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Abstract We study the Aharonov–Bohm (AB) effect through resonances for magnetic
scattering in two dimensions. The scattering system consists of three scatterers, one
bounded obstacle, and two scalar potentials with compact supports at large separation,
where the obstacle is placed between two supports and the support of the magnetic field
is completely shielded by the obstacle. The field does not influence particles from a clas-
sical mechanical point of view, but quantum particles are influenced by the correspond-
ing vector potential which does not necessarily vanish outside the obstacle. This quan-
tum phenomenon is called the AB effect. The resonances are shown to be generated near
the real axis by the trajectories oscillating between two supports of the scalar potentials
as the distances between the three scatterers go to infinity. The location is described in
terms of the backward amplitudes for scattering by each of the scalar potentials and by
the obstacle, and it depends heavily on the magnetic flux of the field.

1. Introduction

In quantum mechanics, a vector potential is said to have a direct significance to
particles moving in a magnetic field. This is called the Aharonov–Bohm (AB)
effect and is known as one of the most remarkable quantum phenomena (see
[3]). In this work we study the AB quantum effect in resonances of magnetic
Schrödinger operators in two dimensions.

We always work in the two-dimensional space R2 with generic point x =
(x1, x2) and write

H(A,V ) = (−i∇ − A)2 + V =
2∑

j=1

(−i∂j − aj)2 + V, ∂j = ∂/∂xj ,

for the Schrödinger operator with the scalar potential V : R2 → R and the vector
potential A = (a1, a2) : R2 → R2. The magnetic field b : R2 → R associated with
A is defined by

b(x) = ∇ × A(x) = ∂1a2 − ∂2a1,
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and the quantity defined as the integral α = (2π)−1
∫

b(x)dx is called the mag-
netic flux of b, where the integration with no domain attached is taken over the
whole space. We often use this abbreviation throughout the entire discussion.
The Hamiltonian H(A,V ) describes the energy operator for the quantum sys-
tem of particles subjected to the electrostatic potential V (x) and to the magnetic
field b(x).

We now define the operator. Let Ω = R2 \ O be the exterior domain of a
bounded domain O with the smooth boundary ∂O, O being the closure of O.
We assume that O is simply connected and

(1.1) O ⊂ B =
{

|x| < 1
}

with the origin in O. For d ∈ R2, |d| � 1, we consider the Hamiltonian

Hd = H(A,Vd) = (−i∇ − A)2 + Vd

on L2(Ω), where the potential Vd(x) takes the form

(1.2) Vd(x) = V−d(x) + V+d(x) = V−(x − d−) + V+(x − d+), d = d+ − d−,

with

d+ = (1 − κ)d, d− = −κd, 0 < κ < 1.

We further assume that A(x) : R2 → R2 is smooth over Ω (A ∈ C∞(Ω → R2))
and falls off at infinity. We denote by b = ∇ × A the magnetic field associated
with A and by α the magnetic flux of b. We make the assumption that V± is a
smooth function with compact support and that b vanishes on Ω:

(1.3) V± ∈ C∞
0 (R2 → R), b = 0 on Ω.

For brevity, we take A to be the AB potential defined by

(1.4) A(x) = α(−x2/|x|2, x1/|x|2) = α(−∂2 log |x|, ∂1 log |x|).

Then A generates the solenoidal field

b = ∇ × A = α(∂2
1 + ∂2

2) log |x| = 2παδ(x)

which has the support only at the origin and α as the magnetic flux. We also
assume that V± has support in the unit disk B. The second assumption in (1.3)
means that the field b is entirely shielded by the obstacle O, although the cor-
responding vector potential A does not necessarily vanish over Ω. If |d| � 1 is
large enough, then

(1.5) suppV±d ⊂ B±d =
{

|x − d± | < 1
}

⊂ Ω

and the self-adjoint extension in L2(Ω) of Hd = H(A,Vd) is realized by imposing
the zero boundary conditions. We denote by the same notation Hd this self-
adjoint operator with domain D(Hd) = H2(Ω) ∩ H1

0 (Ω), where H2(Ω) and H1
0 (Ω)

stand for the usual Sobolev spaces over Ω. If we take another vector potential
Ã : R2 → R2 defining the same field b = ∇ × Ã, then we can show that Ã takes the
form Ã = A + ∇g over Ω for some real smooth function g ∈ C∞(Ω), and hence



Aharonov–Bohm effect in resonances 559

H(Ã, Vd) turns out to be unitarily equivalent to Hd = H(A,Vd). Here we note
that the direction d̂ = d/|d| and the ratio κ are fixed with the meaning ascribed
above.

We denote by R(ζ;T ) = (T − ζ)−1 the resolvent of a self-adjoint operator T

acting on L2(R2) or L2(Ω). It is known (see [13]) that Hd has no positive eigen-
values and the continuous spectrum occupied by (0, ∞) is absolutely continuous.
We further know that the resolvent

R(ζ;Hd) = (Hd − ζ)−1 : L2(Ω) → L2(Ω), ζ = E + iη,E > 0, η > 0,

is meromorphically continued from the upper half plane of the complex plane
to a region (independent of d) in the lower half plane across the positive real
axis where the continuous spectrum of Hd is located (see the arguments after
the proof of Lemma 3.1). Then R(ζ;Hd) with Im ζ ≤ 0 is well defined as an
operator from L2

comp(Ω) to L2
loc(Ω) in the sense that qR(ζ;Hd)q : L2(Ω) → L2(Ω)

is bounded for every q ∈ C∞
0 (Ω), where L2

comp(W ) denotes the space of square
integrable functions with compact support in the closure W of a region W ⊂ R2

and L2
loc(W ) denotes the space of locally square integrable functions over W .

This can be shown by an application of the complex scaling method (see [5],
[17]) and by the analytic Fredholm theorem (see [15, Theorem VI.14]). We use
the same notation R(ζ;Hd) to denote this meromorphic function with values in
operators from L2

comp(Ω) to L2
loc(Ω). In fact, we can show that R(ζ;Hd) admits

the meromorphic continuation to the region {ζ ∈ C : Re ζ > 0, Im ζ < 0}, but the
argument here is restricted only to a neighborhood of the positive real axis. The
resonances of Hd are defined as the poles of R(ζ;Hd) in the lower half plane (the
unphysical sheet). Our aim is to study how the resonances are generated near
the real axis by the trajectories oscillating between suppV−d, suppV+d, and O as
|d| → ∞. By assumption, the magnetic field b vanishes outside O, which implies
that b does not have any influences on classical particles moving in Ω. On the
other hand, the vector potential A does not necessarily vanish there, but it has
a direct significance to the movement of quantum particles according to the AB
effect. A special emphasis is placed on analyzing how the AB effect influences
the location of the resonances.

The obtained results are formulated in terms of the backward amplitudes by
the potentials V± and by the obstacle O. Let K0 = −Δ be the free Hamiltonian,
and let K± be the Schrödinger operator defined by

(1.6) K± = K0 + V± = −Δ + V±, D(K±) = H2(R2).

We denote by f±(ω → θ;E) the amplitude for scattering from the incident direc-
tion ω ∈ S1 to the final one θ at energy E > 0 for the pair (K0,K±). As is stated
at the beginning of Section 4, these amplitudes admit the analytic extensions
f±(ω → θ; ζ) in a complex neighborhood of the positive real axis as a function of
E. We further denote by f0(ω → θ;E) the scattering amplitude at energy E > 0
for the pair (K0,H), where H is defined as

(1.7) H = H(A,0), D(H) = H2(Ω) ∩ H1
0 (Ω).
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The precise representation for f0(ω → θ;E) is given by Lemma 3.2, and this
amplitude is also seen to admit the analytic extension f0(ω → θ; ζ) in a complex
neighborhood of the positive real axis.

The results heavily depend on the magnetic flux α. We first consider the case
where α is not a half integer. We fix E0 > 0 and take 0 < δ0 
 1 small enough
but independently of d. Then we set

(1.8) Dd =
{

ζ ∈ C : | Re ζ − E0| < δ0, | Im ζ| < E
1/2
0

(
1 +

2δ0

E0

)( log |d|
|d|

)}

and define the function h(ζ;d) by

(1.9) h(ζ;d) = (e2ik|d|/|d|) cos2(απ)f−(−d̂ → d̂; ζ)f+(d̂ → −d̂; ζ)

over Dd, where k = ζ1/2 is taken in such a way that Rek > 0 for Re ζ > 0. We
always use k with this meaning. Since

(1.10) 2 Imk = 2Im(Re ζ + i Im ζ)1/2 = Im ζ/(Re ζ)1/2 + O(| Im ζ|3)

for ζ ∈ Dd and since

(1.11) (Re ζ)1/2 = E
1/2
0

(
1 + (Re ζ − E0)/(2E0) + O(δ2

0)
)

with | Re ζ − E0| < δ0, it follows that

(1.12) |d|1+δ0/E0 < |e2ik|d| | < |d|1+3δ0/E0

at the bottom ζ = Re ζ − iE
1/2
0 (1 + 2δ0/E0)((log |d|)/|d|) of Dd. This implies that

the curve defined by |h(ζ;d)| = 1, | Re ζ − E0| < δ0, is completely contained in Dd.
Since |d− | = κ|d| < |d| and |d+| = (1 − κ)|d| < |d|, we can take δ0 > 0 so small that

(1.13)
∣∣e2ik|d+|/|d+|

∣∣ = O(|d| −κ/2),
∣∣e2ik|d− |/|d− |

∣∣ = O(|d| −(1−κ)/2)

in Dd. Thus the choice of δ0 depends on κ as well as on E0. The bounds above
guarantee that there are no resonances generated by the trajectories oscillating
between O and suppV±d in Dd. This will be seen in the course of the proof of
the theorems.

We now consider the equation

(1.14) h(ζ;d) = 1

in Dd. We can show (see Lemma 4.6) that it has a finite number of the solutions{
ζj(d)

}
1≤j≤Nd

, ζj(d) ∈ Dd,Re ζ1(d) < · · · < Re ζNd
(d),

Nd being dependent on d, and that each solution ζj(d) behaves like

Im ζj(d) ∼ −E
1/2
0 (log |d|)/|d|, Re

(
ζj+1(d) − ζj(d)

)
∼ 2πE

1/2
0 /|d|,

as |d| → ∞. We are in a position to state the first theorem.

THEOREM 1.1

Let the notation be as above. Assume that the magnetic flux α is not a half integer
and that the backward amplitudes f±(±d̂ → ∓d̂;E0), d̂ = d/|d|, at energy E0 do
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not vanish. Then we can take δ0 > 0 so small that the neighborhood Dd defined
by (1.8) has the following property. For any ε > 0 small enough, there exists
dε � 1 such that for |d| > dε, Hd has the resonances {ζres,j(d)}, 1 ≤ j ≤ Nd, in
Dd, which satisfy

|ζres,j(d) − ζj(d)| < ε/|d|, Re ζres,1(d) < · · · < Re ζres,Nd
(d),

and the resolvent Rd(ζ) = R(ζ;Hd) is analytic over the domain

Dd \
{
ζres,1(d), . . . , ζres,Nd

(d)
}

as a function with values in operators from L2
comp(Ω) to L2

loc(Ω).

Here we note that the assumption f±(±d̂ → ∓d̂;E0) 
= 0 implies f±(±d̂ → ∓d̂;
E) 
= 0 for E with |E − E0| < δ0 by choosing δ0 even smaller, if necessary.

Next we deal with the case where α is a half integer. Let d± be as in (1.2).
We again fix E0 > 0 and take 0 < δ0 
 1 small enough. We set

(1.15) D±d =
{

ζ : | Re ζ − E0| < δ0, | Im ζ| < E
1/2
0

(
1 +

2δ0

E0

)( log |d± |
|d± |

)}

and define the function h±(ζ;d) by

h±(ζ;d) = (e2ik|d± |/|d± |)f0(∓d̂ → ±d̂; ζ)f±(±d̂ → ∓d̂; ζ)

over D±d. If 0 < κ < 1/2, then |d− | < |d+| and we can take δ0 > 0 so small that
the curve defined by |h+(ζ;d)| = 1, | Re ζ − E0| < δ0, is completely contained in
D+d and that

(1.16)
∣∣e2ik|d− |/|d− |

∣∣ = O(|d| −(1/2−κ))

at the bottom of D+d. If 1/2 < κ < 1, then |e2ik|d+|/|d+| | = O(|d| −(κ−1/2)) at the
bottom of D−d. The solutions{

ζ
(±)
j (d)

}
1≤j≤N±d

, ζ
(±)
j (d) ∈ D±d,Re ζ

(±)
1 (d) < · · · < Re ζ

(±)
N±d

(d)

of the equation h±(ζ;d) = 1 can be shown to have properties similar to those of
the equation h(ζ;d) = 1 with natural modifications. Then the second theorem is
stated as follows.

THEOREM 1.2

Let the notation be as above. Assume that the magnetic flux α is a half integer
and that the four backward amplitudes f±(±d̂ → ∓d̂;E0) and f0(±d̂ → ∓d̂;E0)
at energy E0 > 0 do not vanish. Then we have the following statements.

(1) Assume that 0 < κ < 1/2. Then we can take δ0 > 0 so small that the
neighborhood D+d defined by (1.15) has the following property: Hd has the reso-
nances {

ζ
(+)
res,j(d)

}
, ζ

(+)
res,j(d) ∈ D+d,1 ≤ j ≤ N+d,

in a neighborhood of ζ
(+)
j (d) for |d| � 1 as in Theorem 1.1, and R(ζ;Hd) depends

analytically on ζ over D+d \
⋃

1≤j≤N+d
{ζ

(+)
res,j(d)}.
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(2) Assume that 1/2 < κ < 1. Then we can take δ0 > 0 so small that the
neighborhood D−d defined by (1.15) has the following property: Hd has the reso-
nances {

ζ
(−)
res,j(d)

}
, ζ

(−)
res,j(d) ∈ D−d,1 ≤ j ≤ N−d,

in a neighborhood of ζ
(−)
j (d) for |d| � 1 as in Theorem 1.1, and R(ζ;Hd) depends

analytically on ζ over D−d \
⋃

1≤j≤N−d
{ζ

(−)
res,j(d)}.

