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and extension of foliations

Isaia Nisoli

Abstract This paper stresses the strong link between the existence of partial holomor-
phic connections on the normal bundle of a foliation seen as a quotient of the ambient
tangent bundle and the extendability of a foliation to an infinitesimal neighborhood of
a submanifold.Wefind the obstructions to extendability, and thanks to the theorydevel-
oped we obtain some new Khanedani–Lehmann–Suwa type index theorems.
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0. Introduction

Localization of characteristic classes is an important tool in differential geometry,
topology, and dynamics in particular for complex dynamical systems (see [CS]).
In this context many different indexes have been developed during the years,
among them the Baum–Bott and the Camacho–Sad indexes. A global framework
for this theory has been provided by Suwa and Lehmann (see [Su]): the funda-
mental principle is that the existence of a flat partial holomorphic connection
(called a holomorphic action in [Su]) implies the vanishing of the Chern classes
associated to some vector bundles. Suppose that we are working on a compact
manifold M and we have a partial holomorphic connection outside an analytic
subset Σ of M . We can localize these Chern classes to Σ and, using Poincaré and
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Alexander duality, define the residue of the characteristic class at Σ (we refer to
[Su]).

Now, at least two different research directions arise: to adapt such a theory
to singular manifolds and submanifolds (see [LS1], [LS2]), or to try to develop
new vanishing theorems. This paper falls into the second group. As we said,
such vanishing theorems arise when we have the existence of partial holomorphic
connections; this is the case when we have a holomorphic foliation which leaves a
submanifold S invariant. This gives rise to index theorems for NF |S

, the normal
bundle of the foliation seen as a quotient of the tangent bundle of the submanifold
(Baum–Bott index), NS , the normal bundle to the submanifold (Camacho–Sad
index), and NF |S , the normal bundle of the foliation seen as a quotient of the
ambient tangent bundle restricted to S (Kahnedani–Lehmann–Suwa or variation
index; see [KS], [LS2]). The fundamental reference on all these topics is [Su].

The same techniques allow us to prove other index theorems, even if the holo-
morphic foliation is transverse to the submanifold, such as the index theorem for
the bundle Hom(F ,NS), which gives rise to the tangential index (see [Ho], [Bru]).

In the last years, a new theory was developed also for endomorphisms of
a complex manifold leaving a submanifold pointwise invariant (see [ABT1]) and
the case of foliation transverse to a submanifold in the Camacho–Sad and Baum–
Bott case (see [ABT2], [Ca], [CL], [CMS]). The key to the existence of partial
holomorphic connections is the vanishing of the Atiyah class, a cohomological
obstruction to the splitting of a short exact sequence of sheaves of OS-modules
(see [Ati]). In the paper [ABT2] the Atiyah sheaf for the normal bundle of a
submanifold was described in a more concrete way, giving new insights to the
problem. Further developments such as [ABT3] showed the strong connection
between the existence of partial holomorphic connections for NS and the “regu-
larity” of the embedding of a subvariety.

In Section 2 of this paper we find a more concrete realization of the Atiyah
sheaf for the normal bundle of a foliation seen as a quotient of the ambient tangent
bundle and study some sufficient conditions for the existence of a more general
variation action. First of all in Section 1 we define what a foliation of the kth
infinitesimal neighborhood of a submanifold is and prove some Frobenius-type
theorems for such foliations, which give us the possibility of choosing atlases with
some particular structure; in these special atlases, it is clear that the existence
of a foliation of the first infinitesimal neighborhood is the key to the existence of
partial holomorphic connections on the normal bundle of a foliation seen as a quo-
tient of the ambient tangent bundle. Therefore, to generalize the variation index
we have to find foliations of the first infinitesimal neighborhood; with this aim we
study the problem of how to “project” a transversal foliation to a tangential one
using first-order splitting (see Section 3) and how to extend a foliation of a sub-
manifold S to an infinitesimal neighborhood (see Section 4). Moreover, thanks
to the new realization of the Atiyah sheaf, we develop in Section 5 a result about
noninvolutive subsheaves of TS which extend to the first infinitesimal neighbor-
hood. This gives us information about vanishing of the characteristic classes of
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the involutive closure of their restriction to S (the smallest involutive subsheaf of
TS containing it) and some more results regarding the extension problem. Thanks
to the machinery developed we can then prove some new index theorems, gen-
eralizing the Khanedani–Lehmann–Suwa action, and compute their indexes is
some simple cases.

