double ι-transform of an object of

B is naturally isomorphic to the object itself, that is, the ι-transformation gives

rise to an involution on B.
There is an isomorphism

(2.5) F �|{Pi}×S/(F �|{Pi}×S)
⊥ 
L⊥

i /Li.

Since (F ι)� =F �, we have an isomorphism

(2.6) Lι⊥
i /Lι

i 
L⊥
i /Li

of orthogonal bundles.

The ι-transform is locally described as follows. Consider the case S = Speck

and
−→
P = {P}, and let t be a local coordinate at P . For a tuple (2.3), let e1, . . . ,en

be a local frame of F around P such that (ei,en+1−i) = 1 and the 1-dimensional

subspace is spanned by e1. Then F ι is generated by t−1e1,e2, . . . ,en−1, ten.

2.3. Orthogonal Grassmannian
Let k be an algebraically closed field, and let V be an n-dimensional k-vector

space with a nondegenerate bilinear form γ. For m≤ [n/2], we put

OGm(V ) := {U ⊂ V | dimU =m and γ|U×U ≡ 0}.

Assume that n is even. Then OGn/2(V ) has two connected components. Let

δ : ∧nV → k be an orientation of (V,γ) (considered as an orthogonal bundle on

Speck). We name the two connected components of OGn/2(V ) as OGn/2(V )(+)

and OGn/2(V )(−) as follows. For [U ⊂ V ] ∈OGn/2(V ), define ε=+ or − as the

diagram

∧n/2U ⊗∧n/2V/U
cano.

υ

∧nV

δ

k
·ε(

√
−1)n/2

k
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commutes, where υ is defined by

e1 ∧ · · · ∧ en/2 ⊗ f1 ∧ · · · ∧ fn/2 	→ det
(
γ(ei, fj)

)
.

If n/2 is even, we put OGn/2(V )(ε) := OGn/2(V )(ε) for ε = ±, and if

n/2 is odd, then we put OGn/2(V )(+) := OGn/2(V )(−) and OGn/2(V )(−) :=

OGn/2(V )(+).

If V is a rank n vector bundle with a nondegenerate bilinear form on a scheme

X , then we can consider the family of orthogonal Grassmannians OGm(V)→X ,

and, moreover, if V has an orientation, then the notation OGm(V)(±) makes

sense.

Let Ei be an n-dimensional vector space with a nondegenerate bilinear form

γi and an orientation δi (i= 1,2). We endow the vector space E1 ⊕E2 with the

bilinear form γ defined by

γ
(
(e1, e2), (e

′
1, e

′
2)
)
= γ1(e1, e

′
1)− γ2(e2, e

′
2)

and the orientation defined by

2n∧
(E1 ⊕E2)


n∧
E1 ⊗

n∧
E2

δ1⊗δ2−−−−→ k⊗ k 
 k
·(
√
−1)n−−−−−→ k.

If f : E1 → E2 is a k-linear isomorphism compatible with bilinear forms and

orientations, then the graph Γf ⊂ E1 ⊕ E2 lies in the component OGn(E1 ⊕
E2)(+). The following lemma is easy.

LEMMA 2.1

Let [U ⊂E1 ⊕E2] ∈OGn(E1 ⊕E2).

(1) We have dimU ∩ (E1 × {0}) = dimU ∩ ({0} ×E2).

(2) We put

OG=a
n (E1 ⊕E2) :=

{
U ⊂E1 ⊕E2

∣∣ dimU ∩ (E1 × {0}) = a
}
.

Let f : OG=a
n (E1 ⊕E2)→OGa(E1)×OGa(E2) be the map that sends U to (U ∩

(E1 × {0}),U ∩ ({0} × E2)). For (B1,B2) ∈ OGa(E1) × OGa(E2), there is an

isomorphism

f−1
(
(B1,B2)

)

OG=0

n−2a(B
⊥
1 /B1 ⊕B⊥

2 /B2).

Moreover, if we define the orientations δ′1 and δ′2 of B⊥
1 /B1 and B⊥

2 /B2 so that

the diagrams

∧aB1 ⊗∧a E1

B⊥
1
⊗∧n−2a B⊥

1

B1

∼

∧̄aγ1⊗id

∧nE1
δ1

k

·(
√
−1)a

∧n−2a B⊥
1

B1

δ′1
k
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∧a E2

B⊥
2
⊗∧aB2 ⊗∧n−2a B⊥

2

B2

∼

∧̄aγ2⊗id

∧nE2
δ2

k

·(
√
−1)a

∧n−2a B⊥
2

B2

δ′2
k

commute, then

f−1
(
(B1,B2)

)
∩OG=a

n (E1 ⊕E2)(+) 
OG=0
n−2a(B

⊥
1 /B1 ⊕B⊥

2 /B2)(+).

(3) Put OG≤a
n (E1 ⊕E2) :=

⋃a
i=0OG=i

n (E1 ⊕E2). Then OG≤a
n (E1 ⊕E2) is

an open subscheme of OGn(E1⊕E2), and the codimension of the complement of

OG≤a
n (E1 ⊕E2) in OGn(E1 ⊕E2) is greater than or equal to (a+ 1)2.

3. Oriented orthogonal sheaves in a neighborhood of a node

Let (R,m) be a complete Noetherian local ring. Assume that k :=R/m is alge-

braically closed. Put A :=R[[x, y]]/(xy− π), where π ∈m.

3.1. Construction of orthogonal sheaves
We recall Faltings’s construction of orthogonal sheaves on SpecA/SpecR

(see [F]).

Given matrices P = (pij),Q= (qij) ∈Matn×n(m) with PQ=QP = π · In, we
define (2n× 2n)-matrices α, β with entries in A by

α=

(
x · In P

Q y · In

)
and β =

(
y · In −P

−Q x · In

)
.

Then αβ = βα= 0, and the complex

· · · →A2n β−→A2n α−→A2n β−→A2n α−→A2n → · · ·

is exact. Put E(P,Q) := Imα = Kerβ. Then E(P,Q) is R-flat and E(P,Q)/

mE(P,Q) does not have free summands, that is, E(P,Q)/mE(P,Q)
 (Ã/mA)n,

where Ã/mA= k[[x]]⊕ k[[y]].

We denote by b the standard bilinear form given by In on Rn or An. Taking

the dual of the sequence A2n
α� E(P,Q) ⊂ A2n, we get (A2n)∨ ←↩ E(P,Q)∨ �

(A2n)∨. Identifying (A2n)∨ with A2n by the standard bilinear form and noting
tα=
(
x·In tQ
tP y·In

)
, we obtain a canonical isomorphism E(tQ, tP )
E(P,Q)∨.

Now assume that P = tQ; then the composite

E(P,Q)
id−→E(tQ, tP )
E(P,Q)∨

gives rise to a nondegenerate symmetric bilinear form on E(P,Q). We denote

this bilinear form by γ(P,Q). Explicitly, we have

γ(P,Q)

(
α

(
u

v

)
,

(
u′

v′

))
= b(u,u′) + b(v,v′)
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for u,u′,v,v′ ∈An. The pair (E(P,Q), γ(P,Q)) is an orthogonal sheaf of rank n

on SpecA/SpecR.

3.2. Construction of oriented orthogonal sheaves
Now we consider an orientation of the orthogonal sheaf (E(P,Q), γ(P,Q)).

Let Δ : ∧n(A2n) → A be an A-homomorphism. Let e1, . . . ,en, f1, . . . , fn be

the standard basis of A2n. For I ∈ [1, n]a and J ∈ [1, n]b with a+ b= n, we put

CI;J := Δ(eI ∧ fJ), where eI = ei1 ∧ · · · ∧ eia if I = (i1, . . . , ia), and similarly for

fJ . The homomorphism Δ factors as ∧n(A2n)
∧nα−−−→∧nE(P,Q)→ A if and only

if Δ(∧n−1(A2n)⊗ Imβ) = 0; that is, the images of(
yes −

n∑
l=1

qlsfl

)
∧ eI ∧ fJ and

(
xft −

n∑
m=1

pmtem

)
∧ eI ∧ fJ

by Δ in A is zero for all I ∈ [1, n]a and J ∈ [1, n]b with a+ b= n− 1. These are

equivalent to

yCI∪{s};J =
n∑

l=1

qlsCI;{l}∪J ,(3.1)

xCI;{t}∪J =

n∑
m=1

pmtCI∪{m};J .(3.2)

When equations (3.1) and (3.2) hold, we define δ : ∧nE(P,Q)→ A by Δ = δ ◦
∧nα. The homomorphism δ becomes an orientation of (E(P,Q), γ(P,Q)) if and

only if

∧̄nγ(P,Q)

(
(∧nα)(e[1,n]), (∧nα)(e[1,n])

)
= δ
(
(∧nα)(e[1,n])

)2
,

∧̄nγ(P,Q)

(
(∧nα)(f[1,n]), (∧nα)(f[1,n])

)
= δ
(
(∧nα)(f[1,n])

)2
because the sections (∧nα)(e[1,n]) and (∧nα)(f[1,n]) generate ∧nE(P,Q) over

SpecA \ {the closed point}. The above conditions are equivalent to

(3.3) C2
[1,n];∅ = xn and C2

∅;[1,n] = yn.

LEMMA 3.1

If (E,γ, δ) is an oriented orthogonal sheaf of rank n on SpecA/SpecR such that

E/mE has no free summand, then n is even.

Proof

We may assume that R= k. There is an isomorphism (E,γ)
 (E(O,O), γ(O,O))

of orthogonal sheaves (see [F, Theorem 3.7]). By this isomorphism, we regard

δ as the orientation of (E(O,O), γ(O,O)). Then by equations (3.3), C[1,n];∅ ∈
k[[x, y]]/(xy) satisfies C2

[1,n];∅ = xn. This implies that n is even. �

In the rest of this subsection we assume that n is even. Assume also that for any

I ∈ [1, n]n/2 and J ∈ [1, n]n/2, the equality
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(3.4) sgn

(
Jc ∪ J

[1, n]

)
detQJc×I = sgn

(
I ∪ Ic

[1, n]

)
detPIc×J

holds, where QJc×I (resp., PIc×J ) is the ((n/2) × (n/2))-matrix with entries

quv (resp., puv) with u ∈ Jc and v ∈ I (resp., u ∈ Ic and v ∈ J). We define

Δ : ∧n(A2n) → A as follows. For I ∈ [1, n]a and J ∈ [1, n]b with a + b = n, if

a≤ n/2, then

(3.5) CI;J = sgn

(
Jc ∪ J

[1, n]

)
y(n/2)−a detQJc×I ,

and if b≤ n/2, then

(3.6) CI;J = sgn

(
I ∪ Ic

[1, n]

)
x(n/2)−b detPIc×J ,

where we understand that detP∅;∅ = detQ∅;∅ = 1 by convention. Then these

CI;J ’s satisfy (3.1), (3.2), and (3.3), so it induces an orientation of the orthogonal

sheaf (E(P,Q), γ(P,Q)). We denote this orientation by δ(P,Q).