(3) Assume that κ = 1/2. Then, for any ε > 0 small enough, there exists
dε � 1 such that ζ ∈ C with | Re ζ − E0| < E0/2 and with

0 ≥ Im ζ > −(2 − ε)(Re ζ)1/2
(
(log |d|)/|d|

)
is not a resonance of Hd for |d| > dε.

We remark that the third statement does not require the assumption that the
backward amplitudes do not vanish. The two theorems above are proved in Sec-
tion 4 after stating some preliminary propositions and lemmas on the scattering
theory and on the asymptotic properties of the Green function for the magnetic
Schrödinger operator H defined by (1.7) in Sections 2 and 3.

The resonance problem is one of the most active subjects in scattering the-
ory at present. There are a large number of works devoted to the problem of
resonances near the real axis generated by closed classical trajectories. In partic-
ular, the semiclassical problem of shape resonances has been studied in detail,
and upper or lower bounds on the resonance width (the imaginary part of the
resonance) and its asymptotic expansion have been obtained by many authors
under various kind of assumptions (see, e.g., [5], [6], [8]–[11], [14], [17]). We refer
to the book [11] for an extensive list of references and to [9] for the recent devel-
opment. However, it seems that there are few works which discuss the resonances
of magnetic Schrödinger operators in connection with the AB quantum effect. In
[4], we have studied how the AB effect is reflected in the lower bound on the
resonance widths. Roughly speaking, the bound has been determined from the
relation |h(ζ;d)| < 1 strictly. In other words, Hd does not have any resonances in
the region where |h(ζ;d)| < 1 is fulfilled. However, the neighborhood Dd defined
by (1.8) contains points at which |h(ζ;d)| > 1. Thus we can improve considerably
the result obtained by the previous work [4] by showing the actual existence in
Dd of resonances.

We end the section by explaining from a physical point of view how rea-
sonable (1.14) is as an approximate relation to determine the location of the
resonances. We denote by

(1.17) ϕ0(x;ω,E) = exp(iE1/2x · ω)

the plane-wave incident from the direction ω at energy E > 0, where the notation
· denotes the scalar product in R2. We write x± for x± = x − d±. The incident
plane wave ϕ0(x−; −d̂,E) takes the form f−(−d̂ → d̂;E)(eiE1/2|x− |/|x− |1/2) after
it is scattered into the direction d̂ = d/|d| by the potential V−d, and the scattered
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wave hits the support of the other potential V+d. Since |x− | behaves like

|x− | = |x − d− | = |d + x+| = |d| + d̂ · x+ + O(|d| −1)

for x ∈ B+d, B±d being as in (1.5), the scattered wave behaves like the plane
wave

(eiE1/2|d|/|d|1/2)f−(−d̂ → d̂;E)ϕ0(x+; d̂,E)

when it arrives at the support of V+d, provided that the vector potential A(x)
vanishes identically. If, however, A(x) does not necessarily vanish, then the wave
function undergoes a change of the phase factor by the AB quantum effect. We
consider the particle moving from d− to d+ under the assumption that the center
d± of suppV±d is located on the x1-axis. We distinguish between the trajectories
passing over x2 > 0 and x2 < 0 to denote the former and latter trajectories by
τ+ and τ−, respectively. The vector potential A(x) defined by (1.4) satisfies the
relation

(1.18) A(x) = α∇γ(x),

where γ(x) denotes the azimuth angle from the positive x1-axis. Then the AB
effect causes the change in the phase factor of the wave function, which is given
by the line integral ∫

τ±

A(x) · dx = ∓απ

along τ±. The factor cos(απ) is generated from the sum of eiαπ and e−iαπ . Thus
the scattered wave takes

(eiE1/2|d|/|d|1/2)f−(−d̂ → d̂;E) cos(απ)ϕ0(x+; d̂,E)

as an approximate form, when it hits the support of V+d. A similar argument
applies to the plane wave ϕ0(x+; d̂,E) after it is scattered into the direction −d̂

by the potential V+d, so that it again returns to the support of V−d, taking
the approximate form h(E;d)ϕ0(x−; −d̂,E). Hence the contribution from the
trapping effect between suppV−d and suppV+d is described by the series

( ∞∑
n=1

h(E;d)n
)
ϕ0(x−; −d̂,E).

For example, the term with h(E;d)n describes the contribution from the tra-
jectory oscillating n times. Thus the location of the resonances is approximately
determined by relation (1.14), and we see that the resonances in Theorem 1.1 are
just generated near the real axis through a combination of the trapping effect
from classical mechanics and the AB effect from quantum mechanics. If α is
a half integer, then cos(απ) vanishes by cancellation, and Theorem 1.2 asserts
that the second longest oscillating trajectory determines the location of the res-
onances.



564 Hideo Tamura

2. The AB Hamiltonian

In this section we give a brief review of the scattering by one solenoidal field. Such
a system is known as one of the exactly solvable models in quantum mechanics.
We refer to [1]–[3], [7], and [16] for more detailed expositions. To avoid confusing
the notation, we often write

Aα(x) = α(−x2/|x|2, x1/|x|2) = α(−∂2 log |x|, ∂1 log |x|)

for the AB potential A defined by (1.4), when considered as a vector potential
over the whole space R2.

We now consider the energy operator

(2.1) Pα = H(Aα,0) = (−i∇ − Aα)2

on L2(R2). This operator governs the quantum particle moving in the solenoidal
field 2παδ(x) and is often called the AB Hamiltonian in physics literature. The
operator Pα is symmetric over C∞

0 (R2 \ {0}), but it is not necessarily essentially
self-adjoint in L2(R2) because of the strong singularity at the origin of Aα.
We know (see [1], [7]) that it is a symmetric operator with type (2,2) deficiency
indices. The self-adjoint extension is realized by imposing a boundary condition at
the origin. Its Friedrichs extension denoted by the same notation Pα is obtained
by imposing the boundary condition lim|x|→0 |u(x)| < ∞ at the center of the
solenoidal field.

We calculate the generalized eigenfunction of the eigenvalue problem

(2.2) Pαϕ = Eϕ, lim
|x|→0

|ϕ(x)| < ∞,

with energy E > 0 as an eigenvalue. Since Pα is rotationally invariant, we work
in the polar coordinate system (r, θ). Let U be the unitary mapping defined by

(Uu)(r, θ) = r1/2u(rθ) : L2 → L2
(
(0, ∞);dr

)
⊗ L2(S1).

We write
∑

l for the summation ranging over all integers l. Then U allows us to
decompose Pα into the partial wave expansion

(2.3) Pα � UPαU ∗ =
∑

l

⊕(Plα ⊗ Id),

where Plα = −∂2
r + (ν2 − 1/4)r−2 with ν = |l − α| is self-adjoint in L2((0, ∞);dr)

under the boundary condition limr→0 r−1/2|u(r)| < ∞ at r = 0. Let ϕ0(x;ω,E)
be defined by (1.17). We denote by γ(x;ω) the azimuth angle from ω ∈ S1 to
x̂ = x/|x|. Then the outgoing eigenfunction ϕα+(x;ω,E) with ω as an incident
direction is calculated as

(2.4) ϕα+(x;ω,E) =
∑

l

exp(−iνπ/2) exp
(
ilγ(x; −ω)

)
Jν(E1/2|x|)

with ν = |l − α|, where Jμ(z) denotes the Bessel function of order μ. The eigen-
function ϕα+ behaves like ϕα+(x;ω,E) ∼ ϕ0(x;ω,E) as |x| → ∞ in the direction
−ω (x = −|x|ω), and the difference ϕα+ − ϕ0 satisfies the outgoing radiation con-
dition at infinity. On the other hand, the incoming eigenfunction ϕα−(x;ω,E) is
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given by

(2.5) ϕα−(x;ω,E) =
∑

l

exp(iνπ/2) exp
(
ilγ(x;ω)

)
Jν(E1/2|x|),

which behaves like ϕα− ∼ ϕ0(x;ω,E) as |x| → ∞ in the direction ω. The eigen-
functions ϕα±(x;ω,E) admit the analytic extension

ϕα±(x;ω, ζ) =
∑

l

exp(∓iνπ/2) exp
(
ilγ(x; ∓ω)

)
Jν(k|x|), k = ζ1/2,

over the complex plane.
We decompose ϕα+(x;ω,E) into the sum ϕα+ = ϕin + ϕsc of incident and

scattering waves to calculate the scattering amplitude through the asymptotic
behavior at infinity of the scattering wave ϕsc(x;ω,E). If we set σ = σ(x;ω) =
γ(x;ω) − π, then

ϕα+ =
∑

l

e−iνπ/2eilσJν(E1/2|x|), ν = |l − α|.

If we further make use of the formula e−iμπ/2Jμ(iw) = Iμ(w) for the Bessel func-
tion

(2.6) Iμ(w) = (1/π)
(∫ π

0

ew cosρ cos(μρ)dρ − sin(μπ)
∫ ∞

0

e−w coshp−μp dp
)

with Rew ≥ 0 (see [18, p. 181]), then ϕα+(x;ω,E) takes the form

ϕα+ = (1/π)
∑

l

eilσ

∫ π

0

e−iE1/2|x| cosρ cos(νρ)dρ

(2.7)
− (1/π)

∑
l

eilσ sin(νπ)
∫ ∞

0

eiE1/2|x| coshpe−νp dp.

We take the incident wave ϕin(x;ω,E) as

ϕin = eiασϕ0(x;ω,E) = eiασeiE1/2|x| cosγ(x;ω) = eiασe−iE1/2|x| cosσ,

which is different from the usual plane wave ϕ0(x;ω,E). Since the vector potential
Aα(x) has the representation Aα(x) = α∇γ(x;ω) by (1.18), the modified factor
eiασ may be interpreted as the change of the phase factor∫

lx

Aα(y) · dy = α

∫ 0

− ∞
(d/ds)γ(x + sω;ω)ds = α

(
γ(x;ω) − π

)
= ασ(x;ω)

which the vector potential Aα causes to the wave function of the quantum particle
moving in the direction ω by the AB effect, where lx = {y = x + sω : s ≤ 0}.

The incident wave admits the Fourier expansion

ϕin(x;ω,E) = (1/π)
∑

l

(∫ π

0

e−iE1/2|x| cosρ cos(νρ)dρ
)
eilσ(x;ω)

for |σ| < π. This, together with (2.7), yields

ϕsc(x;ω,E) = −(1/π)
∑

l

eilσ sin(νπ)
∫ ∞

0

eiE1/2|x| coshpe−νp dp.
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We compute the series∑
l

eilσe−νp sin(νπ) =
{ ∑

l≤[α]

+
∑

l≥[α]+1

}
eilσe−νp sin(νπ)

= sin(απ)(−1)[α]
{e−αp(eiσep)[α]

1 + e−iσe−p
+

eαp(eiσe−p)[α]

1 + e−iσep

}

for |σ| < π, where the Gauss notation [α] denotes the greatest integer not exceed-
ing α. Thus we have

ϕsc = − sin(απ)
π

(−1)[α]ei[α]σ(x;ω)

∫ ∞

− ∞
eiE1/2|x| coshp e−βp

1 + e−iσe−p
dp

with β = α − [α]. We apply the stationary phase method to the integral on the
right side. Since eiσ(x;ω) = ei(γ(x;ω)−π) = −ei(θ−ω) by identifying θ = x/|x| = x̂ ∈
S1 with the azimuth angle θ, ϕsc(x;ω,E) obeys

ϕsc = f(ω → x̂;E)eiE1/2|x| |x| −1/2 + o(|x| −1/2), |x| → ∞,

where f(ω → θ;E) is defined as

(2.8) f(ω → θ;E) =
( 2

π

)1/2

eiπ/4E−1/4 sin(απ)ei[α](θ−ω) ei(θ−ω)

1 − ei(θ−ω)

for ω 
= θ by identifying ω, θ ∈ S1 with the azimuth angles from the positive x1-
axis. The quantity f(ω → θ;E) is called the amplitude for scattering from the
initial direction ω ∈ S1 to the final one θ at energy E > 0. By definition, the
amplitude admits the analytic extension f(ω → θ; ζ) over the complex plane.

We calculate the Green function of the resolvent Rα(ζ) = R(ζ;Pα) with
Im ζ > 0. Let Plα be as in (2.3), and let k = ζ1/2 with Imk > 0. Then the equation
(Plα − ζ)u = 0 has {r1/2Jν(kr), r1/2Hν(kr)} with Wronskian 2i/π as a pair of lin-
early independent solutions, where Hμ(z) = H

(1)
μ (z) denotes the Hankel function

of the first kind. Thus (Plα − ζ)−1 has the integral kernel

Rlα(r, ρ; ζ) = (iπ/2)r1/2ρ1/2Jν

(
k(r ∧ ρ)

)
Hν

(
k(r ∨ ρ)

)
, ν = |l − α|,

where r ∧ ρ = min(r, ρ) and r ∨ ρ = max(r, ρ). Hence the Green function Rα(x, y; ζ)
of Rα(ζ) is given by

(2.9) Rα(x, y; ζ) = (i/4)
∑

l

eil(θ−ω)Jν

(
k(|x| ∧ |y|)

)
Hν

(
k(|x| ∨ |y|)

)
,

where x = (|x| cosθ, |x| sinθ) and y = (|y| cosω, |y| sinω) in the polar coordinates.
This makes sense even for ζ in the lower half plane of the complex plane by
analytic continuation. Then Rα(ζ) with Im ζ ≤ 0 is well defined as an operator
from L2

comp(R2) to L2
loc(R

2). Thus Rα(ζ) does not have any poles as a function
with values in operators from Lcomp(R2) to L2

loc(R
2). We can say that Pα with

one solenoidal field 2παδ(x) has no resonances. We do not discuss the possibility
of resonances at zero energy.