Notation and conventions. In this paper we are going to use the Einstein summa-
tion convention. To ease the understanding of the computations the indexes are
going to have a fixed range. In this paper, M is an n-dimensional complex man-
ifold, S is a complex submanifold of codimension m (unless otherwise stated),
and F is a dimension l holomorphic foliation of either M ,S or an infinitesimal
neighborhood of S, with l ≤ n − m. Then the indexes have the following range:

• h,k will range in 1, . . . , n; these are the indexes relative to the coordinate
system of M ;

• p, q will range in m+1, . . . , n, in an atlas adapted to S (see Definition 0.1);
these are the indexes relative to the coordinates along S;

• r, s will range in 1, . . . ,m, in an atlas adapted to S; these are the indexes
relative to the coordinates normal to S;

• i, j will range in m + 1, . . . ,m + l, in an atlas adapted to F (see Defini-
tion 1.8); these are the indexes relative to the coordinates along F ;

• u, v will range in 1, . . . ,m,m + l + 1, . . . , n, in an atlas adapted to F ; these
are the the indexes relative to the coordinates normal to F .

In case we need more indexes of each type, we shall indicate them with a prime ′

or put a subscript, for example, r1. We shall denote by OM the structure sheaf
of holomorphic functions on M , by IS the ideal sheaf of a submanifold S, and
by I k

S its kth power as an ideal. If f is an element of OM we will denote by
[f ]k+1 its image in OS(k) := OM/I k+1

S . Moreover, we denote by TM and TS the
tangent sheaves to M and S, respectively, where defined. The following are some
definitions we will use through the whole paper.

DEFINITION 0.1

Let U be an atlas for M . We say that U is adapted to S if on each coordinate
neighborhood (Uα, z1

α, . . . , zn
α) such that U ∩ S is not empty, we have that S ∩ Uα =

{z1
α = · · · = zm

α = 0}, where m is the codimension of S.

DEFINITION 0.2

Suppose that Z is a complex manifold and OZ is the sheaf of holomorphioc
functions; a coherent sheaf is a sheaf S of OZ -modules such that, for every
z ∈ Z, there exists a neighborhood U of z and an exact sequence

Op
Z,U → Oq

Z,U → S |U → 0

for some p- and q-integers.
Equivalently S is coherent if



520 Isaia Nisoli

(1) it is locally finitely generated; that is, for every point x there exists an
open set U and a finite number of sections s1, . . . , sq ∈ S(U) such that for every
y in U the stalk Sy is generated by s1(y), . . . , sq(y);

(2) the sheaf of relations, that is,
{
(f1, . . . , fp) ∈ Op

Z,U

∣∣ ∑p
i=1 fisi = 0

}
, is

finitely generated.

For a coherent sheaf S we define the singular set of S to be

Sing(S) = {x ∈ Z | Sx is not OZ -free}.

Since S is locally free outside Z \ Sing(S), we define the rank of S to be the rank
of its restriction to Z \ Sing(S).

1. Foliations of kth infinitesimal neighborhoods

In this section we define and develop a theory for foliations of kth infinitesimal
neighborhoods. We use the notion of logarithmic vector fields, introduced in [Sa].
The sheaf of these vector fields is locally free if S is a submanifold.

DEFINITION 1.1

The kth infinitesimal neighborhood of a complex submanifold S is the ringed
space (S, OS(k)), where by OS(k) we denote the quotient sheaf OM/I k+1

S .