LEMMA 3.2

Let K ⊂ R be a nilpotent ideal. Assume that P = (pij),Q = (qij) ∈Matn×n(m)

satisfy PQ = QP = π · In and Q = tP . Let (E(P,Q), γ(P,Q), δ) be an oriented

orthogonal sheaf on SpecA/SpecR. Denote by P̄ = (p̄ij) and Q̄= (q̄ij) the images

of P and Q in Matn×n(m/K). Assume that for any I ∈ [1, n]n/2 and J ∈ [1, n]n/2,

the equality

sgn

(
Jc ∪ J

[1, n]

)
det Q̄Jc×I = sgn

(
I ∪ Ic

[1, n]

)
det P̄Ic×J

holds, and δ|SpecA/KA = δ(P̄ ,Q̄). Then for any I ∈ [1, n]n/2 and J ∈ [1, n]n/2, the

equality (3.4) holds, and δ = δ(P,Q).

Proof

We may assume that mK = 0. As before, put Δ= δ ◦∧nα and CI;J =Δ(eI ∧ fJ )

for I = (i1, . . . , ia) ∈ [1, n]a and J = (j1, . . . , jb) ∈ [1, n]b with a+ b= n.

If b≤ n/2, then we have, by assumption,

CI;J = sgn

(
I ∪ Ic

[1, n]

)
x(n/2)−b detPIc×J + sI;J +

∑
i>0

tI;Ji xi +
∑
i>0

uI;J
i yi

with sI;J , tI;Ji , uI;J
i ∈K. If b < n/2, then by (3.1) we have

π sgn

(
I ∪ Ic

[1, n]

)
x(n/2)−b−1 detPIc×J + sI;Jy+

∑
i>0

uI;J
i yi+1

=

n∑
l=1

qlia sgn

(
I ∪ Ic

[1, n]

)
x(n/2)−b−1 detP({ia}∪I)×({l}∪J).

The first term of the left-hand side is equal to the right-hand side. So
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(3.7) sI;J = uI;J
i = 0.

If 0< b, by using (3.2), we obtain

(3.8) sI;J = tI;Ji = 0.

If a≤ n/2, then we have, by assumption,

CI;J = sgn

(
Jc ∪ J

[1, n]

)
y(n/2)−a detQJc×I + sI;J +

∑
i>0

tI;Ji xi +
∑
i>0

uI;J
i yi

with sI;J , tI;Ji , uI;J
i ∈K. Arguing as above, we have

(3.9) sI;J = tI;Ji = 0

if a < n/2 and

(3.10) sI;J = uI;J
i = 0

if 0< a. From (3.7), (3.8), (3.9), and (3.10), it follows that P and Q satisfy (3.4),

and CI;J is given by (3.5) or (3.6) if 0< a ≤ n/2 or 0 < b ≤ n/2. It remains to

show that C[1,n];∅ = xn/2 and C∅;[1,n] = yn/2. By (3.7), we have

C[1,n];∅ = xn/2 +
∑
i>0

tix
i

with ti ∈K. Since C2
[1,n];∅ = xn by (3.3), we have ti = 0. Hence C[1,n];∅ = xn/2.

Likewise we have C∅;[1,n] = yn/2. �

3.3. Deformation of an oriented orthogonal sheaf
Let Art be the category of Artinian local R-algebras with residue field k. Fix an

oriented orthogonal sheaf E := (E,γ, δ) on SpecA/mA. A deformation of E over

S ∈Art is an oriented orthogonal sheaf E1 = (E1, γ1, δ1) on SpecA⊗R S/SpecS

together with an isomorphism ϕ1 : E1|SpecA/mA 
 E. Two deformations (E1;ϕ1)

and (E2;ϕ2) of E over S are said to be equivalent if there is an isomorphism

θ : E1 
 E2 such that ϕ2 ◦ (θ|SpecA/mA) = ϕ1.

Let DE :Art→ Sets be the functor that associates to S the set of equivalence

classes of deformations of E over S.

We have an isomorphism E 
 (A/mA)a ⊕ (Ã/mA)n−a as A/mA-modules.

Let E′ ⊂E be the free summand, and let E′′ be its orthogonal complement. The

composite

E′ ↪→E →E∨ → (E′)∨

is an isomorphism. From this, it follows that E is a direct sum of E′ and E′′

and γ′ := γ|E′⊗E′ is a nondegenerate symmetric bilinear form. The orientation δ

factors as
n∧
E

pr−→
a∧
E′ ⊗

n−a∧
E′′ →A,

where pr is the projection. Choose an isomorphism δ′ : ∧aE′ → A so that the

diagram
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(3.11)

∧aE′ ⊗∧aE′ δ′⊗δ′

�aγ′

A⊗A A

�

A A

commutes. Choose an A-homomorphism δ′′ : ∧n−aE′′ →A so that

(3.12) δ = (δ′ ⊗ δ′′) ◦ pr.
Then the diagram

(3.13)

∧n−aE′′ ⊗∧n−aE′′ δ′′⊗δ′′

�n−aγ′′

A⊗A A

�

A A

commutes. It follows from (3.11) and (3.13) that E′ := (E′, γ′, δ′) and E′′ :=

(E′′, γ′′, δ′′) are oriented orthogonal sheaves, and from (3.12) that E is a direct

sum of E′ and E′′. By associating to a deformation of E′′ over S the direct sum

of the deformation of E′′ and the trivial deformation of E′ over S, we obtain a

natural transformation Φ :DE′′ →DE. One can check that Φ is smooth and

Φ(k[ε]) :DE′′(k[ε])→DE(k[ε])

is bijective. Thus the hull of DE′′ and that of DE are isomorphic.

In the rest of this subsection we assume that E has no direct summand.

LEMMA 3.3

E is isomorphic to (E(O,O), γ(O,O), δ(O,O)).

Proof

We may assume that E = E(O,O) and γ = γ(O,O). Using the equations (3.1),

(3.2), and (3.3), we know that Δ(:= δ ◦∧nα) is given byC[1,n];∅ = ε1x
n/2,C∅;[1,n] =

ε2y
n/2 with εi = ±1 and CI;J = 0 for other I, J . Let Di be the (n× n)-matrix

diag(εi,1, . . . ,1). Then the (2n × 2n)-matrix
(
D1 O
O D2

)
gives an isomorphism

(E(O,O), γ(O,O), δ)
 (E(O,O), γ(O,O), δ(O,O)). �

Let us construct the hull of the deformation functor DE. Consider (n×n)-matrices

P= (pij) and Q := tP, where pij ’s are indeterminates. Let Ũ be the residue ring

of R[[pij | 1≤ i, j ≤ n]] by the ideal generated by the relation

PQ=QP= π · In.
Then on Spec Ũ [[x, y]]/(xy−π), we have the orthogonal sheaf (E(P,Q), γ(P,Q)),

which is the versal deformation of the orthogonal sheaf (E(O,O), γ(O,O)) (cf. [F,

Theorem 3.7, Remark 3.8, Theorem 3.9]); that is, the natural transformation

hŨ →F is a hull (see [Sch, Definition 2.7]), where F is the deformation functor

of (E(O,O), γ(O,O)).
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Let U be the residue ring of Ũ by the ideal generated by the relations

sgn

(
Jc ∪ J

[1, n]

)
detQJc×I = sgn

(
I ∪ Ic

[1, n]

)
detPIc×J

for I ∈ [1, n]n/2 and J ∈ [1, n]n/2. We have the oriented orthogonal sheaf (E(P,Q),

γ(P,Q), δ(P,Q)) on SpecU [[x, y]]/(xy − π). We have a natural transformation Ψ :

hU →DE.

PROPOSITION 3.4

We have that Ψ is a hull of DE.

Proof

For any S ∈Art, the map hŨ (S)→F(S) is surjective (see [F, Theorem 3.7]).

By this and Lemma 3.2, we know that the map DE(S) → F(S) forgetting the

orientation is injective for all S ∈Art, and the diagram

hU (S) DE(S)

hŨ (S) F(S)

is Cartesian. From this, using the fact that hŨ →F is a hull (see [F]), it follows

that Ψ : hU →DE is a hull. �

4. Moduli stack of oriented orthogonal sheaves

Let (R,m) be a complete Noetherian local ring with residue field k =: R/m

algebraically closed. Let C →B := SpecR be a flat projective morphism whose

geometric fibers are connected nodal curves of arithmetic genus g. Put B0 :=

SpecR/m. For simplicity, we assume that the closed fiber C0 is irreducible and

has only one node Q. Fix an isomorphism ÔC,Q 
R[[x, y]]/(xy − π) =: A of R-

algebras, where π ∈m.

DEFINITION 4.1

The moduli stack M̄n(C) of oriented orthogonal sheaves is the stack such that for

an affine B-scheme T , objects of the groupoid M̄n(C)(T ) are oriented orthogonal

sheaves of rank n on CT /T .

REMARK 4.2

The moduli stack M̄n(C) is not connected.

If (E , γ, δ) is an oriented orthogonal sheaf of rank n on C0, then

E ⊗ ÔC0,Q 

(
k[[x, y]]/(xy)

)n−2a ⊕ (k[[x]]⊕ k[[y]])2a
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for some a ≥ 0. Such an oriented orthogonal sheaf is said to be of type a. We

write M̄n(C0) for M̄n(C)×B B0. We denote by M̄≤a
n (C0) the open substack of

M̄n(C0) parameterizing oriented orthogonal sheaves of type ≤ a.

To see that the stack M̄n(C) is an algebraic stack, we construct an atlas of

M̄n(C) using the following well-known result (cf. [AK, (1.1)]).

LEMMA 4.3

Let f :X → Y be a projective morphism of schemes. Let F and G be coherent

OX -modules. Assume that G is flat over Y . Then the functor that associates to a

Y -scheme S the set HomXS
(FS ,GS) is representable by a scheme which is affine

and of finite type over Y .

We denote by H(F ,G) the Y -scheme representing the functor in the above lemma.

Fix a B-very ample line bundle OC(1) on C with degree d on fibers. For N > 0,

let QN be Grothendieck’s quote scheme parameterizing quotients of the sheaf

OC(−N)⊕n(Nd+1−g) of rank n and degree 0. Let pr∗COC(−N)⊕n(Nd+1−g) →
E be the universal quotient over C ×B QN . Let Qo

N ⊂ QN be the open sub-

scheme consisting of points t such that H1(Ct,Et(N)) = 0, the natural map

H0(Ct,O)⊕n(Nd+1−g) →H0(Ct,Et(N)) is an isomorphism, and Et is torsion-free.
Put Eo := E|C×Qo

N
, and put H :=H(Eo ⊗ Eo,O)×Qo

N
H(∧nEo,O). Denote by Ẽ

the pullback of Eo to C ×B H. Over C ×B H, we have the universal bilinear

form γ : Ẽ ⊗ Ẽ → OC×BH and the universal morphism δ : ∧nẼ → OC×BH. Let

AN ⊂H be the maximum closed subscheme such that the restriction of the triple

(Ẽ , γ, δ) to C ×B AN is an oriented orthogonal sheaf on C ×B AN/AN . Then⊔
N>0AN → M̄n(C) is an atlas of M̄n(C).