We end the section by summarizing the asymptotic properties of the Green
function Rα(x, y; ζ) as the three propositions below. We sketch proofs for these



Aharonov–Bohm effect in resonances 567

propositions in the last section (Section 6). The propositions are used to estab-
lish the asymptotic properties of the Green function of the resolvent R(ζ;H) in
Section 3.

PROPOSITION 2.1

Let E0 > 0 and c1 > 0 be fixed. Let λ � 1 be large enough. Assume that ζ = E + iη

satisfies |E − E0| < E0/2 and |η| ≤ c1(logλ)/λ. If x and y fulfill

λ/c ≤ |x|, |y|, |x − y| ≤ cλ

for some c > 1 and if x̂ and ŷ satisfy |x̂ · ŷ + 1| < cλ2(μ−1) for some 0 ≤ μ < 1/2,
then

Rα(x, y; ζ) = (i/4) cos(απ)eiα(γ(x̂;ŷ)−π)H0(k|x − y|)

+ eik(|x|+|y|)(|x| + |y|)−1/2e1N (x, y; ζ,λ) + O(λ−N )

for any N � 1, where e1N is analytic in ζ as above and obeys

(2.10) |∂n
x ∂m

y e1N | = O(λμ−1/2− |n|/2− |m|/2)

uniformly in x, y, and ζ.

PROPOSITION 2.2

Let ζ = E + iη be as in Proposition 2.1. If x and y fulfill

λ/c ≤ |x|, |y|, |x − y| ≤ cλ

for some c > 1 and if x̂ and ŷ satisfy |x̂ · ŷ + 1| > 1/c, then

Rα(x, y; ζ) = (i/4)eiα(γ(x̂;−ŷ)−π)H0(k|x − y|)

+ c0(ζ)eik(|x|+|y|)(|x| |y|)−1/2
(
f(−ŷ → x̂; ζ) + e2N (x, y; ζ,λ)

)
+ O(λ−N )

for any N � 1, where c0(ζ) is the constant defined by

(2.11) c0(ζ) = (8π)−1/2eiπ/4ζ−1/4,

while e2N is analytic in ζ and obeys

(2.12) |∂n
x ∂m

y e2N | = O(λ−1− |n|−|m|)

uniformly in x, y, and ζ.

REMARK 2.1

The first term on the right-hand side describes the free trajectory which goes
from y to x directly without being scattered at the origin, while the second term
comes from the scattering trajectory which starts from y and arrives at x after
it is scattered at the origin.

PROPOSITION 2.3

Let ζ = E + iη be again as in Proposition 2.1. Let ϕα+(x;ω,E) and ϕα−(x;ω,E)
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be the outgoing and incoming eigenfunctions of Pα, respectively. Then we have
the following statements.

(1) Denote by ϕα−(y;ω, ζ) the complex conjugate of ϕα−(y;ω, ζ). If x and y

fulfill λ/c ≤ |x| ≤ cλ and 1/c ≤ |y| ≤ c for some c > 1, then

Rα(x, y; ζ) = c0(ζ)eik|x| |x| −1/2
(
ϕα−(y; x̂, ζ) + e3N (x, y; ζ,λ)

)
+ O(λ−N ),

where e3N is analytic in ζ and obeys |∂n
x ∂m

y e3N | = O(λ−1− |n|) uniformly in x, y,
and ζ.

(2) If x and y fulfill 1/c ≤ |x| ≤ c and λ/c ≤ |y| ≤ cλ, then

Rα(x, y; ζ) = c0(ζ)eik|y| |y| −1/2
(
ϕα+(x; −ŷ, ζ) + e4N (x, y; ζ,λ)

)
+ O(λ−N ),

where e4N is analytic in ζ and obeys |∂n
x ∂m

y e4N | = O(λ−1− |m|) uniformly in x,
y, and ζ.

REMARK 2.2

By definition (2.5), ϕα−(y;ω, ζ) is given by

ϕα−(y;ω, ζ) =
∑

l

exp(−iνπ/2) exp
(

−ilγ(x;ω)
)
Jν(ζ1/2|x|),

and hence we see that ϕα−(y;ω, ζ) is analytic in ζ .

3. Magnetic Schrödinger operators in exterior domains

We begin by recalling the notation: H = H(A,0) is the self-adjoint operator
defined by (1.7) with D(H) = H2(Ω) ∩ H1

0 (Ω), and f0(ω → θ;E) denotes the
amplitude at energy E for the pair (K0,H), K0 = −Δ being the free Hamiltonian
acting on L2(R2). The aim of the present section is to study the asymptotic
behavior of the kernel R(x, y; ζ) with |x − y| � 1 for the resolvent R(ζ) = R(ζ;H).
Here we introduce a smooth nonnegative cutoff function χ ∈ C∞

0 [0, ∞) with the
properties

(3.1) 0 ≤ χ ≤ 1, suppχ ⊂ [0,2], χ = 1 on [0,1].

This function is often used in the future discussion without further references. We
also use the notation ( , ) to denote the L2 scalar product in L2(R2) or L2(Ω).

LEMMA 3.1

Let E > 0 be fixed. Then there exists a complex neighborhood of E where the
resolvent R(ζ) = R(ζ;H) is analytic as a function with values in operators from
L2

comp(Ω) to L2
loc(Ω).

Proof
The proof is based on the complex scaling method developed by [5] and [17], and
the lemma follows as a particular case of such a general theory. The operator H

is a long-range perturbation to the free Hamiltonian K0, but the coefficients of H

are analytic in Ω. The operator Pα defined by (2.1) is transformed into e−2θPα
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under the group of dilations x → eθx. By assumption (1.1), O ⊂ { |x| < 1}. Let
Σ = {|x| < 8}. Since H has no positive eigenvalues, we can show by making use
of the analytic dilation which leaves Σ invariant that there exists a complex
neighborhood of E in which the operator

jσR(ζ) : L2
comp(Σ0) → L2

comp(Σ0), Σ0 = Σ \ O,

restricted to L2
comp(Σ0) ⊂ L2(Ω) is analytic as a function with values in bounded

operators, where jσ is the characteristic function of Σ0, and the multiplication
operator jσ is considered to be the restriction to L2

comp(Σ0) from L2(Ω). We
assert that R(ζ) is analytic over the neighborhood above as a function with
values in operators from L2

comp(Ω) to L2
loc(Ω). To see this, we set

u0(x) = χ(|x|/2), u1(x) = χ(|x|/4), v0 = 1 − u0, v1 = 1 − u1

for the cutoff function χ ∈ C∞
0 [0, ∞) with properties (3.1). Recall that

Rα(ζ) = R(ζ;Pα) : L2
comp(R2) → L2

loc(R
2)

depends analytically on ζ . If we regard the multiplication operator f �→ v1f as
the extension from L2(Ω) to L2(R2), then Rα(ζ)v1 makes sense as an operator
from L2

comp(Ω) to L2
loc(R

2), and similarly for Rα(ζ)v0. Since v0v1 = v1 and since
H = Pα over Ω, R(ζ) = R(ζ)(u1 + v1) is decomposed into the sum of three terms

R(ζ) = R(ζ)u1 + v0Rα(ζ)v1 − R(ζ)[Pα, v0]Rα(ζ)v1

at least for ζ with Im ζ > 0, where [X,Y ] = XY − Y X denotes the commutator
between two operators X and Y . The coefficients of [Pα, v0] have supports in Σ0.
Hence we see that

jσR(ζ) : L2
comp(Ω) → L2

comp(Σ0)

depends analytically on ζ in the complex neighborhood of E. Similarly we obtain
the relation

R(ζ) = u1R(ζ) + v1Rα(ζ)v0 + v1Rα(ζ)[Pα, v0]R(ζ)

on L2
comp(Ω). This yields the analytic dependence on ζ of R(ζ) : L2

comp(Ω) →
L2

loc(Ω), and the proof is complete. �

The lemma above, together with the analytic Fredholm theorem, implies that
the resolvent R(ζ;Hd) in question is meromorphically continued from the upper
half plane of the complex plane to a region (independent of d) in the lower half
plane across the positive real axis, so that R(ζ;Hd) is a meromorphic function
over Dd for |d| � 1. In fact, we have the relation (Hd − ζ)R(ζ) = Id + VdR(ζ),
and

VdR(ζ)jd : L2(Bd) → L2(Bd), Bd = B−d ∪ B+d,

acting as a compact operator that is analytic in the neighborhood in the lemma,
where jd denotes the characteristic function of Bd. If the solution w to (Hd −
E)w = 0 satisfies the outgoing radiation condition at infinity, then it vanishes, so
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that Id + VdR(ζ) is invertible at ζ = E. Thus Id + VdR(ζ)jd : L2(Bd) → L2(Bd)
is also invertible at ζ = E, and we see by the analytic Fredholm theorem that

(3.2) R(ζ;Hd) = R(ζ) − R(ζ)jd

(
Id+VdR(ζ)jd

)−1
VdR(ζ), Re ζ > 0, Im ζ ≥ 0,

admits the meromorphic continuation over a region in the lower half plane as a
function with values in operators from L2

comp(Ω) to L2
loc(Ω). Here R(ζ)jd is con-

sidered to be an operator from L2(Bd) to L2
loc(Ω) by regarding the multiplication

operator f �→ jdf as the extension from L2(Bd) to L2
comp(Ω). If we decompose

L2(Ω) into

L2(Ω) = L2(Bd) ⊕ L2(Ω \ Bd),

then the operator Id + VdR(ζ) acts as(
Id + VdR(ζ)jd VdR(ζ)(1 − jd)

0 Id

)

on L2(Bd) ⊕ L2(Ω \ Bd), and its inverse takes the form(
(Id + VdR(ζ)jd)−1 −(Id + VdR(ζ)jd)−1VdR(ζ)(1 − jd)

0 Id

)
.

Thus (Id + VdR(ζ)jd)−1 naturally appears as the component of the matrix rep-
resentation for (Id+VdR(ζ))−1 and coincides with (Id+VdR(ζ))−1 on L2(Bd) ⊂
L2(Ω).

We now define the scattering amplitude f0(ω → θ;E) for the pair (K0,H)
with H = H(A,0). Let ϕ+(x;ω,E) be the outgoing eigenfunction of H . Then the
amplitude is defined through the asymptotic form

ϕ+ = eiα(γ(x;ω)−π)ϕ0(x;ω,E) + f0(ω → θ;E)eiE1/2|x| |x| −1/2 + o(|x| −1/2)

as |x| → ∞ in the direction θ (x = |x|θ).

LEMMA 3.2

Recall that ϕα+(x;ω,E) and ϕα−(x;θ,E) denote the outgoing and incoming
eigenfunctions of Pα = H(Aα,0), respectively, and that f(ω → θ;E) is the scat-
tering amplitude for the pair (K0, Pα). Set u0 = χ(|x|/2), and set u1 = χ(|x|/4).
Then the amplitude f0(ω → θ;E) for the pair (K0,H) has the representation

f0 = f(ω → θ;E) + c0(E)
(
R(E)[Pα, u0]ϕα+(·;ω,E), [Pα, u1]ϕα−(·;θ,E)

)
,

where R(E) = R(E;H) and c0(E) is defined by (2.11).

REMARK 3

This lemma, together with Lemma 3.1, allows us to extend analytically f0(ω →
θ;E) in a complex neighborhood of E, and its extension f0(ω → θ; ζ) takes the
form

f0 = f(ω → θ; ζ) + c0(ζ)
(
R(ζ)[Pα, u0]ϕα+(·;ω, ζ), [Pα, u1]ϕα−(·;θ, ζ)

)
.
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Proof
Let ϕ+(x;ω,E) be as above. By assumption (1.1), Pα = H = H(A,0) outside the
support of u0, and hence we have

(3.3) ϕ+ = (1 − u0)ϕα+ + R(E)[Pα, u0]ϕα+.

Similarly

ϕα+ = (1 − u1)ϕ+ + Rα(E)[Pα, u1]ϕ+

with Rα(E) = R(E;Pα), and hence

(3.4) ϕ+ = ϕα+ + u1ϕ+ − Rα(E)[Pα, u1]ϕ+.

It follows from Proposition 2.3(1) with λ = r = |x| that the last term on the
right-hand side of (3.4) behaves like

c0(E)
(
ϕ+(·;ω,E), [Pα, u1]ϕα−(·;θ,E)

)
|x| −1/2eiE1/2|x| + o(|x| −1/2)

as |x| → ∞ in the direction θ. We insert (3.3) into ϕ+ on the right-hand side.
Since (

(1 − u0)ϕα+, [u1, Pα]ϕα−
)

= (ϕα+, [u1, Pα]ϕα−) = 0,

we obtain the desired relation. �

The following two propositions correspond to Propositions 2.1 and 2.2 in Sec-
tion 2. We keep the notation with the same meaning as ascribed there to formu-
late the propositions.