DEFINITION 1.2

A section v of TM is called logarithmic if v(IS) ⊆ IS . The sheaf TM (logS) :=
{v ∈ TM | v(IS) ⊆ IS } is called the sheaf of logarithmic sections and is a subsheaf
of TM .

The tangent sheaf of the kth infinitesimal neighborhood, denoted by TS(k), is
the image of the sheaf homomorphism TM (logS) ⊗OM

OS(k) → TM ⊗OM
OS(k)

and is a sheaf on S. We will say that a section v ∈ TS(k) is tangential to the kth
infinitesimal neighborhood.

Given a subsheaf E of TS(k) we define its restriction to S, denoted by E |S ,
by E |S := E ⊗ OS .

REMARK 1.3

If a point x does not belong to S, the stalk TM (logS)x coincides with TM,x.
Suppose that we have an atlas adapted to S; if x ∈ S the stalk TM (logS)x is
generated by

zr ∂

∂zs
,

∂

∂zp
.

Then a section v of TS(k) is written locally as

v = [ar]k+1
∂

∂zr
+ [ap]k+1

∂

∂zp
,

where the ar belong to IS .



Partial holomorphic connections and extension of foliations 521

REMARK 1.4

In the following, given a section v of TS(k) and an open set Uα of M intersecting
S, we denote by ṽα a local extension of v to Uα as a section of TM (Uα); given an
atlas adapted to S it is possible to build such an extension on each coordinate
chart. If the open set is clear from the discussion we shall denote the extension
simply by ṽ; please note that such an extension is not only a section of TM (Uα)
but also a section of TM (logS)(Uα). Taken as an extension ṽ, denoted by [1]k+1

the class of 1 in OS(k)(Uα), we shall denote its restriction to the kth infinitesimal
neighborhood by

ṽ ⊗ [1]k+1.

We prove in Lemma 1.5 that this notation is consistent with the fact that the
sections of TS(k) act as derivations of OS(k). Moreover, given two open sets Uα and
Uβ such that Uα ∩ Uβ ∩ S �= ∅ and taking two extension ṽα and ṽβ , respectively,
it follows from the definition that on Uα ∩ Uβ we have the following equivalence:

(1) v = ṽα ⊗ [1]k+1 = ṽβ ⊗ [1]k+1.

LEMMA 1.5

The sections of TS(k) act as derivations of OS(k). Furthermore, given two sections
v,w of TS(k), their bracket, defined on each coordinate patch Uα such that Uα ∩
S �= ∅ as

[v,w] := [ṽα, w̃α] ⊗ [1]k+1,

where the bracket on the right-hand side is the usual bracket on TM , is a well-
defined section of TS(k).

Proof
Let v be a section of TS(k), and let f be a section of OS(k). Let Uα and Uβ be
two coordinate patches of an atlas adapted to S such that Uα ∩ Uβ ∩ S �= ∅. On
Uα we take representatives f̃1 and f̃2 of f and an extension ṽα of v. We define

v(f) := ṽα(f̃1) ⊗ [1]k+1 = [ṽα(f̃1)]k+1.

Using the fact that ṽα is logarithmic it is easily shown that it does not depend
on the extension chosen for f . Since by definition the difference of two extensions
ṽα and ṽ′

α of v is of the form gh
αwh,α with gh

α ∈ I k+1
S for each h = 1, . . . , n, this

derivation does not depend on the extension of v chosen. This implies also that
if we take extensions ṽα and ṽβ and representatives f̃α and f̃β for f on Uα and
Uβ , respectively, we have that on Uα ∩ Uβ , the derivation is well defined.

We prove now that the bracket is well defined; if u and v are sections of
TS(k), the bracket is

[u, v] = [ũ, ṽ] ⊗ [1]k+1.

If ũ1, ũ2 are two extensions of u and ṽ1, ṽ2 are two extension of w, then



522 Isaia Nisoli

[ũ1, ṽ1] − [ũ2, ṽ2] = [ũ1, ṽ1] − [ũ1, ṽ2] + [ũ1, ṽ2] − [ũ2, ṽ2]

= [ũ1, ṽ1 − ṽ2] + [ũ1 − ũ2, ṽ2].