4.1. Local structure
As in Section 3.3, we let Art be the category of Artinian local R-algebras with

residue field k. Fix an oriented orthogonal sheaf E = (E , γ, δ) on C0.

For S ∈Art, an object E1 of M̄n(C)(SpecS) together with an isomorphism

E1|C0 
 E is called a deformation of E over S. Let DE be the functor that asso-

ciates to S ∈Art the set of equivalence classes of deformations of E over S. By

taking the completion of E at Q, we obtain an oriented orthogonal sheaf E on

SpecA/mA. By associating to a deformation of E over S its completion at Q,

we have a natural transformation f :DE →DE. By [BL], f is smooth. The hull

of DE has already been determined in Section 3.3. For us, the following result in

the case of type 1 is important.

PROPOSITION 4.4

Assume that the above E is of type 1. For an atlas V → M̄n(C), let p ∈ V be a

point over [E ] ∈ M̄n(C). Then there is an isomorphism

ÔV,p 
R[[x, y, z1, z2, . . .]]/(xy− π).
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Proof

Since E is of type 1, by Proposition 3.4, the hull of the deformation functor of DE

is SpecR[[pij | 1≤ i, j ≤ 2]]/J , where the ideal J is generated by the relations

tPP=PtP= π · I2, p11 = p22, and p12 =−p21.

These relations are equivalent to

p2
11 + p2

12 = π, p11 = p22, and p12 =−p21.

Hence R[[pij | 1≤ i, j ≤ 2]]/J 
R[[x, y]]/(xy− π). �

4.2. Desingularization of M̄n(C0)

Let n : C̃0 → C0 be the normalization of C0. Put g̃ := g − 1, the genus of C̃0.

Put {P1, P2} := n−1(Q). Let Mn(C̃0) be the moduli stack of oriented orthogonal

bundles of rank n on C̃0. Let (Fu, γu, δu) be the universal family of oriented

orthogonal bundles over C̃0 ×Mn(C̃0). For i= 1,2, put

Fu
i :=Fu|{Pi}×Mn(C̃0)

, γu
i := γu|Fu

i ⊗Fu
i
, and δui := δu|∧nFu

i
.

Then (Fu
i , γ

u
i , δ

u
i ) is an oriented orthogonal bundle of rank n on Mn(C̃0). Con-

sider the orthogonal Grassmannian bundle

τ : OGn(Fu
1 ⊕Fu

2 )→Mn(C̃0).

The stack OGn(Fu
1 ⊕ Fu

2 ) parameterizes rank n oriented orthogonal bundles

(F,γF , δF ) on C̃0 plus n-dimensional isotropic subspaces U ⊂ F |P1 ⊕F |P2 . It is a

disjoint union of OGn(Fu
1 ⊕Fu

2 )(+) and OGn(Fu
1 ⊕Fu

2 )(−). Given (F,γF , δF ;U ⊂
F |P1 ⊕ F |P2) ∈OGn(Fu

1 ⊕Fu
2 )(+), if we put

E := Ker
(
n∗(F )→ n∗(F )|Q = F |P1 ⊕ F |P2 → (F |P1 ⊕ F |P2)/U

)
,

then there are a symmetric bilinear form γE : E ⊗E →OC0 and an OC0 -linear

map δE : ∧nE →OC0 such that the following diagrams commute:

n∗(F )⊗ n∗(F ) n∗(OC̃0
)

E ⊗E
γE OC0

n∗(∧nF ) n∗(OC̃0
)

∧nE
δE OC0

You can check easily that (E,γE , δE) is an oriented orthogonal sheaf of rank n on

C0. By associating to (F,γF , δF ;U ⊂ F |P1 ⊕F |P2) the oriented orthogonal sheaf

(E,γE , δE) on C0, we have a morphism

ρ : OGn(Fu
1 ⊕Fu

2 )(+) → M̄n(C0)

of stacks.

PROPOSITION 4.5

For any smooth morphism α : V → M̄n(C0) with V a scheme, the product

OGn(Fu
1 ⊕Fu

2 )(+) ×M̄n(C0) V is a smooth variety and the projection
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OGn(Fu
1 ⊕Fu

2 )(+) ×M̄n(C0) V → V

is a proper birational morphism which is an isomorphism over V 0 :=

α−1(M̄≤0
n (C0)).

For the proof of the proposition, we prepare lemmas.

LEMMA 4.6

Fix integers m≥ 0 and d. Let V be a B0-scheme, and let H be a coherent sheaf

on C̃0 × V . Then the functor RH that associates to a V -scheme S the set

(4.1)

⎧⎪⎨⎪⎩(HS
f−→F)

∣∣∣∣∣∣∣
F : rank m vector bundle on C̃0 × S,

f |
C̃0×s

is generically surjective,

and deg(F|
C̃0×s

) = d for any s ∈ S

⎫⎪⎬⎪⎭
/

∼

is representable by a proper scheme RH over V . Here (HS
f−→F) and (HS

f ′

−→F ′)

are defined to be equivalent ∼ if there is an isomorphism h : F → F ′ such that

h ◦ f = f ′.

Proof

We may assume that V is affine.

Case (1): H is a vector bundle.

Put e := rankH and b := χ(H∨|
C̃0×s

). Let (HS
f−→F) be as in (4.1). If we let

Q := Coker(f∨ :F∨ →H∨
S), then Q is flat over S with numerical invariants

(4.2) χ(Q|
C̃0×s

) = b+ d−m(1− g̃) and rankQ= e−m.

Conversely, given a surjection H∨
S

h−→Q with numerical invariants (4.2), if we let

F := (Kerh)∨, then (HS
h∨
−−→F) satisfies the condition in (4.1). So the functor

RH is isomorphic to Grothendieck’s quot functor of quotients of H∨, which is

representable by a projective V -scheme.

Case (2): General case.

Take a resolution L1
h−→L0 →H→ 0 by locally free sheaves. Let L0⊗ORL0

f−→
F be the universal family parameterized by RL0 . The composite L1 ⊗
ORL0

f◦(h⊗id)−−−−−−→F gives a morphism σ :RL0 →H(L1⊗ORL0
,F). Let Z ⊂H(L1⊗

ORL0
,F) be the closed subscheme parameterizing zero morphisms. Then the

functor RH is representable by σ−1(Z). �

LEMMA 4.7

Let V be a B0-scheme, let H be a coherent sheaf on C̃0 × V , and let F , L be

vector bundles on C̃0 × V . Let f : H → F be a morphism such that there is a

closed subset Z ⊂ C̃0 × V not containing a fiber of prV with the condition that f

is an isomorphism over C̃0 × V \Z. Let ϕ :H(F ,L)→H(H,L) be the morphism

induced by the composition with f . Then ϕ is a closed immersion.
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Proof

Since f is an isomorphism over C̃0 × V \ Z, for any V -scheme S, the map of

S-valued points

ϕ(S) :H(F ,L)(S)→H(H,L)(S)

is injective. It remains to show that ϕ is proper. Let S = SpecR with R a discrete

valuation ring over V , and let ι : η := SpecK → S be the open immersion, where

K is the fractional field of R. Suppose that we are given morphisms g :HS →LS

on C̃0×S and h :Fη →Lη on C̃0×η such that h◦fη = gη . Let l be the composite

of morphisms

FS → (id
C̃0

× ι)∗(Fη)
(id

C̃0
×ι)∗h

−−−−−−−→ (id
C̃0

× ι)∗(Lη).

Since FS and ES are isomorphic over C̃0×S\(Z×V S), for any section σ ∈ FS , the

section l(σ), regarded as a rational section of LS , does not have poles along the

closed fiber. So Im l⊂LS . This means that the valuative criterion of properness

holds for ϕ. �

Proof of Proposition 4.5

Let E = (E , γE , δE) be the object of the groupoid M̄n(C0)(V ) that determines

the morphism α : V → M̄n(C0). To prove that OGn(Fu
1 ⊕Fu

2 )(+) ×M̄n(C0) V is

a scheme, we need to show that the functor A that associates to a V -scheme S

the set of tuples

(4.3)
(
F = (F , γF , δF ,U ⊂F|{P1}×S ⊕F|{P2}×S); ξ

)
is representable by a scheme, where F ∈ OGn(Fu

1 ⊕ Fu
2 )(+)(S) and ξ is an

isomorphism in M̄n(C0)(V ) between the image of F by ρ and E . Put H :=

(n× idV )
∗E . Giving the tuple (4.3) is equivalent to giving a tuple (F , θ), where

F ∈OGn(Fu
1 ⊕Fu

2 )(+)(S) and θ is a morphism HS →F such that the composite

of morphisms

(4.4) ES θad

−−→ (n× idS)∗F → (Q, idS)∗
(F|{P1}×S ⊕F|{P2}×S

U
)

is zero, and the following diagrams commute:

(4.5)

F ⊗F γF O
C̃0×S

HS ⊗HS O
C̃0×S

,

∧nF δF O
C̃0×S

∧nHS O
C̃0×S

where the bottom arrows in the above diagrams are induced by γE and δE ,

respectively.

Let R be the V -scheme RH in Lemma 4.6 for m= n and d= 0. Let HR →G
be the universal morphism on C̃0 × R. The bilinear form HR ⊗ HR → O

C̃0×R

induced by γE gives a section R
α−→H(HR⊗HR,OC̃0×R

) of the R-scheme H(HR⊗
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HR,OC̃0×R
). By Lemma 4.7, we have a closed subscheme H(G ⊗ G,O

C̃0×R
) ⊂

H(HR⊗HR,OC̃0×R
). Put R1 := α−1(H(G ⊗G,O

C̃0×R
)). Similarly the morphism

∧nHR → O
C̃0×R

induced by δE gives a section R
β−→ H(∧nHR,OC̃0×R

) of the

R-scheme H(∧nHR,OC̃0×R
). Put R2 := β−1(H(∧nF ,O

C̃0×R
)), where H(∧nF ,

O
C̃0×R

) is a closed subscheme of H(∧nHR,OC̃0×R
), again by Lemma 4.7. Put

R′ := R1 ∩ R2. Then, by the definition of R′, GR′ has a bilinear form γGR′

and a morphism δGR′ : ∧nGR′ → O
C̃0×R′ . Since the diagrams (4.5), in which

F and HS are replaced by GR′ and HR′ , respectively, are commutative, the

triple (GR′ , γGR′ , δGR′ ) is an oriented orthogonal bundle on C̃0 × R′/R′. Put

Gi := GR′ |{Pi}×R′ (i= 1,2). Consider the orthogonal Grassmannnian bundle

G := OGn(G1 ⊕G2)(+) →R′.