PROPOSITION 3.1

Let E0 > 0 and c1 > 0 be fixed. Assume that ζ = E + iη satisfies |E − E0| < E0/2
and |η| ≤ c1(logλ)/λ for λ � 1. If x and y fulfill

λ/c ≤ |x|, |y|, |x − y| ≤ cλ

for some c > 1 and if x̂ and ŷ satisfy |x̂ · ŷ + 1| < cλ2(μ−1) for some 0 ≤ μ < 1/2,
then

R(x, y; ζ) = (i/4) cos(απ)eiα(γ(x̂;ŷ)−π)H0(k|x − y|)

+ eik(|x|+|y|)(|x| + |y|)−1/2r1N (x, y; ζ,λ) + O(λ−N )

for any N � 1, where r1N is analytic in ζ in a complex neighborhood of E as in
Lemma 3.1, and it obeys the same bound as in (2.10).

Proof
We again set

u0(x) = χ(|x|/2), u1(x) = χ(|x|/4), v0 = 1 − u0, v1 = 1 − u1

and fix p, q ∈ R2 (|p|, |q| � 1) as points having the properties in the proposition.
If we further set wp(x) = χ(|x − p|), then wpv0 = wp and wpv1 = wp, and similarly
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for wq = χ(|x − q|). The operator H coincides with Pα on the support of v1. We
compute

wpR(ζ)wq = wpRα(ζ)wq + wpRα(ζ)(Pαv1 − v1H)R(ζ)wq

= wpRα(ζ)wq + wpRα(ζ)[u1, Pα]R(ζ)wq.

Since v0 = 1 on the support of ∇u1 and since H = Pα on the support of v0, we
repeat the above argument to get

wpR(ζ)wq = wpRα(ζ)wq + wpRα(ζ)[u1, Pα]
(
Rα(ζ) + R(ζ)[Pα, u0]Rα(ζ)

)
wq.

Note that

wpRα(ζ)[u1, Pα]Rα(ζ)wq = wpRα(ζ)u1wq − wpu1Rα(ζ)wq = 0

and hence we have

wpR(ζ)wq = wpRα(ζ)wq + wpRα(ζ)[u1, Pα]R(ζ)[Pα, u0]Rα(ζ)wq.

We apply Proposition 2.3 to the second operator on the right-hand side. Let Σ0

be again defined by Σ0 = Σ \ O. Then the coefficients of [u1, Pα] and [Pα, u0] have
supports in Σ0. Hence it follows from elliptic estimates that

[u1, Pα]R(ζ)[Pα, u0] : L2
comp(Σ0) → L2

comp(Σ0)

is bounded uniformly in ζ as in the proposition and is analytic in ζ . According
to Proposition 2.3, the integral kernels of wpRα(ζ) and Rα(ζ)wq take the forms(

wpRα(ζ)
)
(x, y) = wp(x)eik|x| |x| −1/2 × {uniformly bounded function}

for y ∈ Σ0 and(
Rα(ζ)wq

)
(x, y) = {uniformly bounded function} × eik|y| |y| −1/2wq(y)

for x ∈ Σ0. Hence the kernel of the second operator obeys the bound

eik(|p|+|q|)(|p| |q|)−1/2O(1) = eik(|p|+|q|)(|p| + |q|)−1/2O(λ−1/2).

This allows us to deal with this kernel as a remainder term. Thus the proposition
follows from Proposition 2.1. �

PROPOSITION 3.2

Let ζ = E + iη be as in Proposition 3.1. If x and y fulfill

λ/c ≤ |x|, |y|, |x − y| ≤ cλ, |x̂ · ŷ + 1| > 1/c

for some c > 1, then

R(x, y; ζ) = (i/4)eiα(γ(x̂;−ŷ)−π)H0(k|x − y|)

+ c0(ζ)eik(|x|+|y|)(|x| |y|)−1/2
(
f0(−ŷ → x̂; ζ) + r2N (x, y; ζ,λ)

)
+ O(λ−N )

for any N � 1, where r2N is analytic in ζ in a complex neighborhood of E as in
Lemma 3.1, and it obeys the same bound as in (2.12).
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Proof
We use the same notation and repeat the same argument as in the proof of
Proposition 3.1. Then we obtain

wpR(ζ)wq = wpRα(ζ)wq + wpRα(ζ)[u1, Pα]R(ζ)[Pα, u0]Rα(ζ)wq.

If we apply Propositions 2.2 and 2.3 to the second operator on the right-hand
side, then it follows from Lemma 3.2 (see also Remark 3) that the kernel of this
operator has the desired asymptotic form at points p and q fixed arbitrarily. This
proves the proposition. �

4. Basic lemmas and proof of main theorems

In this section we prove Theorems 1.1 and 1.2, accepting the two basic lemmas
(Lemmas 4.1, 4.2) formulated below as proved. These lemmas are proved in
Section 5.

In Section 3, we have shown that the amplitude f0(ω → θ;E) admits the
analytic extension in a complex neighborhood of E > 0. Before going into the
proof, we also make a comment on the analytic extension of the amplitude

f±(ω → θ;E) = −c0(E)
(
V±(Id − G±(E)V±)ϕ0(·;ω,E), ϕ0(·;θ,E)

)
for the pair (K0,K±), where K± is the Schrödinger operator defined by (1.6) and
G±(E) = R(E;K±) denotes the resolvent of K±. In view of this representation,
the analytic extension f±(ω → θ; ζ) is given by

f±(ω → θ; ζ) = −c0(ζ)
(
V±(Id − G±(ζ)V±)ϕ0(·;ω, ζ), ϕ0(·;θ, ζ)

)
in a complex neighborhood of E > 0. In fact, the resolvent G±(ζ) = R(ζ;K±)
admits the analytic extension

G±(ζ) = G0(ζ) − G0(ζ)j0
(
Id + V±G0(ζ)j0

)−1
V±G0(ζ) : L2

comp(R2) → L2
loc(R

2)

over a complex neighborhood of E > 0, where G0(ζ) denotes the resolvent
R(ζ;K0) of the free Hamiltonian K0 = −Δ and j0 is the characteristic func-
tion of the unit disk B = { |x| < 1}. (Note that suppV± ⊂ B.) The derivation of
the relation above is done in the same way used to derive (3.2).

We begin by fixing new notation to formulate the lemmas. Let G0(ζ) =
R(ζ;K0) be as above. We again denote by j0 the characteristic function of the
unit disk B. Then

j±d(x) = j0(x − d±) = j0(x±)

defines the characteristic function of B±d = {|x − d± | < 1}, where d+ = (1 − κ)d
and d− = −κd. We construct a function g± ∈ C∞(R2 → R) such that g± equals

(4.1) g±(x) = αγ(x; ∓d̂) = αγ(x̂; ∓d̂)

on {|x − d± | < |d± |/2} and obeys ∂n
x g± = O(|x| − |n|) as |x| → ∞, where γ(x̂;ω)

denotes the azimuth angle from ω to x̂ = x/|x|. By construction, g±(x) satisfies

(4.2) ∇g± = α(−x2/|x|2, x1/|x|2) = A(x)
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on {|x − d± | < |d± |/2}. We also introduce the auxiliary operators

K±d = K0 + V±d, D(K±d) = H2(R2),
(4.3)

H±d = H(A,V±d), D(H±d) = H2(Ω) ∩ H1
0 (Ω)

and write G±d(ζ) and R±d(ζ) for the resolvents R(ζ;K±d) and R(ζ;H±d), respec-
tively. We further define

(4.4) ψ±(x;ω, ζ) =
[(

Id − G±(ζ)∗V±
)
ϕ0(·;ω, ζ)

]
(x).

The function ψ±(x;ω, ζ) solves the equation (K± − ζ)ψ±(x;ω, ζ) = 0. If, in par-
ticular, ζ = E > 0, ψ±(x;ω,E) turns out to be the incoming eigenfunction of K±,
and the conjugate function ψ±(x;ω, ζ) of ψ±(x;ω, ζ) is analytic in ζ . It should
be noted that ψ±(x;ω, ζ) itself is not analytic. We note that ψ+(x;ω,E) does
not denote the outgoing eigenfunction at energy E > 0.

4.1. Two basic lemmas
With the notation above, we are now in a position to formulate the two basic
lemmas. In the lemmas, we use the multiplication f �→ j±df by the characteristic
function j±d as the extension from L2(B±d) to L2

comp(Ω) or L2
comp(R2).

LEMMA 4.1

(1) Let ζ be in D+d defined by (1.15), and let X+(ζ;d) be the operator defined
by

X+(ζ;d) = V+dR(ζ)j+d : L2(B+d) → L2(B+d).

Then Id + X+(ζ;d) takes the form

Id + X+(ζ;d) = eig+
(
Id + X+0(ζ;d) + X+1(ζ;d)

)(
Id + V+dG0(ζ)j+d

)
e−ig+ ,

where X+0(ζ;d) is the integral operator with the kernel X+0(x, y; ζ, d) defined by

X+0 = c0(ζ)(e2ik|d+|/|d+|)f0(−d̂ → d̂; ζ)V+(x+)ϕ0(x+; d̂, ζ)ψ+(y+; −d̂, ζ)j0(y+)

and X+1(ζ;d) is analytic in ζ ∈ D+d with values in bounded operators acting on
L2(B+d) and obeys ‖X+1(ζ;d)‖ = O(|d| −μ) uniformly in ζ for some μ > 0.

(2) Let ζ be in D−d defined by (1.15), and let X−(ζ;d) be the operator defined
by

X−(ζ;d) = V−dR(ζ)j−d : L2(B−d) → L2(B−d).

Then Id + X−(ζ;d) takes the form

Id + X−(ζ;d) = eig−
(
Id + X−0(ζ;d) + X−1(ζ;d)

)(
Id + V−dG0(ζ)j−d

)
e−ig− ,

where X−0(ζ;d) is the integral operator with the kernel X−0(x, y; ζ, d) defined by

X−0 = c0(ζ)(e2ik|d− |/|d− |)f0(d̂ → −d̂; ζ)V−(x−)ϕ0(x−; −d̂, ζ)ψ−(y−; d̂, ζ)j0(y−)

and X−1(ζ;d) is analytic in ζ ∈ D−d with values in bounded operators acting on
L2(B−d) and obeys ‖X−1(ζ;d)‖ = O(|d| −μ) uniformly in ζ for some μ > 0.
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Before formulating the second lemma, we make a brief comment on the operators
R±d(ζ) = R(ζ;H±d). Accepting the above lemma as proved, we can show that
these operators are analytic in ζ ∈ Dd as functions with values in operators from
L2

comp(Ω) to L2
loc(Ω), where Dd is defined by (1.8) (for details, see the argument

after the proof of Lemma 4.3 in this subsection).

LEMMA 4.2

Assume that α is not a half integer. Then we have the following statements.
(1) Let Y+(ζ;d) be the operator defined by

Y+(ζ;d) = V−dR+d(ζ)j+d : L2(B+d) → L2(B−d)

for ζ ∈ Dd. Then Y+(ζ;d) admits the decomposition

Y+(ζ;d) = Y+0(ζ;d) + Y+1(ζ;d),

where Y+0(ζ;d) is the integral operator with the kernel Y+0(x, y; ζ, d) defined by

Y+0 = c0(ζ) cos(απ)(eik|d|/|d|1/2)V−(x−)ϕ0(x−; −d̂, ζ)ψ+(y+; −d̂, ζ)j0(y+)

and Y+1(ζ;d) is analytic in ζ ∈ Dd with values in bounded operators from L2(B+d)
to L2(B−d) and obeys ‖Y+1(ζ;d)‖ = O(|d| −μ) uniformly in ζ for some μ > 0.

(2) Let Y−(ζ;d) be the operator defined by

Y−(ζ;d) = V+dR−d(ζ)j−d : L2(B−d) → L2(B+d)

for ζ ∈ Dd. Then Y−(ζ;d) admits the decomposition

Y−(ζ;d) = Y−0(ζ;d) + Y−1(ζ;d),

where Y−0(ζ;d) is the integral operator with the kernel Y−0(x, y; ζ, d) defined by

Y−0 = c0(ζ) cos(απ)(eik|d|/|d|1/2)V+(x+)ϕ0(x+; d̂, ζ)ψ−(y−; d̂, ζ)j0(y−)

and Y−1(ζ;d) is analytic in ζ ∈ Dd with values in bounded operators from L2(B−d)
to L2(B+d) and obeys ‖Y−1(ζ;d)‖ = O(|d| −μ) uniformly in ζ for some μ > 0.

The following three lemmas are obtained as simple consequences of Lemmas 4.1
and 4.2.

LEMMA 4.3

(1) If ζ ∈ Dd, then

Id + X±(ζ;d) : L2(B±d) → L2(B±d)

has a bounded inverse and the inverse is bounded uniformly in d and ζ ∈ Dd.
Moreover, we have the relation

R±d(ζ)j±d = R(ζ)j±d

(
Id + X±(ζ;d)

)−1 : L2(B±d) → L2
loc(Ω)

for ζ ∈ Dd.
(2) Assume that 0 < κ < 1/2. If ζ ∈ D+d, then Id + X−(ζ;d) is invertible on

L2(B−d) and R−d(ζ)j−d satisfies the same relation as above.
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LEMMA 4.4

Assume that 0 < κ < 1/2. Then

V−dR−d(ζ)j−d : L2(B−d) → L2(B−d)

is bounded uniformly in d and ζ ∈ D+d.

LEMMA 4.5

Assume that α is not a half integer. Let ζ ∈ Dd, and let Y±(ζ;d) be as in
Lemma 4.2. Define

(4.5) Y (ζ;d) = Y−(ζ;d)Y+(ζ;d) = V+dR−d(ζ)V−dR+d(ζ)j+d

as an operator acting on L2(B+d). Then Y (ζ;d) admits the decomposition

Y (ζ;d) = Y0(ζ;d) + Y1(ζ;d),

where Y0(ζ;d) is the integral operator with the kernel Y0(x, y; ζ, d) defined by

Y0 = −c0(ζ) cos2(απ)(e2ik|d|/|d|)f−(−d̂ → d̂; ζ)

× V+(x+)ϕ0(x+; d̂, ζ)ψ+(y+; −d̂, ζ)j0(y+)

and Y1(ζ;d) is analytic in ζ ∈ Dd with values in bounded operators from L2(B+d)
to itself and obeys ‖Y1(ζ;d)‖ = O(|d| −μ) uniformly in ζ for some μ > 0.