As above, we have

ũ1 − ũ2 = gh
αwh,α, ṽ1 − ṽ2 = thαwh,α,

with gh
α, thα ∈ I k+1

S for every h. Then

[ũ1, ṽ1 − ṽ2] + [ũ1 − ũ2, ṽ2] = [ũ1, t
h
αwh,α] + [gh

αwh,α, ṽ2]

= ũ1(thα)wh,α + thα[ũ1,wh,α](2)

− ṽ2(gh
α)wh,α + gh

α[wh,α, ṽ2].

Since both ṽ1 and ũ2 are logarithmic, the restriction to the kth infinitesimal
neighborhood of (2) is zero. �

Therefore, the following definition makes sense.

DEFINITION 1.6

A regular foliation of S(k) is a rank l coherent subsheaf F of TS(k), such that:

• for every x ∈ S the stalk TS(k)/Fx is OS(k),x-free;
• for every x ∈ S we have [Fx, Fx] ⊆ Fx (where the bracket is the one defined

in Lemma 1.5);
• the restriction of F |S is a rank l foliation of S.

REMARK 1.7

The third condition is a simplifying condition: in the paper [Br] a lot of work is
devoted to clarifying and explaining the concept of extension of a foliation, and
our definition is a particular case.

The main tool of this section is the holomorphic Frobenius theorem, whose state-
ment can be found, for example, in [Su, pp. 38–42]. Lemma 1.10 is a tool we use
in proving the Frobenius theorem for foliations of the kth infinitesimal neighbor-
hood; we give the proof after a definition.

DEFINITION 1.8

Let F be a rank l regular foliation of S. We say that an atlas {(Uα, z1
α, . . . , zn

α)}
is adapted to S and F if

• Uα ∩ S = {z1
α = · · · = zm

α = 0},

• F |Uα ∩S is generated by ∂/∂zm+1
α |S , . . . , ∂/∂zm+l

α |S .

REMARK 1.9

The existence of such an atlas follows from the holomorphic Frobenius theorem
cited above.
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LEMMA 1.10

Every regular foliation F of S(k) admits a local frame which can be extended
locally by commuting vector fields; that is, for every point x ∈ S there exists a
neighborhood Ux of x in M and commuting sections w̃m+1, . . . , w̃m+l of TM on
Ux such that wi := w̃i ⊗ [1]k+1 are generators of F (Ux ∩ S).

Proof
Let x be a point of S. We take a coordinate patch (U,φ) centered in x, adapted
to S and F |S . Let {vi} be a system of generators of F in U ∩ S, and let {ṽi}
be vector fields extending them. Call D the distribution spanned by the ṽi’s. We
complete the frame {ṽi} to a frame {ṽk } of TM , taking as ṽt the coordinate fields
∂/∂zt. Now, we choose holomorphic functions fk

i such that:

ṽk = fh
k

∂

∂zh
.

Please note that the matrix A := (fh
k ) is a matrix of holomorphic functions acting

on the right:

|ṽ1, . . . , ṽn| =
∣∣∣ ∂

∂z1
, . . . ,

∂

∂zn

∣∣∣ · A.

By hypothesis we know that A is nonsingular in x, so there exists a neighborhood
(still denoted by U ) of x such that this matrix is invertible with inverse a matrix
of holomorphic functions. Let (gk

h) be its inverse matrix. We define w̃i = gj
i ṽj ,

and we denote it by wi := w̃i ⊗ [1]k+1. Each one of the w̃i’s belongs to the module
generated by ṽm+1, . . . , ṽm+l; therefore each wi belongs to TS(k). This implies,
thanks to Lemma 1.5, that

[wi,wj ] = [w̃i, w̃j ] ⊗ [1]k+1 = [gi′

i ṽi′ , gj′

j ṽj′ ] ⊗ [1]k+1 ∈ F .