Let U ⊂ (G1 ⊕G2)G be the universal isotropic subbundle. The composite of mor-

phisms of OC0×G-modules

EG → (n× idG)∗GG → (Q, idG)∗
(
(G1 ⊕G2)G/U

)
:=K

gives a section G
λ−→ H(EG,K). Then the inverse image by λ of the closed sub-

scheme of H(EG,K) parameterizing zero morphisms represents the functor A.

By construction, it is proper over V . It is smooth because it is smooth over the

smooth stack OGn(Fu
1 ⊕Fu

2 )(+). Since giving an oriented orthogonal bundle on

C0 is equivalent to giving an oriented orthogonal bundle on C̃0 plus the gluing

data between the fibers over P1 and P2 compatible with the bilinear form and

orientation, the projection to V is an isomorphism over V 0. �

4.3. The involution ι

Consider the open substack OG≤1
n (Fu

1 ⊕ Fu
2 )(+) of OGn(Fu

1 ⊕ Fu
2 )(+) (see

Lemma 2.1 for the notation OG≤a
n (−)). We define the closed substack OG=1

n (Fu
1 ⊕

Fu
2 )(+) of OG≤1

n (Fu
1 ⊕Fu

2 )(+) as follows. For a B0-scheme S, an object

(4.6) (F , γF , δF ;U ⊂F|{P1}×S ⊕F|{P2}×S)

of OG≤1
n (Fu

1 ⊕Fu
2 )(+)(S) is in OG=1

n (Fu
1 ⊕Fu

2 )(+)(S) if and only if the morphism

∧nU → ∧nF|{P1}×S is zero. (Here note that ∧nU → ∧nF|{P1}×S is zero if and

only if ∧nU →∧nF|{P2}×S is as well.)

For short, we write OG(+), OG≤1
(+), and OG=1

(+) for OGn(Fu
1 ⊕ Fu

2 )(+),

OG≤1
n (Fu

1 ⊕Fu
2 )(+), and OG=1

n (Fu
1 ⊕Fu

2 )(+), respectively.

Suppose we are given an object (4.6) in OG=1
(+)(S). Then B1 := U ∩

(F|{P1}×S ⊕ 0) and B2 := U ∩ (0 ⊕ F|{P2}×S) are isotropic line subbundles of

F|{P1}×S and F|{P2}×S , respectively. We have U ⊂ B⊥
1 ⊕B⊥

2 and

V :=
U

B1 ⊕B2
⊂ B⊥

1

B1
⊕ B⊥

2

B2

is in OGn−2

(B⊥
1

B1
⊕ B⊥

2

B2

)
(+)

(S). Here the orientations of
B⊥

1

B1
and

B⊥
2

B2
are given as

in Lemma 2.1(2). So we obtain a tuple
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(4.7) F :=
(
F , γF , δF ,Bi ⊂F|{Pi}×S (i= 1,2),V ⊂ B⊥

1

B1
⊕ B⊥

2

B2

)
,

where Bi is an isotropic line subbundle and
[
V ⊂ B⊥

1

B1
⊕ B⊥

2

B2

]
∈ OGn−2

(B⊥
1

B1
⊕

B⊥
2

B2

)
(+)

(S). Conversely, if we are given a tuple (4.7), then by reversing the above

procedure, we obtain a tuple (4.6). So giving an object of OG=1
(+)(S) is equivalent

to giving a tuple (4.7).

Now let F be the tuple (4.7). Let (F ι, γFι , δFι ;Bι
i ⊂F ι|{Pi}×S (i= 1,2)) be

the ι-transform of (F , γF , δF ;Bi ⊂F|{Pi}×S (i= 1,2)) over {P1, P2}. By (2.6), we

have an isomorphism
B⊥

1

B1
⊕ B⊥

2

B2

 Bι⊥

1

Bι
1
⊕ Bι⊥

2

Bι
2
. Let Vι be the image of the isotropic

subbundle V of
B⊥

1

B1
⊕ B⊥

2

B2
in

Bι⊥
1

Bι
1
⊕ Bι⊥

2

Bι
2

by this isomorphism. After all, from F ,

we obtained a tuple

(4.8) F ι
:=
(
F ι, γFι , δFι ,Bι

i ⊂F ι|{Pi}×S (i= 1,2),Vι ⊂ Bι⊥
1

Bι
1

⊕ Bι⊥
2

Bι
2

)
.

The assignment F 	→ F ι
defines a morphism of stacks OG=1

(+) → OG=1
(+), which

we denote also by ι. By construction, there is a natural isomorphism (F ι
)ι 
F .

So ι is an involution on OG=1
(+) .

4.4. Description of M̄≤1
n (C0) by gluing

If F = (F,γF , δF ;U ⊂ F |P1 ⊕ F |P2) ∈ OG=a
n (Fu

1 ⊕ Fu
2 )(+), then ρ(F ) ∈ M̄n(C0)

is of type a. Hence ρ−1(M̄≤a(C0)) = OG≤a
n (Fu

1 ⊕ Fu
2 )(+). Let ρ≤1 : OG≤1

(+) →
M̄≤1

n (C0) and ρ1 : OG=1
(+) → M̄≤1

n (C0) be restrictions of ρ. The group Z/2Z acts

on OG=1
(+) by the involution ι, and on M̄≤1

n (C0) trivially. The morphism ρ1 is

equivariant with respect to this action.

LEMMA 4.8

There is a natural isomorphism between the morphisms ρ1 ◦ ι and ρ1 from OG≤1
(+)

to M̄≤1
n (C0).

Proof

Let F be an object OG≤1
(+)(S). We shall show that the two objects ρ(F) and

ρ(F ι
) in M̄≤1

n (C0)(S) are naturally isomorphic. If F is expressed in the form

(4.6), then by the definition of ρ,

ρ(F) =

(
E := Ker

(
(n× idS)∗F → (Q, idS)∗

⊕2
i=1F|{Pi}×S

U
)
, γE , δE

)
,

where γE and δE are induced from γF and δF . If we express F in the equivalent

form (4.7), then

E 
Ker
(
(n× idS)∗F � → (Q, idS)∗

⊕2
i=1F �|{Pi}×S/(F �|{Pi}×S)

⊥

V
)
,
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where V is considered as a subbundle of
⊕2

i=1F �|{Pi}×S/(F �|{Pi}×S)
⊥ through

the natural isomorphism (cf. (2.5)). By the definition of the involution ι, F � =

(F ι)�, and under the natural isomorphisms

B⊥
1

B1
⊕ B⊥

2

B2



F �|{P1}×S

(F �|{P1}×S)⊥
⊕

F �|{P2}×S

(F �|{P2}×S)⊥

 Bι⊥

1

Bι
1

⊕ Bι⊥
2

Bι
2

,

V and Vι correspond. This show that there is a natural isomorphism of OC0×S-

modules between ρ(F) and ρ(F ι
). This isomorphism is compatible with bilinear

forms and orientations because so it is over C0 × S \ {Q} × S. �

LEMMA 4.9

For E = (E,γE , δE) ∈ M̄≤1
n (C0) of type 1, if we let Speck → M̄≤1

n (C0) be the

morphism determined by E, then OG=1
(+)×M̄

≤1
n (C0)

Speck is a scheme consisting

of two points. Moreover, these points are interchanged by the involution ι.

Proof

Take F = (F,γF , δF , . . .) ∈OG=1
(+) such that ρ1(F ) =E. Then we have a morphism

n∗E → F � ⊂ F. Put H := n∗E/(torsion). Since χ(H) = χ(F �), we have an isomor-

phism H 
 F � and identify them. For each i= 1,2, the quotient (H∨)Pi/HPi of

stalks is a 2-dimensional k(Pi)-vector space with a nondegenerate symmetric form

with values in O(Pi)⊗k(Pi); FPi/HPi ⊂ (H∨)Pi/HPi is a 1-dimensional isotropic

subspace. Let Li be the other 1-dimensional isotropic subspace of (H∨)Pi/HPi .

If F † = (F †, γF † , δF † , . . .) ∈OG=1
(+) is another object such that ρ1(F †) =E, then

F †
Pi
/HPi = FPi/HPi or F †

Pi
/HPi = Li. The condition that F † lies in the compo-

nent OG=1
(+), not in OGn(Fu

1 ⊕Fu
2 )(−), implies that F †

Pi
/HPi = FPi/HPi for both

i= 1,2, or F †
Pi
/HPi = Li for both i= 1,2. This shows that F † = F or F † = F

ι
.

(Note that the isomorphism between F † and F (or F ι) is compatible with bilinear

forms and orientations because it is so over C̃0 \ {P1, P2}.) �

For any smooth morphism α : V → M̄≤1
n (C0) with V a scheme, the product

OG≤1
(+)×M̄

≤1
n (C0)

V is a smooth variety, and pr : OG≤1
(+)×M̄

≤1
n (C0)

V → V is proper

by Proposition 4.5. By Lemma 4.9, pr is a finite morphism, so OG≤1
(+)×M̄

≤1
n (C0)

V

is a normalization of V . Moreover, pr−1(Sing(V )) = OG=1
(+)×M̄

≤1
n (C0)

V since they

are both reduced and equal set-theoretically. By Lemma 4.9, we can say that

M̄n(C0) is constructed from OG≤1
(+) by gluing the closed substack OG=1

(+) by the

involution ι. If a function on OG≤1
(+)×M̄

≤1
n (C0)

V takes the same value at [F ] and

[F
ι
] for any [F ] ∈OG=1

(+)×M̄
≤1
n (C0)

V, then it is the pullback of a function on V.

Thus we have the following.

PROPOSITION 4.10

Let L be a line bundle on M̄≤1
n (C0). By Lemma 4.8, ρ∗1L is an ι-equivariant line
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bundle on OG=1
(+) . Let r : H

0(OG≤1
(+), ρ

∗
≤1L)→H0(OG=1

(+), ρ
∗
1L) be the restriction

morphism. Then H0(M̄≤1
n (C0),L)
 r−1(H0(OG=1

(+), ρ
∗
1L)ι−inv).

REMARK 4.11

The restriction map r is not injective. A section in Ker r vanishes on OG=1
(+), so

it is a pullback of a section of L on M̄≤1
n (C0).

5. Compactification of the orthogonal group via generalized
orthogonal isomorphisms

In [K1], Kausz constructed a compactification of the general linear group as a

moduli space of generalized isomorphisms. In [A1], the author constructed a com-

pactification of the symplectic group as a moduli space of generalized symplectic

isomorphisms. By an almost straightforward modification of the argument in

[A1], we can construct a compactification of the orthogonal group as a moduli

space of generalized orthogonal isomorphisms. In this section, we state definitions

and propositions modified for the orthogonal case without proof.