Proof of Lemma 4.3
(1) We recall the notation G±d(ζ) = R(ζ;K±d) from (4.3). By the resolvent iden-
tity, we have (

Id + V±dG0(ζ)j±d

)(
Id − V±dG±d(ζ)j±d

)
= Id

on L2(B±d). This implies that Id + V±dG0(ζ)j±d is invertible and the inverse

(4.6)
(
Id + V±dG0(ζ)j±d

)−1 = Id − V±dG±d(ζ)j±d : L2(B±d) → L2(B±d)

is bounded uniformly in ζ . We consider the operator X−(ζ;d) only. If ζ ∈ Dd,
then Dd ⊂ D−d for |d| � 1, and it follows from (1.13) that

(4.7)
∣∣e2ik|d− |/|d− |

∣∣ = O(|d| −c), ζ ∈ Dd,

for some c > 0. Hence Lemma 4.1 shows that

(4.8) ‖X−0(ζ;d)‖ + ‖X−1(ζ;d)‖ = O(|d| −c)

as an operator acting on L2(B−d). This, together with (4.6), implies that Id +
X−(ζ;d) is invertible on L2(B−d). Since

(H−d − ζ)R(ζ)j−d = Id + V−dR(ζ)j−d = Id + X−(ζ;d)

on L2(B−d), the desired relation follows at once.
(2) If 0 < κ < 1/2, then D+d ⊂ D−d and (4.7) with another c > 0 remains

true for ζ ∈ D+d. This follows from (1.16). Hence (2) is obtained in the same way
as above. �
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We note that Lemma 4.2 is not required in proving Lemma 4.3. By the resolvent
identity, it follows from Lemmas 3.1 and 4.3 that

R±d(ζ) = R(ζ) − R±d(ζ)V±dR(ζ) : L2
comp(Ω) → L2

loc(Ω)

is well defined for ζ ∈ Dd and is analytic in ζ . If 0 < κ < 1/2, then this fact
remains true for R−d(ζ) with ζ ∈ D+d, and if 1/2 < κ < 1, then it holds for
R+d(ζ) with ζ ∈ D−d.

Proof of Lemma 4.4
By Lemma 4.3, we have

V−dR−d(ζ)j−d = V−dR(ζ)j−d

(
Id + X−(ζ;d)

)−1 = Id −
(
Id + X−(ζ;d)

)−1

on L2(B−d). This proves the lemma. �

Proof of Lemma 4.5
We recall that the notation ( , ) denotes the L2 scalar product and that ψ±(x;ω, ζ)
is defined by (4.4). In view of Lemma 4.2, we compute

c0(ζ)
∫

V−(x−)ϕ0(x−; −d̂, ζ)ψ−(x−; d̂, ζ)dx

= c0(ζ)
(
V−ϕ0(·; −d̂, ζ), (Id − G−(ζ)∗V−)ϕ0(·; d̂, ζ)

)
= c0(ζ)

(
V−(Id − G−(ζ)V−)ϕ0(·; −d̂, ζ), ϕ0(·; d̂, ζ)

)
= −f−(−d̂ → d̂; ζ).

This yields the kernel of Y0(ζ;d). Since |e2ik|d|/|d| | = O(|d|cδ0) over Dd for some
c > 0 (see (1.12)), we can take δ0 so small that the remainder operator Y1(ζ;d)
obeys ‖Y1(ζ;d)‖ = O(|d| −μ) for some μ > 0. Thus the proof is complete. �

4.2. Proof of main theorems
We are now in a position to prove the two main theorems.

Proof of Theorem 1.1
By assumption, α is not a half integer. We can use not only Lemma 4.1 but also
Lemma 4.2 to prove the theorem. Note that Dd ⊂ D+d ∩ D−d for |d| � 1. By the
argument after the proof of Lemma 4.3, R±d(ζ) : L2

comp(Ω) → L2
loc(Ω) is analytic

over Dd. The proof is divided into four steps.
(1) We start with the relation

(4.9) (Hd − ζ)R−d(ζ) = Id + V+dR−d(ζ).

We regard the operator on the right-hand side as an operator acting on L2(B+d).
By the resolvent identity, the operator on the right-hand side equals

Id + V+dR−d(ζ)j+d = Id + V+dR(ζ)j+d − V+dR−d(ζ)V−dR(ζ)j+d.

By Lemma 4.3, it is further equal to

(4.10) Id + V+dR−d(ζ)j+d =
(
Id − Y (ζ;d)

)(
Id + X+(ζ;d)

)
,
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where Y (ζ;d) is again defined by

Y (ζ;d) = V+dR−d(ζ)V−dR+d(ζ)j+d : L2(B+d) → L2(B+d)

as in Lemma 4.5. If one is not the eigenvalue of Y (ζ;d) at ζ = ζ0(d) ∈ Dd, then
the resolvent Rd(ζ) = R(ζ;Hd) turns out to be analytic in a neighborhood of ζ0

with values in operators from L2
comp(Ω) to L2

loc(Ω). In fact, Rd(ζ) is represented
as

(4.11) Rd(ζ) = R−d(ζ) − R−d(ζ)j+d

(
Id + V+dR−d(ζ)j+d

)−1
V+dR−d(ζ).

Thus the problem is reduced to specifying ζ ∈ Dd at which Y (ζ;d) has the eigen-
value one and to showing that this point is really the pole of Rd(ζ) in Dd. This
is done in the following two steps.

(2) We begin by specifying ζ ∈ Dd at which Y (ζ;d) has the eigenvalue one.
Lemma 4.5 enables us to write Id − Y (ζ;d) as

(4.12) Id − Y (ζ;d) =
(
Id − Ỹ (ζ;d)

)(
Id − Y1(ζ;d)

)
: L2(B+d) → L2(B+d),

where

Ỹ (ζ;d) = Y0(ζ;d)
(
Id − Y1(ζ;d)

)−1 = Y0(ζ;d)
(
Id + Ỹ1(ζ;d)

)
with Ỹ1(ζ;d) = Y1(ζ;d)(Id − Y1(ζ;d))−1. We compute the integral

c0(ζ)
∫

V+(x+)ϕ0(x+; d̂, ζ)ψ+(x+; −d̂, ζ)dx = −f+(d̂ → −d̂; ζ)

as in the proof of Lemma 4.5, and we set

h̃(ζ;d) = −c0(ζ)(e2ik|d|/|d|) cos2(απ)f−(−d̂ → d̂; ζ)

×
(
Ỹ1(ζ;d)V+dϕ0(· − d+; d̂, ζ), j+dψ+(· − d+; −d̂, ζ)

)
.

It follows from Lemma 4.5 that h̃(ζ;d) obeys |h̃(ζ;d)| = O(|d| −μ) uniformly in
ζ ∈ Dd for some μ > 0. The operator Ỹ (ζ;d) of rank one has h(ζ;d) + h̃(ζ;d) as
the only nonzero eigenvalue, where h(ζ;d) = (e2ik|d|/|d|)e0(ζ) is defined by (1.9)
with

(4.13) e0(ζ) = cos2(απ)f+(d̂ → −d̂; ζ)f−(−d̂ → d̂; ζ).

We accept the lemma below as proved, and its proof is done in the last step.

LEMMA 4.6

Let h(ζ;d) be as above. Then the equation h(ζ;d) = 1 has a finite number of
solutions

{ζj(d)}1≤j≤Nd
, ζj(d) ∈ Dd,Re ζ1(d) < · · · < Re ζNd

(d),

and each solution ζj(d) has the properties∣∣Im ζj(d) + E
1/2
0 (log |d|)/|d|

∣∣ < E
−1/2
0 δ0(log |d|)/|d|,(4.14)

∣∣Re
(
ζj+1(d) − ζj(d)

)
− 2πE

1/2
0 /|d|

∣∣ < 2πE
−1/2
0 δ0/|d|(4.15)

for |d| � 1.
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We apply Rouché’s theorem to the equation

(4.16) h(ζ;d) + h̃(ζ;d) = 1

over Dd. Let {ζj(d)}, 1 ≤ j ≤ Nd, be as in Lemma 4.6, and let

Cjε =
{

|ζ − ζj(d)| = ε/|d|
}
, Djε =

{
|ζ − ζj(d)| < ε/|d|

}
,

for ε > 0 fixed arbitrarily but sufficiently small. We may assume Djε ⊂ Dd for
|d| � 1 by expanding Dd slightly, if necessary. Since h(ζj(d);d) = 1, we have

h′(ζj(d);d
)

= iζj(d)−1/2|d|
(
1 + O(|d| −1)

)
,

so that |h′(ζj(d);d)| ≥ c1|d| for some c1 > 0. Hence it follows that |h(ζ;d) − 1| ≥
c2ε on Cjε for some c2 > 0. Thus equation (4.16) has a unique solution{

ζres,j(d)
}

1≤j≤Nd
, Re ζres,1(d) < · · · < Re ζres,Nd

(d),

in Djε for |d| � 1.
(3) We shall show that ζres,j(d) becomes the pole of Rd(ζ). For brevity, we

fix one of ζres,j(d), 1 ≤ j ≤ Nd, and denote it by ζ0(d). We restrict ourselves to
the neighborhood

D0δ =
{

|ζ − ζ0(d)| < δ/|d|
}

⊂ Dd, 0 < δ 
 1,

of ζ0(d). If we set h0(ζ;d) = h(ζ;d) + h̃(ζ;d), then 1 − h0(ζ;d) admits the decom-
position

(4.17) 1 − h0(ζ;d) =
(
ζ − ζ0(d)

)
h1(ζ;d),

where h1(ζ;d) is analytic in D0δ and never vanishes there.
Now we work in the space L2(B+d). We denote by 〈 , 〉 the L2 scalar product

in L2(B+d) and write u ⊗ v for the integral operator with the kernel defined by
u(x)v(y) with u and v in L2(B+d). We combine (4.10) with (4.12) to obtain

Id + V+dR−d(ζ)j+d =
(
Id − Ỹ (ζ;d)

)(
Id − Y1(ζ;d)

)(
Id + X+(ζ;d)

)
,

where Ỹ (ζ;d) = Y0(ζ;d)(Id + Ỹ1(ζ;d)) is an integral operator of rank one. We
consider the inverse (Id + V+dR−d(ζ)j+d)−1 on the right-hand side of relation
(4.11). If we define u0(x; ζ, d) by

u0 = −c0(ζ)(e2ik|d|/|d|) cos2(απ)f−(−d̂ → d̂; ζ)V+d(x)ϕ0(x − d+; d̂, ζ)

and v0(x; ζ, d) by

v0 =
[(

Id + Ỹ1(ζ;d)∗)
j+d(·)ψ+(· − d+; −d̂, ζ)

]
(x),

then Ỹ (ζ;d) = u0 ⊗ v0 with 〈u0, v0〉 = h0(ζ;d), and the inverse (Id − Ỹ (ζ;d))−1

is represented as

Id +
(
1 − h0(ζ;d)

)−1(u0 ⊗ v0) = Id +
(
p1(ζ;d)/(ζ − ζ0(d))

)
(u0 ⊗ v0)

by (4.17), where p1(ζ;d) = 1/h1(ζ;d). If we further define u1(x; ζ, d) by

u1 =
(
Id + X+(ζ;d)

)−1(Id − Y1(ζ;d)
)−1

u0,
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and v1(x; ζ, d) by v1 = V+dv0(x; ζ, d), then the operator (Id + V+dR−d(ζ)j+d)−1

under consideration takes the form(
Id + V+dR−d(ζ)j+d

)−1
V+d ∼

(
p1(ζ;d)/(ζ − ζ0(d))

)
(u1 ⊗ v1)

as a function with values in bounded operators on L2(B+d), where the analytic
terms over D0δ are neglected.

We analyze the behavior as |d| → ∞ of u1 and v1 and show that u1 and
v1 never vanish identically for |d| � 1. We write ψin(x;ω, ζ) for the incoming
eigenfunction ψ+(x;ω, ζ) defined by (4.4) for the operator K+ and define the
outgoing eigenfunction ψout(x;ω, ζ) by

ψout(x;ω, ζ) =
[(

Id − G+(ζ)V+

)
ϕ0(·;ω, ζ)

]
(x).

Since ‖Y1(ζ;d)‖ + ‖Ỹ1(ζ;d)‖ = O(|d| −μ) for some μ > 0 as bounded operators on
L2(B+d), it is easy to see that v1(x; ζ, d) behaves like

v1 = V+(x+)ψin(x+; −d̂, ζ) + o2(1), |d| → ∞,

uniformly in ζ ∈ D0δ , where x+ = x − d+ and o2(1) denotes remainder terms
obeying the bound o(1) as |d| → ∞ of their L2-norms in L2(B+d). We look at
the behavior of u1. Recall the representation for Id + X+(ζ;d) from Lemma 4.1.
The function g+ defined by (4.1) satisfies

(4.18) |e±ig+ − e±iαπ | = O(|d| −1)

on B+d. Hence it follows from (4.6) and (4.8) that u1(x; ζ, d) behaves like

u1 = −c0(ζ)
(e2ik|d|

|d|
)

cos2(απ)f−(−d̂ → d̂; ζ)
(
V+(x+)ψout(x+; d̂, ζ) + o2(1)

)

uniformly in ζ ∈ D0δ . By assumption, f+(d̂ → −d̂; ζ) does not vanish for ζ ∈ D0δ

with |d| � 1. This implies that u1 and v1 never vanish identically.
We now define wout(x; d̂, ζ, d) and win(x; −d̂, ζ, d) by

wout = [R−d(ζ)j+du1(·; d̂, ζ, d)](x), win = [R−d(ζ)∗j+dv1(·; −d̂, ζ, d)](x).