5.1. bf-morphisms
We first recall the definition of bf-morphisms.

DEFINITION 5.1

Let E and F be locally free sheaves on a scheme S. A bf-morphism from E to F
is a tuple

g = (M, μ,E g�

−→F ,M⊗E g�

←−F , r),

where M is a line bundle on S, and μ is a global section of M such that the

following hold.

1. The composed morphism g� ◦ g� and g� ◦ g� are both induced by the mor-

phism μ :OS →M.

2. For every point x ∈ S with μ(x) = 0, the complex

E|x →F|x → (M⊗E)|x → (M⊗F)|x
is exact and the rank of the morphism E|x →F|x is r.

The following lemma (cf. [A1, Lemma 2.8], [K1, Lemma 6.1, Proposition 6.2]) is

used later to define a generalized orthogonal(±) isomorphism.

LEMMA 5.2

Let A, B be vector bundles of rank m, and let

(L, λ,A g�

−→B,L⊗A g�

←−B, i)

be a bf-morphism of rank i.
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(1) There is a natural isomorphism

L⊗(m−i) ⊗ detA
 detB.

(2) If λ= 0, then Im(A→B) = Ker(B→L⊗A) and Ker(A→B) = Im(L∨⊗
B → A), and they are subbundles of rank i and of rank m − i of B and A,

respectively.

5.2. Definition of generalized orthogonal isomorphisms
Let (E , γE) and (F , γF ) be orthogonal bundles of rank n = 2r or 2r + 1 on a

scheme S.

DEFINITION 5.3

A generalized orthogonal isomorphism from E to F is a tuple

Φ =
(
Mi, μi,Ei →Mi ⊗Ei+1,Ei ←Ei+1,

(5.1)
Fi+1 →Fi,Mi ⊗Fi+1 ←Fi (0≤ i≤ r− 1), h : Er ∼−→Fr

)
,

where E = E0,E1, . . . ,Er,Fr, . . . ,F1,F0 = F are locally free OS-modules of rank

n and the tuples

(Mi, μi,Ei+1
e�i−→Ei,Mi ⊗ Ei+1

e�i←−Ei, n− r+ i)

and

(Mi, μi,Fi+1
f�
i−→Fi,Mi ⊗Fi+1

f�
i←−Fi, n− r+ i)

are bf-morphisms of rank n− r+ i for 0≤ i≤ r− 1 such that for each x ∈ S the

following hold.

1. If μi(x) = 0 and (f, g) is one of the following pairs of morphisms

Er|x
f−→ Ei+1|x

g−→Ei|x,

E|x
f−→
(( i−1⊗

j=0

Mj

)
⊗Ei
)∣∣∣∣

x

,
g−→
(( i⊗

j=0

Mj

)
⊗Ei+1

)∣∣∣∣
x

,

Fr|x
f−→Fi+1|x

g−→Fi|x,

F|x
f−→
(( i−1⊗

j=0

Mj

)
⊗Fi

)∣∣∣∣
x

g−→
(( i⊗

j=0

Mj

)
⊗Fi+1

)∣∣∣∣
x

,

then Im(g ◦ f) = Im(g).

2. We have (h|x)(Ker(Er|x →E0|x))∩Ker(Fr|x →F0|x) = {0}.
3. The following diagram is commutative:
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{(k−1⊗
j=0

M∨
j ⊗E0

)
×Ek

Er
}
⊗
{(k−1⊗

j=0

M∨
j ⊗F0

)
×Fk

Fr

}
α↙ ↘ β

(k−1⊗
j=0

M∨
j ⊗E0

)
⊗E0 F0 ⊗

(k−1⊗
j=0

M∨
j ⊗F0

)
γ′
E ↘ ↙ γ′

F

k−1⊗
j=0

M∨
j

(5.2)

where γ′
E and γ′

F are induced by γE and γF , respectively, and

α= qEk ⊗ (e�0 ◦ · · · ◦ e
�
r−1 ◦ h−1 ◦ pFk ),

β = (f �
0 ◦ · · · ◦ f

�
r−1 ◦ h ◦ pEk )⊗ qFk ,

where pEk , q
E
k , p

F
k , and qFk are defined by

(5.3)

(k−1⊗
j=0

M∨
j ⊗E0

)
×Ek

Er
pE
k−→ Er

qEk ↓ � ↓ e�k ◦ · · · ◦ e
�
r−1

k−1⊗
j=0

M∨
j ⊗E0 −−−−−−−→

e�k−1◦···◦e�0
Ek

and

(5.4)

(k−1⊗
j=0

M∨
j ⊗F0

)
×Fk

Fr
pF
k−−→ Fr

qFk ↓ � ↓ f �
k ◦ · · · ◦ f

�
r−1

k−1⊗
j=0

M∨
j ⊗F0 −−−−−−−→

f�
k−1◦···◦f�

0

Fk.

DEFINITION 5.4

Two generalized orthogonal isomorphisms

Φ =
(
Mi, μi,Ei →Mi ⊗Ei+1,Ei ←Ei+1,

Fi+1 →Fi,Mi ⊗Fi+1 ←Fi(0≤ i≤ r− 1), h : Er →Fr

)
,

Φ′ =
(
M′

i, μ
′
i,E ′

i →M′
i ⊗E ′

i+1,E ′
i ←E ′

i+1,

F ′
i+1 →F ′

i ,M′
i ⊗F ′

i+1 ←F ′
i (0≤ i≤ r− 1), h′ : E ′

r →F ′
r

)
from E to F are defined to be equivalent if there are isomorphisms Mi 
M′

i

(0≤ i≤ r − 1) by which μi maps to μ′
i, and isomorphisms Ei 
 E ′

i and Fi 
 F ′
i

(0 ≤ i ≤ r) such that E0 
 E ′
0 and F0 
 F ′

0 are the identity and the obvious

diagrams are commutative.
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DEFINITION 5.5

The functor KO(E ,F) from the category of S-schemes to the category of sets is

defined to associate to an S-scheme T the set of equivalence classes of generalized

orthogonal isomorphisms from ET to FT .

As an orthogonal analogue of [A1, Proposition 3.13, Corollary 3.16], we have the

following.

PROPOSITION 5.6

The functor KO(E ,F) is represented by a scheme KO(E ,F) which is smooth and

projective over S.

The difference from the symplectic case is that KO(E ,F) is not connected because

the orthogonal group is not connected.

Suppose that we are given orientations δE and δF of (E , γE) and (F , γF ),

respectively. Given a generalized orthogonal isomorphism Φ (5.1) from E and

F , put E(i) :=
∧n Ei ⊗

⊗i−1
j=0M

⊗r−j
j and F (i) :=

∧nFi ⊗
⊗i−1

j=0M
⊗r−j
j . Then

by Lemma 5.2, we have isomorphisms dEi : E(i) →E(i+1) and dFi : F (i) →F (i+1).

Then the composite of morphisms

O δ−1
E−−→E(0) dE

r−1◦···◦dE
0−−−−−−−→E(r) ∧nh⊗id−−−−−→F (r) (dF

r−1◦···◦dF
0 )−1

−−−−−−−−−−→F (0) δF−−→O

is ± id . If it is id, then Φ is called a generalized orthogonal(+) isomorphism, and

if it is − id, then Φ is called a generalized orthogonal(−) isomorphism. KO(E ,F)

is a disjoint union of KO(E ,F)(+) and KO(E ,F)(−) parameterizing generalized

orthogonal(+) isomorphisms and generalized orthogonal(−) isomorphisms, respec-

tively.

5.3. Relation with the orthogonal Grassmannian
Let (E , γE , δE) and (F , γF , δF ) be oriented orthogonal bundles of rank n= 2r or

2r+ 1 on a scheme S.

Let

Φ =
(
Mi, μi,Ei →Mi ⊗Ei+1,Ei ←Ei+1,

Fi+1 →Fi,Mi ⊗Fi+1 ←Fi (0≤ i≤ r− 1), h : Er ∼−→Fr

)
be the universal generalized orthogonal isomorphism from E0 = EKO to F0 =FKO

on KO(E ,F).

Then by Definition 5.3(2), the morphism

β := (e�0 ◦ · · · ◦ e
�
r−1, f

�
0 ◦ · · · ◦ f

�
r−1 ◦ h) : Er →EKO ⊕FKO

is injective, and its image is a subbundle of EKO ⊕ FKO. By Definition 5.3(3),

this subbundle is isotropic. Hence β(Er)⊂ EKO ⊕FKO gives rise to a morphism

g : KO(E ,F)→ OGn(E ⊕ F). For ε = +or −, the component KO(E ,F)(ε) maps

to OGn(E ⊕F)(ε) (see Section 2.3 for which component of OGn(E ⊕F) is called

OGn(E ⊕F)(+) or OGn(E ⊕F)(−)).
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By the same proof as in [A1, Lemma 4.2], we have the following.

LEMMA 5.7

Let 0 → U → pr∗S(E ⊕ F) → Q → 0 be the universal sequence on OGn(E ⊕ F).

Then there is a natural isomorphism

(5.5) g∗ detQ

r−1⊗
i=0

M⊗(r−i)
i .

5.4. Geometry of strata
Let (E , γE) and (F , γF ) be orthogonal bundles of rank n = 2r or 2r + 1 on a

scheme S over an algebraically closed field. Let

Φ =
(
Mi, μi,Ei →Mi ⊗Ei+1,Ei ←Ei+1,

(5.6)
Fi+1 →Fi,Mi ⊗Fi+1 ←Fi (0≤ i≤ r− 1), h : Er ∼−→Fr

)
be the universal generalized orthogonal isomorphism from E0 = (E)KO(E,F) to

F0 = (F)KO(E,F).

DEFINITION 5.8

For a subset I ⊂ [0, r − 1], we denote by KO(E ,F)I the subscheme
⋂

i∈I{μi =

0} ⊂KO(E ,F).

DEFINITION 5.9

For a subset I = {i1 < · · ·< il} ⊂ {0, . . . , r − 1}, let F lI(E) be the functor from

the category of S-schemes to the category of sets that associates to an S-scheme

T the set of filtrations

0⊂ Fil(ET )⊂ Fil−1
(ET )⊂ · · · ⊂ Fi1(ET )⊂ ET

of isotropic subbundles indexed by I with rank Fij (ET ) = r− ij . We understand

that Fil+1
(ET ) = 0.

We denote by FlI(E) the S-scheme that represents F lI(E).

Put FlI := FlI(E)×S FlI(F), put Ẽ := (E)FlI , and put F̃ := (F)FlI .

Let

(5.7) 0⊂ Fil(Ẽ)⊂ · · · ⊂ Fi1(Ẽ)⊂ Ẽ and 0⊂ Fil(F̃)⊂ · · · ⊂ Fi1(F̃)⊂ F̃

be the pullbacks to FlI of the universal filtrations of E and F on FlI(E) and

FlI(F), respectively. The nondegenerate symmetric bilinear forms γE and γF
induce nondegenerate symmmetric bilinear forms

γ̃E : Fi1(Ẽ)⊥/Fi1(Ẽ)⊗ Fi1(Ẽ)⊥/Fi1(Ẽ)→OFlI ,

γ̃F : Fi1(F̃)⊥/Fi1(F̃)⊗ Fi1(F̃)⊥/Fi1(F̃)→OFlI

and nondegenerate bilinear forms
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γ̃E,ij : Fij+1(Ẽ)⊥/Fij (Ẽ)⊥ ⊗ Fij (Ẽ)/Fij+1(Ẽ)→OFlI ,

γ̃F,ij : Fij+1(F̃)⊥/Fij (F̃)⊥ ⊗ Fij (F̃)/Fij+1(F̃)→OFlI (1≤ j ≤ l).

Then we have a scheme Q(γ̃E,ij , γ̃F,ij ) that is smooth projective over S, which is

a compactification of PGL(Fij (F̃)/Fij+1(F̃),Fij+1(Ẽ)⊥/Fij (Ẽ)⊥) (see [A1, p. 22]

for the definition of Q(γ̃E,ij , γ̃F,ij )).

Then the stratum KO(E ,F)I is described as follows.

PROPOSITION 5.10

There is an isomorphism

(5.8) KO(E ,F)I →KO(Fi1(Ẽ)⊥/Fi1(Ẽ),Fi1(F̃)⊥/Fi1(F̃))×FlI Q

of S-schemes, where Q=Q(π̃E,i1 , π̃F,i1)×FlI · · · ×FlI Q(π̃E,il , π̃F,il). In particu-

lar, we have an isomorphism

(5.9) KO(E ,F)[0,r−1] 
Fl[0,r−1].

NOTATION 5.11

For tuples (a1, . . . , ar) and (b1, . . . , br) of integers, we denote by O(a1, . . . , ar;

b1, . . . , br) the line bundle

r⊗
j=1

(
Fr+1−j(Ẽ)⊥/Fr−j(Ẽ)⊥

)⊗aj ⊗
r⊗

j=1

(
Fr+1−j(F̃)⊥/Fr−j(F̃)⊥

)⊗bj

on Fl[0,r−1](= Fl[0,r−1](E)×S Fl[0,r−1](F)).

We often identify KO(E ,F)[0,r−1] with Fl[0,r−1] by the isomorphism (5.9).

LEMMA 5.12

There are natural isomorphisms

M0|KO(E,F)[0,r−1]

O(er;er),

and for 1≤ j ≤ r− 1,

Mj |KO(E,F)[0,r−1]

O(er−j − er−j+1;er−j − er−j+1)

of line bundles on KO(E ,F)[0,r−1] 
Fl[0,r−1], where

ei := (0, . . . ,0,
ith
1 ,0, . . . ,0).

Proof

This is the same as the proof of [A1, Lemma 5.6]. �

Now suppose that the orthogonal bundles (E , γE) and (F , γF ) are given ori-

entations δE and δF , respectively. Define orientations δ̃E and δ̃F of (Fi1(Ẽ)⊥/
Fi1(Ẽ), γ̃E) and (Fi1(F̃)⊥/Fi1(F̃), γ̃F ) so that the diagrams
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∧aFi1(Ẽ)⊗∧a Ẽ
Fi1 (Ẽ)⊥

⊗∧n−2a Fi1 (Ẽ)
⊥

Fi1 (Ẽ)
∼

∧̄aγE⊗id

∧nẼ δE OFlI

·(
√
−1)a

∧n−2a Fi1 (Ẽ)
⊥

Fi1 (Ẽ)
δ̃E OFlI

∧a F̃
Fi1 (F̃)⊥

⊗∧aFi1(F̃)⊗∧n−2a Fi1 (F̃)⊥

Fi1 (F̃)

∼

∧̄aγF⊗id

∧nF̃ δF OFlI

·(
√
−1)a

∧n−2a Fi1 (F̃)⊥

Fi1 (F̃)

δ̃F OFlI

commute, where a = r − i1. For ε = + or −, put KO(E ,F)I(ε) := KO(E ,F)I ∩
KO(E ,F)(ε).

In the isomorphism (5.8), we have

(5.10) KO(E ,F)I(ε) →KO
(
Fi1(Ẽ)⊥/Fi1(Ẽ),Fi1(F̃)⊥/Fi1(F̃)

)
(ε)

×FlI Q.

When n = 2r and 0 ∈ I , FlI(E) (resp., FlI(F)) is a disjoint union FlI(E)(+) �
FlI(E)(−) (resp., FlI(F)(+) �FlI(F)(−)), where FlI(E)(ε) (resp., FlI(F)(ε)) maps

to the component OGr(E)(ε) (resp., OGr(F)(ε)) by the natural map. If we put

Q
(ε1)
(ε2)

=
(
FlI(E)(ε1) ×S FlI(F)(ε2)

)
×FlI Q

for εi =±, then in the isomorphism (5.10), we have

(5.11) KO(E ,F)I(+) 
Q
(+)
(+) �Q

(−)
(−) and KO(E ,F)I(−) 
Q

(+)
(−) �Q

(−)
(+).

5.5. Global sections
We retain the notation of the preceding subsection, but we assume that S =

Speck with k an algebraically closed field of characteristic zero. We write E and

F instead of E and F .

In this section we describe vector spaces of global sections of a line bundle

on KO(E,F )I(+) in terms of vector spaces of global sections of line bundles

on flag varieties. To simplify notation, we write XI for KO(E,F )I(+). When

n = 2r and 0 ∈ I , we have a decomposition XI = XI(+) � XI(−) , where XI(ε)

corresponds to Q
(ε)
(ε) in the isomorphism (5.11). The inclusion XI →KO(E,F )(+)

and XI(ε) →KO(E,F )(+) are denoted by κI and κI(ε) , respectively.

The algebraic group SO(E) × SO(F ) acts on KO(E,F )(+) from the left.

The closed subschemes XI (and XI(ε) in case n = 2r and 0 ∈ I) are stable

with respect to the action. The line bundles Mi (0≤ i≤ r− 1) on KO(E,F )(+)

have (SO(E)×SO(F ))-linearization. Therefore the vector spaces H0(XI , κ
∗
I ⊗r−1

i=0

M⊗ci
i ) are (SO(E)× SO(F ))-modules.
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DEFINITION 5.13

For a tuple �c= (c0, . . . , cr−1) ∈ Zr, the set Aeven(�c)I is defined to consist of tuples

(q1, . . . , qr) ∈ Zr such that

q1 ≥ · · · ≥ qr−1 ≥ |qr|,(5.12)

cj ≥
r−j∑
k=1

|qk| for j ∈ [0, r− 1] \ I,(5.13)

cj =

r−j∑
k=1

qk for j ∈ I.(5.14)

The set Aodd(�c)I is defined to consist of tuples (q1, . . . , qr) ∈ Zr such that q1 ≥
· · · ≥ qr−1 ≥ qr ≥ 0 and the conditions (5.13) and (5.14) hold.

Now we state the irreducible decomposition of H0(XI , κ
∗
I

⊗r−1
i=0 M

⊗ci
i ).

THEOREM 5.14

Assume that n= 2r, 0 /∈ I and �c= (c0, . . . , cr−1) ∈ Zr. We have a decomposition

into distinct irreducible (SO(E)× SO(F ))-modules:

H0
(
XI , κ

∗
I

r−1⊗
i=0

M⊗ci
i

)
=

⊕
�q∈Aeven(�c)I

V�q.

The irreducible (SO(E) × SO(F ))-submodule V�q is contained in the subspace

H0
(
XI , κ

∗
I

(⊗r−1
i=0 M

⊗
∑r−i

j=1 |qj |
i

))
, and the composite of morphisms

V�q ↪→H0

(
XI , κ

∗
I

(r−1⊗
i=0

M
⊗∑r−i

j=1 |qj |
i

))
restr.−−−→H0

(
X[0,r−1](+) ,O(�q;�q)

)
is an isomorphism if qr ≥ 0, and the composite of morphisms

V�q ↪→H0

(
XI , κ

∗
I

(r−1⊗
i=0

M
⊗∑r−i

j=1 |qj |
i

))
restr.−−−→H0

(
X[0,r−1](−) ,O(�q�;�q�)

)
is an isomorphism if qr ≤ 0, where �q� = (q1, . . . , qr−1,−qr) (see Notation 5.11 for

O(�a,�b)).

REMARK 5.15

Under the assumption of Theorem 5.14, we have a diagram

X[0,r−1](+)

β

X[1,r−1]

α

XI

Fl[1,r−1]
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If qr = 0, then the line bundle κ∗
[1,r−1]

(⊗r−1
i=0 M

⊗∑r−i
j=1 |qj |

i

)
on X[1,r−1] is a pull-

back of a line bundle, say, L�q , on Fl[1,r−1]. The morphisms

H0(Fl[1,r−1],L�q)
α∗
−−→H0

(
X[1,r−1], κ

∗
[1,r−1]

(r−1⊗
i=0

M⊗
∑r−i

j=1 |qj |
i

))
and

H0(Fl[1,r−1],L�q)
β∗

−→H0
(
X[0,r−1](+) ,O(�q;�q)

)
are isomorphisms since α is a P1-bundle and β is an isomorphism. So the restric-

tion map H0
(
X[1,r−1], κ

∗
[1,r−1]

(⊗r−1
i=0 M

⊗
∑r−i

j=1 |qj |
i

))
→ H0(X[0,r−1](+) ,O(�q;�q)) is

an isomorphism. Therefore in Theorem 5.14, when qr = 0, the composite of mor-

phisms

V�q ↪→ H0

(
XI , κ

∗
I

(r−1⊗
i=0

M
⊗∑r−i

j=1 |qj |
i

))
restr.−−−→ H0

(
X[1,r−1], κ

∗
[1,r−1]

(r−1⊗
i=0

M
⊗∑r−i

j=1 |qj |
i

))
(α∗)−1

−−−−→H0(Fl[1,r−1],L�q)

is an isomorphism.

THEOREM 5.16

Assume that n= 2r, assume that 0 ∈ I, and assume that �c= (c0, . . . , cr−1) ∈ Zr.

Let ε = + or −. We have a decomposition into distinct irreducible (SO(E) ×
SO(F ))-modules:

H0
(
XI(ε) , κ∗

I(ε)

r−1⊗
i=0

M⊗ci
i

)
=

⊕
�q∈Aeven(�c)I

V�q.

The irreducible (SO(E) × SO(F ))-submodule V�q is contained in the subspace

H0
(
XI(ε) , κ∗

I(ε)

(⊗r−1
i=0 M

⊗
∑r−i

j=1 qj
i

))
, and the composite of morphisms

V�q ↪→H0

(
XI(ε) , κ∗

I(ε)

(r−1⊗
i=0

M
⊗∑r−i

j=1 qj
i

))
restr.−−−→H0

(
X[0,r−1](ε) ,O(�q;�q)

)
is an isomorphism.