Then both wout and win are in L2
loc(Ω). Moreover, these functions fulfill the zero

Dirichlet boundary conditions on the boundary ∂Ω and never vanish identically
over Ω for ζ ∈ D0δ . By (4.11), we obtain that the resolvent Rd(ζ) = R(ζ;Hd) in
question behaves like

(4.19) Rd(ζ) ∼ −
(
p1(ζ;d)/(ζ − ζ0(d))

)
(wout ⊗ win)

in the neighborhood D0δ as an operator from L2
comp(Ω) to L2

loc(Ω). This shows
that ζ0(d) becomes the resonance of Hd.

(4) We complete the proof of the theorem by proving Lemma 4.6.

Proof of Lemma 4.6
Let e0(ζ) be defined by (4.13), and let

η0d = E
1/2
0 (1 + 2δ0/E0)(log |d|)/|d|
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be as in (1.8). We write ζ = E + iη ∈ Dd with Im ζ = η ≤ 0. Then |E − E0| < δ0

and −η0d < η ≤ 0. We first fix E and consider the function

η �→ |h(E + iη;d)| =
(e−2|d| Imk

|d|
)

|e0(E + iη)|

with k = ζ1/2 = (E + iη)1/2. The function takes the values |h(E + iη;d)| 
 1 at
η = 0 and |h(E + iη;d)| � 1 at η = −η0d (see (1.12)), and it follows from (1.10)
that it behaves like

(4.20) |h(E + iη;d)| =
(e− |d|(η/E1/2)

|d|
)

|e0(E + iη)|
(
1 + O(|η|3)

)
.

Hence the function is strictly decreasing over the interval [−η0d,0]. Thus there
exists a unique value η = η(E;d) at which |h(E + iη(E;d);d)| = 1.

Next we write h(E + iη(E;d);d) = exp(iθ(E;d)) and consider the function
E �→ θ(E;d) over the interval (E0 − δ0,E0 + δ0). This function takes the form

θ(E;d) = 2|d| Re
(
E + iη(E;d)

)1/2 + θ0(E;d),

where θ0(E;d), |θ0| < 2π, is defined through the relation

e0

(
E + iη(E;d)

)
=

∣∣e0

(
E + iη(E;d)

)∣∣ exp
(
iθ0(E;d)

)
.

Since

(4.21) Rek = Re(E + iη)1/2 = E1/2 + O(η2),

the function θ(E;d) behaves like

(4.22) θ(E;d) = 2E1/2|d| + θ0(E;d) + O
(
η(E;d)2

)
|d|,

and the last term on the right-hand side obeys O(η(E;d)2)|d| = O((log |d|)2/|d|).
This implies that the function is strictly increasing over (E0 − δ0,E0 + δ0), and
hence there exist a finite number of solutions{

Ej(d)
}

1≤j≤Nd
, E1(d) < · · · < ENd

(d),

which satisfy θ(Ej(d);d) = 2(md + j)π for each j, where md is some integer
dependent on d. Thus the solutions to the equation h(ζ;d) = 1 are determined as

ζj(d) = Ej(d) + iηj(d), ηj(d) = η
(
Ej(d);d

)
,1 ≤ j ≤ Nd.

We shall show that ζj(d) has properties (4.14) and (4.15). For brevity, we
skip the reference to d to write ζj = Ej + iηj , if there is no ambiguity. Since
|h(Ej + iηj ;d)| = 1 and ηj = O((log |d|)/|d|), we have

−ηj/E
1/2
j = |d| −1

(
log |d| − log |e0(ζj)|

)(
1 + O(((log |d|)/|d|)3)

)
by (4.20). This, together with (1.11), implies that ηj = Im ζj has property (4.14).
By (4.22), we have Ej+1 − Ej = O(|d| −1), so that |ζj+1 − ζj | = O((log |d|)/|d|)
and

|e0(ζj+1) − e0(ζj)| = O
(
(log |d|)/|d|

)
.
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If we set kj = ζ
1/2
j , then it follows that

exp
(
2i|d| Re(kj+1 − kj)

)
=

( |e0(ζj+1)|
e0(ζj+1)

)( e0(ζj)
|e0(ζj)|

)
=

(
1 + O((log |d|)/|d|)

)
.

This yields

Re(kj+1 − kj) = |d| −1
(
π + O((log |d|)/|d|)

)
.

If we write

Re(ζj+1 − ζj) = Ej+1 − Ej = (E1/2
j+1 + E

1/2
j )(E1/2

j+1 − E
1/2
j ),

then (4.15) is obtained as a consequence of (1.11) and (4.21). �

The proof of the theorem is now complete. �

Here we make a comment on relation (4.19). We write wout,j and win,j for wout

and win with ζ = ζres,j(d). By construction, it is not difficult to see that wout,j is
the outgoing resonant state associated with the resonance ζres,j(d), which solves
the equation (Hd − ζres,j(d))wout,j = 0. However, it is not easy to see directly
from the above definition of win that win,j is the incoming resonant state which
solves (Hd − ζres,j(d))win,j = 0. To see this, we take the adjoint of the both sides
of (4.19) to obtain

Rd(ζ)∗ ∼ −
(
p1(ζ;d)/(ζ − ζ0(d))

)
(win ⊗ wout).

On the other hand, we can construct a relation similar to (4.11) for Rd(ζ)∗ and
get the relation

Rd(ζ)∗ ∼ −
(
q1(ζ;d)/(ζ − ζ0(d))

)
(w̃in ⊗ w̃out),

where w̃in solves (Hd − ζ)w̃in = 0 at ζ = ζ0(d). Thus this shows that win,j becomes
the incoming resonant state associated with ζ = ζres,j(d).

Proof of Theorem 1.2
(1) Since 0 < κ < 1/2 by assumption, R−d(ζ) : L2

comp(Ω) → L2
loc(Ω) is well defined

for ζ ∈ D+d ⊂ D−d (see the argument after the proof of Lemma 4.3). We again
start with relation (4.9). By the resolvent identity, the operator Id + V+dR−d(ζ)
on the right-hand side of (4.9) fulfills the relation

Id + V+dR−d(ζ)j+d = Id + V+dR(ζ)j+d − Z(ζ;d) = Id + X+(ζ;d) − Z(ζ;d)

as an operator acting on L2(B+d), where Z(ζ;d) = V+dR−d(ζ)V−dR(ζ)j+d. We
again use the resolvent identity to represent Z(ζ;d) as

Z(ζ;d) = V+dR(ζ)V−dR(ζ)j+d − V+dR(ζ)V−dR−d(ζ)V−dR(ζ)j+d.

Since α is a half integer, Lemma 4.4 and Proposition 3.1 with μ = 0 and λ = |d|
enable us to take δ0 > 0 so small that

‖Z(ζ;d)‖ = O
(∣∣eik|d|/|d|

∣∣2) = O
(∣∣e2ik|d+|/|d+|

∣∣2)O(|e2ik(2κ−1)|d| |) = O(|d| −c)
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for some c > 0 as an operator on L2(B+d). Lemma 4.1 gives the approximate
form of Id + X+(ζ;d). We compute the integral

c0(ζ)
∫

V+(x+)ϕ0(x+; d̂, ζ)ψ+(x+; −d̂, ζ)dx = −f+(d̂ → −d̂; ζ).

This implies that the resonance of Hd is approximately determined as the solution
to the equation

h+(ζ;d) = (e2ik|d+|/|d+|)f0(−d̂ → d̂; ζ)f+(d̂ → −d̂; ζ) = 1.

Thus statement (1) is verified by repeating almost the same argument as that in
the proof of Theorem 1.1.

(2) The second statement is verified in exactly the same way as the first one.
If we start by the relation

(Hd − ζ)R+d(ζ) = Id + V−dR+d(ζ)

instead of (4.9), then the argument proceeds in the same way as above. We skip
the details for the proof of statement (2).

(3) We deal with the third case, κ = 1/2 (and hence |d± | = |d|/2). A similar
result has been already established by [4, Theorem 1.3(3)]. It suffices to prove
the statement for ζ such that | Re ζ − E| < δ0 for some E ∈ (E0/2,3E0/2). We
denote by D±d(E) the neighborhood defined by (1.15) with E0 replaced by E.
Note that D−d(E) = D+d(E) for κ = 1/2. Then Lemma 4.1 remains true for
D±d(E), and the constant μ > 0 in the lemma can be taken independently of E.
If ζ = Re ζ + i Im ζ satisfies the assumption, then it follows from (1.10) that (4.7)
and (4.8) hold true with c = ε/3 > 0 for |d| � 1. Hence the operator Id+X−(ζ;d)
has the inverse (

Id + X−(ζ;d)
)−1 : L2(B−d) → L2(B−d)

bounded uniformly in ζ , and R−d(ζ) is analytic in ζ as a function with val-
ues in operators from L2

comp(Ω) to L2
loc(Ω) (see the argument after the proof of

Lemma 4.3). Lemma 4.4 remains true for ζ as in statement (3) even in the case
where κ = 1/2. This allows us to repeat the same argument as in the proof of
statement (1) to obtain

Id + V+dR−d(ζ)j+d = Id + X+(ζ;d) − Z(ζ;d)

on L2(B+d), where Z(ζ;d) is again defined by

Z(ζ;d) = V+dR(ζ)V−dR(ζ)j+d − V+dR(ζ)V−dR−d(ζ)V−dR(ζ)j+d.

When κ = 1/2, Id+X+(ζ;d) is also invertible with the inverse bounded uniformly
in ζ , and Z(ζ;d) obeys

‖Z(ζ;d)‖ = O
(∣∣eik|d|/|d|

∣∣2) = O(|d| −ε/2)

by (1.10) and by assumption. Thus there exists the inverse(
Id + V+dR−d(ζ)j+d

)−1 : L2(B+d) → L2(B+d)
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bounded uniformly in ζ , and we see that

Rd(ζ) = R−d(ζ) − R−d(ζ)j+d

(
Id + V+dR−d(ζ)j+d

)−1
V+dR−d(ζ)

is well defined for ζ as in statement (3) as an analytic function with values in
operators from L2

comp(Ω) to L2
loc(Ω). This proves statement (3), and the proof of

the theorem is complete. �

5. Proofs of Lemmas 4.1 and 4.2

The present section is devoted to proving Lemmas 4.1 and 4.2, which have played
important roles in proving the main theorems.

Proof of Lemma 4.1
We prove only the first statement, and a similar argument applies to the second
one. We first fix the new notation. For notational brevity, we write g for g+ with
property (4.2) and introduce the following auxiliary operators:

K̃0 = H(∇g,0), K̃+ = H(∇g,V+) = K̃0 + V+, K̃+d = K̃0 + V+d,

with the same domain H2(R2). We further write G̃0(ζ), G̃+(ζ), and G̃+d(ζ) for
the resolvents R(ζ; K̃0),R(ζ; K̃+), and R(ζ; K̃+d), respectively. We also recall
the notation G+(ζ) = R(ζ;K+) and G+d(ζ) = R(ζ;K+d) from (1.6) and (4.3),
respectively. By definition, G̃0(ζ) satisfies the relation

(5.1) G̃0(ζ) = eigG0(ζ)e−ig,

and similarly for G̃+(ζ) and G̃+d(ζ). The proof is rather long and is divided into
six steps.

(1) Let wd(x) be defined by

wd(x) = χ(4|x − d+|/|d+|) = χ(4|x+|/|d+|),

where χ is the smooth cutoff function with properties (3.1). Then ∇g = A on the
support of wd, so that K̃0 = H = H(A,0) there. We compute

Id + X+(ζ;d) = Id + V+dG̃0(ζ)j+d + V+dR(ζ)j+d − V+dG̃0(ζ)j+d

= Id + V+dG̃0(ζ)j+d + V+dR(ζ)(wdK̃0 − Hwd)G̃0(ζ)j+d

= Id + V+dG̃0(ζ)j+d + V+dR(ζ)[wd, K̃0]G̃0(ζ)j+d.

Since

G̃+d(ζ)j+d = G̃0(ζ)j+d

(
Id + V+dG̃0(ζ)j+d

)−1

on L2(B+d), we obtain the representation

Id + X+(ζ;d) =
(
Id + V+dR(ζ)[wd, K̃0]G̃+d(ζ)j+d

)(
Id + V+dG̃0(ζ)j+d

)
= eig

(
Id + e−igV+dR(ζ)eig[wd,K0]G+d(ζ)j+d

)
×

(
Id + V+dG0(ζ)j+d

)
e−ig.
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Thus the problem is reduced to analyzing the asymptotic behavior as |d| → ∞ of
the kernel Π(x, y; ζ, d) of the operator Π(ζ;d) defined by

(5.2) Π(ζ;d) = V+de
−igR(ζ)eig[wd,K0]G+d(ζ)j+d.

(2) Let Σ+d = {x : |d+|/4 < |x+| < |d+|/2} with x+ = x − d+. Then we have

supp ∇wd ⊂ Σ+d.

We study the behavior of the kernel G+d(x, y; ζ) of G+d(ζ). Let G+(x, y; ζ) be the
kernel of G+(ζ). Then G+d(x, y; ζ) = G+(x+, y+; ζ). By the resolvent identity, we
have

(5.3) G+(ζ) = G0(ζ)
(
Id − V+G+(ζ)

)
.

The kernel G0(x, y; ζ) of G0(ζ) = R(ζ;K0) is given by

G0(x, y; ζ) = (i/4)H0(k|x − y|)

and behaves like

G0(x, y; ζ) = c0(ζ)eik|x−y| |x − y| −1/2
(
1 + O(|x − y| −1)

)
when |x − y| � 1. If ξ ∈ Σ+d and y ∈ B+d, then

|ξ+ − y+| = |ξ+| − y+ · ξ̂+ + O(|d| −1),

and hence

eik|ξ+−y+| = eik|ξ+|(ϕ0(y+; ξ̂+, ζ) + O(|d| −1)
)
.

Thus G0(ξ+, y+; ζ) behaves like

G0(ξ+, y+; ζ) = c0(ζ)eik|ξ+| |ξ+| −1/2
(
ϕ0(y+; ξ̂+, ζ) + r(ξ+, y+; ζ)

)
,

where the remainder term r(ξ+, y+; ζ) obeys

(5.4) |∂n
ξ r(ξ+, y+; ζ)| = O(|d| −1− |n|)

uniformly in ξ, y, and ζ ∈ Dd. Since

ψ+(x; ξ̂+, ζ) =
[(

Id − G+(ζ)∗V+

)
ϕ0(·; ξ̂+, ζ)

]
(x)

by definition, it follows from (5.3) that the kernel G+d(ξ, y; ζ) under consideration
takes the asymptotic form

(5.5) G+d(ξ, y; ζ) = c0(ζ)eik|ξ+| |ξ+| −1/2
(
ψ+(y+; ξ̂+, ζ) + r0(ξ+, y+; ζ)

)
,

where

r0(ξ+, y+; ζ) = r(ξ+, y+; ζ) −
∫

r(ξ+, z; ζ)V+(z)G+(z, y+; ζ)dz

is analytic in ζ ∈ Dd and obeys the same bound as in (5.4).
Next we look at the behavior of the kernel of e−igR(ζ)eig . We note that

(4.18) holds on B+d. Hence it follows from Proposition 3.2 with λ = |d| that
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e−ig(x)R(x, ξ; ζ)eig(ξ)

∼ (i/4)e−ig(x)+iα(γ(x̂;−ξ̂)−π)H0(k|x − ξ|)eig(ξ)

+ c0(ζ)eik(|x|+|ξ|)(|x| |ξ|)−1/2
(
e−iαπf0(−ξ̂ → x̂; ζ)eig(ξ) + r1(x, ξ; ζ, d)

)
for x ∈ B+d and for ξ ∈ Σ+d, where the remainder term of order O(|d| −N ) is
neglected, and r1(x, ξ; ζ, d) is analytic in Dd and obeys the same bound as in
(2.12).

(3) We consider the function [wd,K0]G+d(ξ, y; ζ). We compute the commu-
tator

[wd,K0] = wdK0 − K0wd = 2∇wd · ∇ + (Δwd) = 2∇wd · ∇ + O(|d| −2).

Since ∇ξψ+ = O(|ξ+| −1) = (|d| −1) on Σ+d and

∇wd(ξ) = (4/|d+|)χ′(4|ξ+|/|d+|)ξ̂+,

the function [wd,K0]G+d(ξ, y; ζ) takes the form

c0(ζ)eik|ξ+| |ξ+| −1/2|d+| −1
(
8ikχ′(4|ξ+|/|d+|)ψ+(y+; ξ̂+, ζ) + r̃0(ξ+, y+; ζ)

)
by (5.5), where r̃0(ξ+, y+; ζ) preserves properties similar to those of r0(ξ+, y+; ζ)
in (5.5). If x ∈ B+d and ξ ∈ Σ+d, then∣∣∇ξ(|x − ξ| + |ξ+|)

∣∣ =
∣∣∇ξ(|x − ξ| + |ξ − d+|)

∣∣ ≥ c > 0

for some c independent of d. We note that |eik|ξ+| | and |eik|x−ξ| | are at most of
polynomial growth in |d|, because | Imk| = | Im ζ1/2| = O((log |d|)/|d|) for ζ ∈ Dd.
Hence it follows by repeated use of the integration by parts that∫

eiαγ(x̂;−ξ̂)H0(k|x − ξ|)eig(ξ)[wd,K0]G+d(ξ, y; ζ)dξ = O(|d| −N ).

Thus the leading term X+0(x, y; ζ, d) in the lemma comes from the integral

I0(x, y; ζ, d) = ν(d)eik|x| |x| −1/2

∫
eik(|ξ|+|ξ+|)χ′(4|ξ+|/|d+|)J(ξ, x, y; ζ, d)dξ

with ν = 8ikc0(ζ)2e−iαπ |d+| −1, where

J(ξ, x, y; ζ, d) = |ξ| −1/2|ξ+| −1/2f0(−ξ̂ → x̂; ζ)eig(ξ)ψ+(y+; ξ̂+, ζ).

By (2.11), we see that

ν(d) = 8iζ1/2(8π)−1eiπ/2ζ−1/2e−iαπ |d+| −1 = (−1/π)e−iαπ |d+| −1

is independent of ζ .
(4) We work in the coordinates

ξ = ξ+ + d+ = |d+|t(cosθ, sinθ) + d+, θ = γ(ξ̂+; −d̂),

with d+ as the center to see the asymptotic behavior of the integral I0 above.
Then we have

dξ = |d+|2t dt dθ, |ξ| = |d+|(1 + t2 − 2t cosθ)1/2.
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Hence I0 = I0(x, y; ζ, d) takes the form

I0 = ν0e
ik|x| |x| −1/2

∫ ∞

0

χ′(4t)t1/2
{∫

ei|d+|kϕ(t,θ)J0(t, θ, x, y; ζ)dθ
}

dt

with ν0 = (−1/π)e−iαπ , where ϕ(t, θ) = t + (1 + t2 − 2t cosθ)1/2 and

J0 = (1 + t2 − 2t cosθ)−1/2f0(−ξ̂ → x̂; ζ)eig(ξ)ψ+(y+; ξ̂+, ζ)

with ξ = |d+|t(cosθ, sinθ)+ d+. We note that χ′(4t)t1/2 ∈ C∞
0 (0, ∞) has support

in the interval (1/4,1/2). The stationary points with ∂θϕ = 0 are attained at
θ = 0 and θ = π. The function ϕ(t, θ) takes ϕ = 1 + 2t at θ = π and satisfies
∂tϕ(t, π) = 2 > 0. This implies that the stationary point θ = π does not make any
contribution to the asymptotic form of I0.

(5) We consider the contribution from the other stationary point θ = 0. The
phase function kϕ(t, θ) does not necessarily take real values, which does not allow
us to apply directly the stationary phase method to the integral I0(x, y; ζ, d)
to obtain the leading term X+0(x, y; ζ, d). We decompose ϕ(t, θ) into ϕ(t, θ) =
1 + ϕ̃(t, θ), where ϕ̃(t, θ) behaves like

(5.6) ϕ̃(t, θ) = t(1 − t)−1(1 − cosθ) + O(θ4) =
(
t(1 − t)−1/2

)
θ2 + O(θ4)

as |θ| → 0 uniformly in t ∈ [1/4,1/2]. The analyticity in θ enables us to deform the
interval |θ| < 2δ, 0 < δ 
 1, into the smooth contour defined by z = ueiL(log |d|)/|d|,
|u| < δ, in a complex neighborhood of z = 0, where L � 1 is taken large enough.
The contour is deformed in such a way that Imz < 0 or Imz > 0 according to
whether Re z < 0 or Re z > 0 with | Rez| < 2δ, and | Imz| = O((log |d|)/|d|). Then
Im ϕ̃(t, z) > 0 for z 
= 0, and the leading term is obtained from the integral

I1(x, y; ζ, d) = ν1(d)eik(|x|+|d+|)|x| −1/2

(5.7)
×

∫ ∞

0

χ′(4t)t1/2
{∫

ei|d+|kϕ̃(t,z)χ(2|u|/δ)J0(t, z, x, y; ζ)du
}

dt

with z = ueiL(log |d|)/|d| (and hence dz = eiL(log |d|)/|d| du), where

ν1(d) = ν0e
iL(log |d|)/|d| = (−1/π)e−iαπeiL(log |d|)/|d|.

Since

k = ζ1/2 = (E + iη)1/2 = E1/2 + iE−1/2η/2 + O(|d| −1), η = O
(
(log |d|)/|d|

)
,

for ζ = E + iη ∈ Dd and since

Im(kz2) ∼ u2
{
(E−1/2η/2) cos

(
2L(log |d|)/|d|

)
+ E1/2 sin

(
2L(log |d|)/|d|

)}
,

we can take L � 1 so large that Im(kz2) > 0 for z 
= 0. Thus we have
Im(kϕ̃(t,0)) = 0 and Im(kϕ̃(t, z)) > 0 for z = ueiL(log |d|)/|d| 
= 0.

(6) The proof is complete in this step. We are now in a position to apply the
stationary phase method (see [12, Theorem 7.7.5]) to the integral in the brackets
in (5.7). We see the value at u = 0 (or at θ = 0) of the function

J0(t, ueiL(log |d|)/|d|, x, y; ζ).
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If θ = 0, then we have

f0(−ξ̂ → x̂; ζ) = f0(−d̂ → x̂; ζ), ψ+(y+; ξ̂+, ζ) = ψ+(y+; −d̂, ζ),

and eig(ξ) = eiαγ(ξ;−d̂) = eiαπ . Hence it follows that

J0(t,0, x, y; ζ) = eiαπ(1 − t)−1/2f0(−d̂ → x̂; ζ)ψ+(y+; −d̂, ζ).

Since

|x| = |d+ + x+| = |d+| + d̂ · x+ + O(|d| −1)

for x ∈ B+d, eik|x| behaves like

eik|x| = eik|d+|(ϕ0(x+; d̂, ζ) + O(|d| −1)
)
,

and also |x| −1/2 = |d+| −1/2(1 + O(|d| −1)). We further note that

f0(−d̂ → x̂; ζ) = f0(−d̂ → d̂; ζ) + O(|d| −1).

We calculate the Hessian of the phase function

kϕ̃(t, z) = ζ1/2ϕ̃(t, ueiL(log |d|)/|d|)

at u = 0. By (5.6), it equals

ζ1/2∂2
uϕ̃(t,0) = ζ1/2e2iL(log |d|)/|d|t(1 − t)−1.

We finally take into account the relations∫ ∞

0

χ′(4t)dt = (1/4)
∫ ∞

0

(d/dt)χ(4t)dt = −1/4

and (−1/π)(−1/4)(2π)1/2eiπ/4ζ−1/4 = c0(ζ). Then we combine all the results
obtained to see that the integral I1 = I1(x, y; ζ, d) defined by (5.7) behaves like

I1 = c0(ζ)(e2ik|d+|/|d+|)
(
f0(−d̂ → d̂; ζ)ϕ0(x+; d̂, ζ)ψ+(y+; −d̂, ζ) + O(|d| −1)

)
.

This yields the desired form of the leading term, and the proof is complete. �

Proof of Lemma 4.2
We give the proof for statement (1) only, and we use the notation with the same
meanings ascribed in the proof of Lemma 4.1 throughout the proof. The operator
Y+(ζ;d) in question is represented as

Y+(ζ;d) = V−dR(ζ)j+d

(
Id + X+(ζ;d)

)−1
.

We have established the relation

Id + X+(ζ;d) = eig
(
Id + Π(ζ;d)

)(
Id + V+dG0(ζ)j+d

)
e−ig : L2(B+d) → L2(B+d)

in the proof of Lemma 4.1 (see step (1)), where Π(ζ;d) is defined by (5.2). We
have also shown that

‖Π(ζ;d)‖ = O
(∣∣e2ik|d+|/|d+|

∣∣) = O(|d| −c), ζ ∈ Dd,

for some c > 0 (see (1.13)) as a bounded operator on L2(B+d). If we take (4.6)
and (4.18) into account, then Y+(ζ;d) admits the decomposition

Y+(ζ;d) = Ỹ+0(ζ;d) + Ỹ+1(ζ;d),
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where

Ỹ+0(ζ;d) = V−dR(ζ)j+d

(
Id − V+dG+d(ζ)j+d

)
and Ỹ+1(ζ;d) is analytic in Dd and obeys ‖Ỹ+1(ζ;d)‖ = O(|d| −μ) for some μ > 0.
We now apply Proposition 3.1 with μ = 0 and λ = |d| to the operator V−dR(ζ)j+d.
We recall the behavior as |x − y| → ∞ of H0(k|x − y|) from step (2) in the proof
of Lemma 4.1. If x ∈ B−d and y ∈ B+d, then

γ(x̂; ŷ) = π + O(|d| −1), |x − y| = |d| − d̂ · (x− − y+) + O(|d| −1),

and hence the kernel R(x, y; ζ) behaves like

R = c0(ζ) cos(απ)(eik|d|/|d|1/2)
(
ϕ0(x−; −d̂, ζ)ϕ0(y+; −d̂, ζ) + O(|d| −1/2)

)
,

where the remainder term O(|d| −1/2) is analytic in ζ ∈ Dd and is bounded uni-
formly in x, y, and ζ . Since

ψ+(y+; −d̂, ζ) =
[(

Id − G+d(ζ)∗V+d

)
ϕ0(· − d+; −d̂, ζ)

]
(y+)

by definition, we see that the kernel Y+0(x, y; ζ, d) of the leading operator Y+0(ζ;d)
obtained from Ỹ+0(ζ;d) takes the desired form. This proves the lemma. �

6. Asymptotic properties of Green functions

In this section we prove Propositions 2.1, 2.2, and 2.3, which remain unproved.
Similar results with rather rough remainder estimates have been already estab-
lished as [4, Propositions 3.1–3.3] under slightly different notation. We give
only brief sketches and necessary modifications for the proofs of these propo-
sitions.