THEOREM 5.17

Assume that n = 2r + 1, and assume that �c = (c0, . . . , cr−1) ∈ Zr. We have a

decomposition into distinct irreducible (SO(E)× SO(F ))-modules:

H0
(
XI , κ

∗
I

r−1⊗
i=0

M⊗ci
i

)
=

⊕
�q∈Aodd(�c)I

V�q.

The irreducible (SO(E) × SO(F ))-submodule V�q is contained in the subspace

H0
(
XI , κ

∗
I

(⊗r−1
i=0 M

⊗∑r−i
j=1 qj

i

))
, and the composites of morphisms
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V�q ↪→H0

(
XI , κ

∗
I

(r−1⊗
i=0

M
⊗∑r−i

j=1 qj
i

))
restr.−−−→H0

(
X[0,r−1],O(�q;�q)

)
is an isomorphism.

6. Factorization theorem

Assume that n = 2r or 2r + 1 ≥ 3, and assume that chark = 0. Fix a positive

integer l called a level. In this section we prove a factorization theorem, which

describes the vector space H0(M̄≤1
n (C0),D⊗l), where D is the determinant line

bundle, in terms of spaces of global sections of line bundles on moduli of parabolic

oriented orthogonal bundles on C̃0.

6.1. The stack Fl�q
For a sequence �q = (l≥ q1 ≥ · · · ≥ qr ≥ 0) of integers, we define the stack Fl�q over

Mn(C̃0) as follows. If n = 2r and qr > 0, then Fl�q :=
⊔

ε=+,−Fl[0,r−1](Fu
1 )

(ε) ×
Fl[0,r−1](Fu

2 )(ε). If n= 2r and qr = 0, then Fl�q := Fl[1,r−1](Fu
1 )× Fl[1,r−1](Fu

2 ).

If n= 2r+ 1, then Fl�q := Fl[0,r−1](Fu
1 )×Fl[0,r−1](Fu

2 ).

We define the involution ι : Fl�q → Fl�q as follows. In the case where n = 2r

and qr > 0, the stack Fl�q parameterizes tuples

(6.1)
(
F,γ, δ;F•(F |Pi) (i= 1,2)

)
,

where (F,γ, δ) is an oriented orthogonal bundle on C̃0 and F•(F |Pi) is a filtration

0⊂ Fr−1(F |Pi)⊂ · · · ⊂ F0(F |Pi)⊂ F |Pi

by isotropic subspaces with dimFa(F |Pi) = r−a such that (F•(F |P1),F•(F |P2)) ∈
Fl[0,r−1](F |P1)

(ε) × Fl[0,r−1](F |P2)(ε) for ε = ±. For a tuple (6.1), let (F ι, γι, δι,

Fr−1(F
ι|Pi) (i = 1,2)) be the ι-transform of (F,γ, δ,Fr−1(F |Pi) (i = 1,2)) over

{P1, P2}. We define the filtration(
Fr−1(F

ι|Pi)⊂
)
Fr−2(F

ι|Pi)⊂ · · · ⊂ F0(F
ι|Pi)⊂ F ι|Pi

so that Fj(F
ι|Pi)/Fr−1(F

ι|Pi) and Fj(F |Pi)/Fr−1(F |Pi) correspond through the

natural isomorphism Fr−1(F
ι|Pi)

⊥/Fr−1(F
ι|Pi) 
 Fr−1(F |Pi)

⊥/Fr−1(F |Pi) (cf.

(2.6)). Then (F•(F
ι|P1),F•(F

ι|P2)) ∈ F l[0,r−1](F |P1)
(ε′) × F l[0,r−1](F |P2)(ε′),

where {ε, ε′} = {+,−}. By associating the tuple (F ι, γι, δι;F•(F
ι|Pi) (i = 1,2))

to the tuple (6.1), we can define a morphism ι : Fl�q → Fl�q . In the case where

n= 2r and qr = 0, or where n= 2r+ 1, we define ι : Fl�q → Fl�q similarly, that is,

ignore in the above procedure the zeroth filter in the case n= 2r and qr = 0, and

(ε), (ε′) in the case n= 2r+ 1.

6.2. The line bundle L�q

We denote by π the projection Fl�q →Mn(C̃0). We put F̃u := (id
C̃0

×π)∗Fu and

F̃u
i := π∗Fu

i .

We define the line bundle L�q on Fl�q as follows.
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In the case where n= 2r and qr > 0, or where n= 2r+1, if 0⊂ Fr−1(F̃u
i )⊂

· · · ⊂ F0(F̃u
i )⊂ F̃u

i is the universal filtration, then

(6.2) L�q :=
⊗
i=1,2

r⊗
j=1

(
Fr−j+1(F̃u

i )
⊥/Fr−j(F̃u

i )
⊥)qj .

In the case where n= 2r and qr = 0, if 0⊂ Fr−1(F̃u
i )⊂ · · · ⊂ F1(F̃u

i )⊂ F̃u
i is the

universal filtration, then

L�q :=
⊗
i=1,2

r−1⊗
j=1

(
Fr−j+1(F̃u

i )
⊥/Fr−j(F̃u

i )
⊥)qj .

Consider the line bundle π∗(detRp̃∗Fu)⊗(−l) ⊗ L�q on Fl�q , where p̃ : C̃0 ×
Mn(C̃0)→Mn(C̃0) is the projection.

Put (F̃u)� := Ker
(
F̃u →

⊕
i=1,2 F̃u

i /Fr−1(F̃u
i )

⊥), where F̃u
i is considered as

a sheaf on {Pi} × Fl�q . If q1 = l, then

π∗(detRp̃∗Fu)⊗(−l) ⊗L�q 

(
detRp̃′∗(F̃u)�

)⊗(−l)

(6.3)

⊗
⊗
i=1,2

r⊗
j=2

(
Fr−j+1(F̃u

i )
⊥/Fr−j(F̃u

i )
⊥)qj ,

where p̃′ : C̃0 × Fl�q → Fl�q is the projection. (Ignore the term for j = r in the

case where n = 2r and qr = 0.) The right-hand side of (6.3) has a natural ι-

linearization. Therefore the line bundle π∗(detRp̃∗Fu)⊗(−l) ⊗ L�q is naturally

an ι-equivariant line bundle on Fl�q if q1 = l. So ι acts on the vector space

H0(Fl�q, π
∗(detRp̃∗Fu)⊗(−l) ⊗L�q) if q1 = l.

6.3. Statement of factorization theorem
Let (Eu, γEu , δEu) be the universal oriented orthogonal sheaf over C0 × M̄n(C0).

We denote by p the projection C0 × M̄n(C0)→ M̄n(C0). Put D := (detRp∗Eu)∨,

the determinant line bundle.

To state the factorization theorem in a concise form, we understand that ι

acts on the vector space H0(Fl�q, π
∗(detRp̃∗Fu)⊗(−l) ⊗L�q) trivially if q1 < l.

THEOREM 6.1

There is a natural isomorphism

H0
(
M̄≤1

n (C0),D⊗l
)


⊕
�q

H0
(
Fl�q, π

∗(detRp̃∗Fu)⊗(−l) ⊗L�q

)ι−inv
,

where �q = (q1, . . . , qr) runs through all sequences of integers such that l ≥ q1 ≥
· · · ≥ qr ≥ 0 (see the paragraph after Definition 4.1 for the notation M̄≤1

n (C0)).

6.4. Proof of factorization theorem
We give a proof for n= 2r. The case n= 2r+1 is similar. Recall that τ denotes the

projection OGn(Fu
1 ⊕Fu

2 )(+) →Mn(C̃0). Put Fu†
i = τ∗Fu

i . Let Fu†
1 ⊕Fu†

2 →Q
be the universal quotient bundle over OGn(Fu

1 ⊕Fu
2 )(+). As in Section 4.3, we
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write OG(+), OG≤1
(+), and OG=1

(+) for OGn(Fu
1 ⊕Fu

2 )(+), OG≤1
n (Fu

1 ⊕Fu
2 )(+), and

OG=1
n (Fu

1 ⊕Fu
2 )(+), respectively.

Consider the KO(+)-bundle τ
′ : KO(Fu

1 ,Fu
2 )(+) →Mn(C̃0). Put Fu‡

i = τ ′∗Fu
i .

Let (
Mi, μi,Fu‡

1,i →Mi ⊗Fu‡
1,i+1,F

u‡
1,i ←Fu‡

1,i+1,

Fu‡
2,i+1 →Fu‡

2,i,Mi ⊗Fu‡
2,i+1 ←Fu‡

2,i+1 (0≤ i≤ r− 1), h :Fu‡
1,r

∼−→Fu‡
2,r

)
,

be the universal generalized orthogonal morphism over KO(Fu
1 ,Fu

2 )(+). Recall

that for a subset I ⊂ [0, r− 1], KO(Fu
1 ,Fu

2 )I(+) denotes the locus
⋂

i∈I{μi = 0}.
For short, we write KO(+) and KOI(+) for KO(Fu

1 ,Fu
2 )(+) and KO(Fu

1 ,Fu
2 )I(+),

respectively. The restricted morphism τ ′|KOI(+)
is denoted by τ ′I . Our situation

is summarized in the following diagram:

Fl�q

π

KO(+)
g

τ ′

OG(+)
ρ

τ
M̄n(C0)

Mn(C̃0) KO{r−1}(+)

κ{r−1}

τ ′
{r−1}

OG≤1
(+)

ρ≤1

M̄≤1
n (C0)

To prove the factorization theorem, we first amplify Proposition 4.10. It fol-

lows from Lemma 2.1(2) and Proposition 5.10 that OG=1
(+) and KO{r−1}(+) \⋃

0≤i<r−1KO{i}(+) parameterize the same objects. Thus restriction of g gives

an isomorphism KO{r−1}(+) \
⋃

0≤i<r−1KO{i}(+) → OG=1
(+) . Through this iso-

morphism, the involution on OG=1
(+) gives rise to an involution on KO{r−1}(+) \⋃

0≤i<r−1KO{i}(+), which we denote also by ι.

LEMMA 6.2

The involution ι on KO{r−1}(+) \
⋃

0≤i<r−1KO{i}(+) extends to KO{r−1}(+).