We begin by making a review on the integral representation for the kernel
Rα(x, y; ζ). We consider only the case Im ζ ≤ 0 and write ζ = E − iη with 0 ≤
η ≤ c1(logλ)/λ. The representation is based on the following formula:

Hν(Z)Jν(z) =
1
iπ

∫ κ+i∞

0

exp
( t

2
− Z2 + z2

2t

)
Iν

(Zz

t

) dt

t
, |z| ≤ |Z|,

for the product of Bessel functions (see [18, p. 439]), where Iν(w) is defined
by (2.6) and the contour is taken to be rectilinear with corner at κ + i0, κ > 0
being fixed arbitrarily. We use the notation κ with the meaning ascribed above
throughout the section. We apply this formula to (2.9) with Z = k(|x| ∨ |y|) and
z = k(|x| ∧ |y|), where k = ζ1/2 with Imk ≤ 0. If we write x = (|x| cosθ, |x| sinθ)
and y = (|y| cosω, |y| sinω) in the polar coordinates, then Rα(x, y; ζ) is repre-
sented as

(6.1) Rα =
1
4π

∑
l

eilψ

∫ κ+i∞

0

exp
( t

2
− ζ(|x|2 + |y|2)

2t

)
Iν

(ζ|x| |y|
t

) dt

t

with ν = |l − α|, where ψ = θ − ω. If, in particular, α = 0, then the resolvent
R(ζ;K0) of the free Hamiltonian K0 has the kernel (i/4)H0(k|x − y|) represented
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as

i

4
H0(k|x − y|) =

1
4π

∑
l

eilψ

∫ κ+i∞

0

exp
( t

2
− ζ(|x|2 + |y|2)

2t

)
Il

(ζ|x| |y|
t

) dt

t
,

where I|l|(w) = Il(w) = (1/π)
∫ π

0
ew cosρ cos(lρ)dρ (see (2.6)). By the Fourier

expansion, the series
∑

l e
ilψIl(w) converges to ew cosψ . Since

|x − y|2 = |x|2 + |y|2 − 2|x| |y| cosψ,

the kernel (i/4)H0(k|x − y|) has the representation

(6.2)
i

4
H0(k|x − y|) =

1
4π

∫ κ+i∞

0

exp
( t

2
− ζ|x − y|2

2t

) dt

t
.

We fix M � 1 large enough and take

κ = M2 logλ

in the contour of integral (6.1). We divide (6.1) into the sum of integrals over the
following four intervals by a smooth partition of unity:

(0) 0 < t < κ, (i) 0 < s < 2λ/M, (ii) λ/M < s < 2Mλ, (iii) s > Mλ,

for t = κ + is. We evaluate the integral over each interval. We have shown in [4]
that the main contribution comes from the integral over interval (ii). Indeed, we
have ∣∣exp

(
−ζ(|x|2 + |y|2)/(2t)

)∣∣ = tNO(λ−2N ), 0 < t < κ,

for any N � 1, and also the stationary point of the function

t �→ t/2 − ζ(|x|2 + |y|2)/(2t)

in integral (6.1) is away from the intervals (i) and (iii) (see also the proof of
Proposition 2.2). If we set

χM (s) = χ(s/M)
(
1 − χ(Ms)

)
for the cutoff function χ ∈ C∞

0 [0, ∞) with properties (3.1), then χM (s/λ) has
support in (λ/M,2Mλ) and χM (s/λ) = 1 on [2λ/M,Mλ]. We obtain

Rα(x, y; ζ) = R̃α(x, y; ζ) + O(λ−N )

for any N � 1, where R̃α(x, y; ζ) is defined by

R̃α =
1
4π

∑
l

eilψ

∫ κ+i∞

0

χM

( Im t

λ

)
exp

( t

2
− ζ(|x|2 + |y|2)

2t

)
Iν

(ζ|x| |y|
t

)dt

t
.

We now use formula (2.6) for Iν(w) to calculate the series

L(w,ψ) =
∑

l

eilψIν(w), ν = |l − α|,

in the integrand above, where ψ = θ − ω and w = ζ|x| |y|/t. Then L(w,ψ) is
decomposed into the sum

L(w,ψ) = Lfr(w,ψ) + Lsc(w,ψ),
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where

Lfr(w,ψ) = (1/π)
∑

l

eilψ

∫ π

0

ew cosρ cos(νρ)dρ,

Lsc(w,ψ) = −(1/π)
∑

l

eilψ sin(νπ)
∫ ∞

0

e−w coshp−νp dp.

We have Lfr(w,ψ) = eiαψew cosψ for |ψ| < π by the Fourier expansion and

(6.3) Lsc(w,ψ) = − sin(απ)
π

(−1)[α]ei[α]ψ

∫ ∞

− ∞
e−w coshp e(1−β)p

ep + e−iψ
dp

with 0 < β = α − [α] < 1 by the same argument that was used to calculate the
eigenfunction ϕα+ in Section 2 (see (2.7)). Thus the Green function Rα(x, y; ζ)
admits the decomposition

(6.4) Rα(x, y; ζ) = Rfr(x, y; ζ) + Rsc(x, y; ζ) + O(λ−N )

for any N � 1, where

Rfr =
1
4π

eiαψ

∫ κ+i∞

0

χM

( Im t

λ

)
exp

( t

2
− ζ|x − y|2

2t

) dt

t
,

Rsc =
1
4π

∫ κ+i∞

0

χM

( Im t

λ

)
exp

( t

2
− ζ(|x|2 + |y|2)

2t

)
Lsc

(ζ|x| |y|
t

,ψ
) dt

t
.

We should note that (6.4) is true only for |ψ| < π. If ψ = ±π, then the denomina-
tor ep + e−iψ in (6.3) vanishes at p = 0. If α is an integer, then Lsc(ζ|x| |y|/t,ψ)
vanishes, and hence so does Rsc(x, y; ζ).

Proof of Proposition 2.1
The proposition has been proved as [4, Proposition 3.1]. As stated above, decom-
position (6.4) holds true only for |ψ| < π. In particular, the denominator in (6.3)
vanishes at p = 0. The behavior along the forward direction of Rα(x, y; ζ) comes
from this singularity. We skip the detailed proof. �

Proof of Proposition 2.2
In [4, Proposition 3.2], we have used the stationary phase method to obtain the
asymptotic formula with e2N obeying the rough remainder estimate

|∂n
x ∂m

y e2N | = O
(
(logλ)2λ−1− |n|−|m|).

Here we modify the argument there and use the method of steepest descent to
make the remainder estimate sharper as in the proposition.

We first note that

(6.5) ψ = θ − ω = γ(x̂; −ŷ) − π

for x = (|x| cosθ, |x| sinθ) and y = (|y| cosω, |y| sinω) in the polar coordinates.
Since λ/c < |x − y| < cλ by assumption, we make repeated use of integration by
parts and take (6.2) into account to obtain the relation
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Rfr(x, y; ζ) = (i/4)eiα(γ(x̂;−ŷ)−π)H0(k|x − y|) + O(λ−N ).

Thus the first term is obtained.
We look at the behavior of Rsc(x, y; ζ). By assumption, the denominator

ep + e−iψ in (6.3) does not vanish even at p = 0. We consider the integral

S(x, y, t; ζ) =
∫ ∞

− ∞
ei(iζ|x||y|/t)(coshp−1) e(1−β)p

ep + e−iψ
dp

and apply the stationary phase method (see [12, Theorem 7.7.5]) to this integral.
We note that | |x| |y|/t| ∼ λ and

Im(iζ|x| |y|/t)(coshp − 1) = |x| |y|(κ2 + s2)−1(Eκ − ηs)(coshp − 1) > 0

for p 
= 0, because κ = M2 logλ with M � 1 and ζ = E − iη with 0 ≤ η ≤
c1(logλ)/λ. Then we have

S(x, y, t; ζ) = (2π)1/2t1/2ζ−1/2(|x| |y|)−1/2
(
(1 + e−iψ)−1 + O(λ−1)

)
,

and hence we see that Lsc = Lsc(ζ|x| |y|/t,ψ) behaves like

Lsc = −(2/π)1/2 sin(απ)(−1)[α]ei[α]ψζ−1/2

× (|x| |y|)−1/2e−ζ|x||y|/tt1/2
(
(1 + e−iψ)−1 + O(λ−1)

)
.

By use of (6.5), we compute

(1 + e−iψ)−1 = (1 − e−iγ(x̂;−ŷ))−1 = eiγ(x̂;−ŷ)/(eiγ(x̂;−ŷ) − 1).

Recall the representation for the scattering amplitude f(ω → θ;E) from (2.8).
Then it follows that Lsc = Lsc(ζ|x| |y|/t,ψ) takes the asymptotic form

Lsc = ζ−1/4e−iπ/4(|x| |y|)−1/2e−ζ|x||y|/tt1/2
(
f(−ŷ → x̂; ζ) + O(λ−1)

)
.

Since

t/2 − ζ(|x|2 + |y|2)/2t − ζ|x| |y|/t = t/2 − ζ(|x| + |y|)2/2t,

we have that Rsc = Rsc(x, y; ζ) takes the asymptotic form

Rsc = (4π)−1ζ−1/4e−iπ/4(|x| |y|)−1/2

×
∫ κ+i∞

0

χM

( Im t

λ

)
exp

( t

2
− ζ(|x| + |y|)2

2t

)(
f(−ŷ → x̂; ζ) + O(λ−1)

) dt

t1/2
.

We calculate only the leading term. A similar argument applies to the remainder
term of order O(λ−1).

We consider the integral

S0(x, y; ζ) =
∫ κ+i∞

0

χM

( Im t

λ

)
exp

( t

2
− ζ(|x| + |y|)2

2t

) dt

t1/2
.

We make a change of variable

(6.6) t = κ + is = ik(|x| + |y|)τ = iζ1/2(|x| + |y|)τ

and set σ = τ − 1. Then we have dt = ik(|x| + |y|)dσ and
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t/2 − ζ(|x| + |y|)2/2t = i(|x| + |y|)k(τ/2 + 1/2τ)

= ik(|x| + |y|) + i(|x| + |y|)k
(
σ2/(2(σ + 1))

)
.

The line t = κ + is with λ/M < s < 2Mλ is transformed into a certain curve in
the complex plane. By (6.6), we have the relation

Reσ = |k| −2(|x| + |y|)−1(sRek − κ Imk) − 1,

Imσ = |k| −2(|x| + |y|)−1(−s Imk − κRek).

Since k = ζ1/2 behaves like

k = E1/2 − iE−1/2η/2 + O
(
((logλ)/λ)2

)
for ζ = E − iη with 0 ≤ η ≤ c1(logλ)/λ, there exists c2 > 0 such that the curve is
contained in the region{

σ ∈ C : −1 ≤ Reσ < c2M,0 > Imσ > −c2M
2(logλ)/λ

}
for λ � 1. The stationary point σ = 0 is not on the curve. For this reason, we
deform the curve into a small real interval around σ = 0 by analyticity. We further
deform this interval around σ = 0 into a contour in the complex plane as in step
(5) in the proof of Lemma 4.1. Then we see that S0(x, y; ζ) takes the asymptotic
form

S0 = k1/2eiπ/4(|x| + |y|)1/2
(
k(|x| + |y|)/2πi

)−1/2
eik(|x|+|y|)(1 + O(λ−1)

)
= (2π)1/2ieik(|x|+|y|)(1 + O(λ−1)

)
.

We compute

(1/4π)ζ−1/4e−iπ/4(2π)1/2i = c0(ζ)

by (2.11), and hence we obtain the desired asymptotic form

Rsc = c0(ζ)eik(|x|+|y|)(|x| |y|)−1/2
(
f(−ŷ → x̂; ζ) + O(λ−1)

)
.

This proves the proposition. �

Proof of Proposition 2.3
In [4], this proposition has also been established as Proposition 3.3 with rough
remainder estimates. We give only a sketch for the proof of statement (1). By
assumption, λ/c < |x| < cλ and 1/c < |y| < c for some c > 1. Then we can show
that Rα = Rα(x, y; ζ) behaves like

Rα = R̃α(x, y; ζ) + O(λ−N )

for any N � 1, where

R̃α =
1
4π

∫ κ+i∞

0

χM

( Im t

λ

)
exp

( t

2
− ζ|x|2

2t

)
exp

(
− ζ|y|2

2t

)
I
(ζ|x| |y|

t
,ψ

)dt

t

and I(w,ψ) is defined by I(w,ψ) =
∑

l e
ilψIν(w) with w = ζ|x| |y|/t. We make

a change of variable t = κ + is = ik|x|τ and set σ = τ − 1 as in the proof of
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Proposition 2.2. Then we repeat the same argument as above to obtain that
R̃α(x, y; ζ) takes the asymptotic form

R̃α = c0(ζ)eik|x| |x| −1/2 exp(ik|y|2/2|x|)
(
I(k|y|/i,ψ) + O(λ−1)

)
.

We note that exp(ik|y|2/2|x|) = 1 + O(λ−1). Since Iν(z/i) = e−iνπ/2Jν(z) by
formula and since

eilψ = eil(θ−ω) = eilγ(x̂;ŷ) = e−ilγ(ŷ;x̂),

we have by (2.5) (see also Remark 2.2) that

I(k|y|/i,ψ) =
∑

l

eilψIν(k|y|/i) =
∑

l

e−ilγ(ŷ;x̂)e−iνπ/2Jν(k|y|) = ϕα−(y; x̂, ζ).

Thus we get the desired asymptotic form. �
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