Proof

We construct an involution on KO{r−1}(+), which is an extension of ι. By Propo-

sition 5.10, KO{r−1}(+) parameterizes tuples

(6.4)
(
F,γ, δ,Li ⊂ F |Pi (i= 1,2),Φ

)
,

where (F,γ, δ) is an oriented orthogonal bundle on C̃0, Li is an isotropic line

of F |Pi , and Φ ∈KO(L⊥
1 /L1,L

⊥
2 /L2)(+). Given a tuple (6.4), let (F ι, γι, δι,Lι

i ⊂
F ι|Pi (i= 1,2)) be the ι-transform of (F,γ, δ,Li ⊂ F |Pi (i= 1,2)) over {P1, P2}.
Since L⊥

i /Li 
 Lι⊥
i /Lι

i by (2.6), Φ determines a generalized orthogonal mor-

phism Φι ∈ KO(Lι⊥
1 /Lι

1,L
ι⊥
2 /Lι

2)(+). By associating to a tuple (6.4) the tuple

(F ι, γι, δι,Lι
i ⊂ F ι|Pi (i= 1,2),Φι), we obtain an involution on KO{r−1}(+), which

is clearly an extension of ι. �
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By abuse of notation, the extension to KO{r−1}(+) of the involution ι is also

denoted by ι. For a line bundle L on M̄n(C0), we have isomorphisms

(6.5) H0(OG≤1
(+), ρ

∗L)
H0(OG(+), ρ
∗L)
H0

(
KO(+), (ρ ◦ g)∗L

)
because the codimension of the complement of OG≤1

(+) in OG(+) is equal to or

greater than 2 by Lemma 2.1(3), and g is proper birational. Note also that for a

line bundle N on KO{r−1}(+), the map

(6.6) H0(KO{r−1}(+),N )→H0
(
KO{r−1}(+)

∖ ⋃
0≤i<r−1

KO{i}(+),N
)

is injective. Let r̃ be the restriction map

H0
(
KO(+), (ρ ◦ g)∗L

)
→H0

(
KO{r−1}(+), (ρ ◦ g ◦ κ{r−1})

∗L
)
.

Note that the target of this map has an ι-action. By (6.5) and the injectivity of

(6.6), we can amplify Proposition 4.10 as follows:

(6.7) H0
(
M̄≤1

n (C0),L
)

 r̃−1

(
H0(KO{r−1}(+), (ρ ◦ g ◦ κ{r−1})

∗L)ι−inv
)
.

LEMMA 6.3

There is an isomorphism

(ρ ◦ g)∗D⊗l 
 τ ′∗(detRp̃∗Fu)⊗(−l) ⊗
r−1⊗
i=0

M⊗l(r−i)
i .

Proof

As in [A1, Lemma 7.5], we can prove that

ρ∗D⊗l 
 τ∗(detRp̃∗Fu)⊗(−l) ⊗ (detQ)⊗l.

Composing this isomorphism with (5.5), we get the result. �

By Theorem 5.14, we have a decomposition

(detRp̃∗Fu)⊗(−l) ⊗ τ ′∗

(r−1⊗
i=0

M⊗l(r−i)
i

)
=
⊕
�q∈B

V�q,

where B consists of all sequences �q = (q1, . . . , qr) of integers such that l ≥ q1 ≥
· · · ≥ qr−1 ≥ |qr| ≥ 0. Similarly we have

(detRp̃∗Fu)⊗(−l) ⊗ τ ′{r−1}∗

(r−1⊗
i=0

M⊗l(r−i)
i

∣∣∣
KO{r−1}(+)

)
=
⊕
�q∈B′

V�q,

where B′ consists of all sequences �q = (q1, . . . , qr) of integers such that l = q1 ≥
· · · ≥ qr−1 ≥ |qr| ≥ 0. Using the projection formula, we obtain a commutative

diagram
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H0
(
KO(+), (ρ ◦ g)∗D⊗l

)
r

� ⊕
�q∈B

H0
(
Mn(C̃0),V�q

)

H0
(
KO{r−1}(+), (ρ ◦ g ◦ κ{r−1})

∗D⊗l
) �

(♠)

⊕
�q∈B′

H0
(
Mn(C̃0),V�q

)
,

where the right vertical arrow is the projection. The vector space H0(KO{r−1}(+),

(ρ◦g ◦κ{r−1})
∗D⊗l) has an ι-action, so we get an ι-action on

⊕
�q∈B′ H0(Mn(C̃0),

V�q). By (6.7), we have an isomorphism

H0
(
M̄≤1

n (C0),D⊗l
)

(6.8)



⊕

�q∈B\B′

H0
(
Mn(C̃0),V�q

)
⊕
(⊕
�q∈B′

H0
(
Mn(C̃0),V�q

))ι−inv

.

Now we analyze the ι-action on
⊕

�q∈B′ H0(Mn(C̃0),V�q). There is no reason that

the action preserves the direct summands. Let B≥0 be the subset of B consisting

of �q = (q1, . . . , qr) with qr ≥ 0. Put B′
≥0 = B′ ∩ B≥0. For �q ∈ B≥0, we put H�q :=

H0(Mn(C̃0),V�q) if qr = 0, and H�q := H0(Mn(C̃0),V�q)⊕H0(Mn(C̃0),V�q�) if qr > 0,

where �q� = (q1, . . . , qr−1,−qr). We define a partial order � on B≥0 so that �q′ � �q

if and only if
∑r−i

j=1 q
′
j ≤
∑r−i

j=1 qj for 0≤ i≤ r− 1.

LEMMA 6.4

For �q ∈ B′
≥0, the subspace

⊕
B
′
≥0��q′��q H�q′ of

⊕
�q′∈B

′
≥0

H�q′ is stable with respect

to the ι-action.

Proof

By Theorem 5.14,
⊕

B
′
≥0��q′��q H�q′ is isomorphic to the subspace

H0
(
KO{r−1}(+), τ

′∗(detRp̃∗Fu)⊗(−l) ⊗
⊗

M⊗
∑r−i

j=1 qj
i

)
through the isomorphism (♠). This subspace is clearly stable with respect to the

ι-action. �

We use the following result of linear algebra whose proof is left to the reader.

LEMMA 6.5

Let S be a finite set with a partial order �. Assume that we are given an involution

ι on a vector space
⊕

s∈S Vs such that for any t ∈ S, ι
(⊕

s′�t Vs′
)
=
⊕

s′�t Vs′ .

We denote by ῑ the induced involution on the graded part Vt 

⊕

s′�t Vs′/
⊕

s′≺t Vs′ .

Then the composite of morphisms
(⊕

s∈S Vs

)ι−inv
↪→
⊕

s∈S Vs
projection−−−−−−→⊕

s∈S(Vs)
ῑ−inv is an isomorphism.
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By Lemma 6.4, we have an induced involution ῑ on the graded part H�q 
⊕
�q′��q H�q′/

⊕
�q′≺�q H�q′ . By Lemma 6.5, we obtain, from (6.8), the isomorphism

(6.9) H0
(
M̄≤1

n (C0),D⊗l
)



⊕
�q∈B≥0\B′

≥0

H�q ⊕
⊕

�q∈B
′
≥0

(H�q)
ῑ−inv.

By Theorem 5.14 and Remark 5.15, we have an isomorphism

(6.10) H�q 
H0
(
Fl�q, π

∗(detRp̃∗Fu)⊗(−l) ⊗L�q

)
.

Moreover, by the definition of the involutions, the ῑ-action on the left-hand side

of (6.10) is nothing but the ι-action on the right-hand side of (6.10) defined in

Section 6.2 if �q ∈ B′
≥0. This completes the proof of Theorem 6.1. �

Complements

The factorization formula in Theorem 6.1 involves ι-inv. We can formulate the

factorization theorem in such a way that ι-inv does not appear by considering

moduli of vector bundles with a degenerate symmetric bilinear form. Let M ′
n(C̃0)

be the moduli stack parameterizing triples(
G,γ :G⊗G→O

C̃0
, δ : ∧nG→O

C̃0
(−P1 − P2)

)
,

where G is a vector bundle of rank n on C̃0, γ is a symmetric bilinear form with

(G∨/G)Pi 
 k⊕2
Pi

(i= 1,2), and δ is an isomorphism such that the diagram

(6.11)

∧nG⊗∧nG
δ⊗δ

�nγ

O
C̃0

(−P1 − P2)⊗O
C̃0

(−P1 − P2)

O
C̃0

� O
C̃0

⊗O
C̃0

commutes. Note that for [(G,γ, δ)] ∈ M ′
n(C̃0), we have dim(G|Pi)

⊥ = 2. For a

sequence �t= (l ≥ t2 ≥ · · · ≥ tr ≥ 0), we define the moduli stack Fl′�t and the line

bundle A�t on it as follows. If n= 2r and tr > 0, or n = 2r + 1 (resp., if n = 2r

and tr = 0), then Fl′�t parameterizes (G,γ, δ) ∈M ′
n(C̃0) together with filtrations,

for i= 1,2,

G|Pi ⊃G(i)
r ⊃ · · · ⊃G

(i)
2 ⊃G

(i)
1 = (G|Pi)

⊥ ⊃ 0(
resp., G|Pi ⊃G

(i)
r−1 ⊃ · · · ⊃G

(i)
2 ⊃G

(i)
1 = (G|Pi)

⊥ ⊃ 0
)
,

where G
(i)
j is an isotropic (j + 1)-dimensional subspace. Let G be the universal

bundle on C̃0 ×Fl′�t, and let

G|{Pi}×Fl′�t
⊃ G(i)

r ⊃ · · · ⊃ G(i)
2 ⊃ G(i)

1 = (G|{Pi}×Fl′�t
)⊥ ⊃ 0

(
resp., G|{Pi}×Fl′�t

⊃ G(i)
r−1 ⊃ · · · ⊃ G(i)

2 ⊃ G(i)
1 = (G|{Pi}×Fl′�t

)⊥ ⊃ 0
)
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be the universal filtration. The line bundle A�t on Fl′�t is defined to be

(detRpr∗ G)⊗(−l) ⊗
⊗
i=1,2

r⊗
j=2

(G(i)⊥
j−1 /G

(i)⊥
j )⊗tj

(
resp., (detRpr∗ G)⊗(−l) ⊗

⊗
i=1,2

r−1⊗
j=2

(G(i)⊥
j−1 /G

(i)⊥
j )⊗tj

)
,

where pr is the projection C̃0 ×Fl′�t →Fl′�t.

For a sequence �q = (l= q1 ≥ · · · ≥ qr ≥ 0), we have an isomorphism

H0
(
Fl�q, π

∗(detRp̃∗Fu)⊗(−l) ⊗L�q

)ι−inv 
H0(Fl′,A�t),

where �t= (l≥ q2 ≥ · · · ≥ qr ≥ 0). So we can rewrite Theorem 6.1 as follows.

THEOREM 6.6

There is a natural isomorphism

H0
(
M̄≤1

n (C0),D⊗l
)


⊕
�q

H0
(
Fl�q, π

∗(detRp̃∗Fu)⊗(−l) ⊗L�q

)
⊕
⊕
�t

H0(Fl′�t,A�t),

where �q = (q1, . . . , qr) runs through all sequences of integers such that l > q1 ≥
· · · ≥ qr ≥ 0, and �t= (t2, . . . , tr) such that l≥ t2 ≥ · · · ≥ tr ≥ 0.
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