We claim now that the w̃j generate D and therefore, when restricted to S(k),
generate F . Let π be the projection (z1, . . . , zn) 
→ (zm+1, . . . , zm+l), and let
Π = π ◦ φ. We have

Π∗(w̃i) = Π∗(w̃i) + gt
iΠ∗

( ∂

∂zt

)
= Π∗(gk

i ṽk) = Π∗
( ∂

∂zi

)
=

∂

∂zi
,

so the w̃i generate D. Moreover, by naturality of Lie brackets, we have

Π∗([w̃i, w̃j ]) = [Π∗(w̃i),Π∗(w̃j)].

The mapping Π∗ induces a map Π∗,k : TM ⊗ OS(k) → Ol
S(k), given by

Π∗,k(v ⊗ [1]k+1) = Π∗(ṽ) ⊗ [1]k+1.

This map is injective when restricted to F ; since [wi,wj ] ∈ F and Π∗,k([wi,wj ]) =
0 we have [wi,wj ] = 0. We want now to modify the w̃i’s to obtain l independent
commuting sections of F , without changing their equivalence class. Therefore, we
look for extensions of the wi’s which satisfy the thesis of the theorem, proceeding
by induction on the number of sections. If l′ = 1, we can take any extension of
wm+1. (Every vector field commutes with itself.) Suppose now that the claim
is true for l′ − 1 sections. Then, by the holomorphic Frobenius theorem there
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exists a coordinate chart adapted to S in which w̃m+1 = ∂/∂zm+1, . . . , w̃m+l′ −1 =
∂/∂zm+l′ −1. Now, since the wi are commuting when restricted to S(k), if

wm+l′ = [gv]k+1
∂

∂zv
+ [f i]k+1

∂

∂zi
,

we have

[0]k+1 =
∂[gv]k+1

∂zi

∂

∂zv
+

∂[f j ]k+1

∂zi

∂

∂zj
=

[∂gv

∂zi

]
k+1

∂

∂zv
+

[∂f j

∂zi

]
k+1

∂

∂zj
,

where i ranges in m + 1, . . . ,m + l′ − 1. The last equality tells us that

∂gv

∂zi
= zr1 · · · zrk+1hv

r1,...,rk+1,i,
∂f j

∂zi
= zr1 · · · zrk+1hj

r1,...,rk+1,i.

We have to find (g̃v , f̃ j)-representatives for the classes [gv]k+1,[f j ]k+1 such that

0 =
∂g̃v

∂zi

∂

∂zv
+

∂f̃ j

∂zi

∂

∂zj
.

We do that for one of the gv ’s; the method applies to all the other coefficients.
Now, g̃v = gv + zr1 · · · zrk+1 h̃r1,...,rk+1 , so

∂g̃v

∂zi
=

∂gv

∂zi
+ zr1 · · · zrk+1

∂h̃v
r1,...,rk+1

∂zi

= zr1 · · · zrk+1hv
r1,...,rk+1,i + zr1 · · · zrk+1

∂h̃v
r1,...,rk+1

∂zi
.

Therefore, the problem reduces to finding a primitive h̃v
r1,...,rk+1

for the 1-form

ω := −hv
r1,...,rk+1,i dzi,

where the other coordinates are considered as parameters. If we denote by ∂ the
holomorphic differential and suppose, without loss of generality, that U is simply
connected and centered at x ∈ S (i.e., φ(x) = 0) we have, by the conjugate of the
∂̄-lemma, that this primitive exists if and only if ω is ∂-closed. Therefore we need
to check that the mixed partial derivatives coincide:

zr1 · · · zrk+1
∂hv

r1,...,rk+1,i

∂zj
=

∂2gv

∂zj ∂zi
=

∂2gv

∂zi ∂zj
= zr1 · · · zrk+1

∂hv
r1,...,rk+1,j

∂zi
.

Then, the primitive exists and is defined in U by

h̃v
r1,...,rk+1

(z1, . . . , zn) =
∫

γ

−hv
r1,...,rk+1,i dzi,

where γ is a curve such that γ(1) = (z1, . . . , zn) and γ(0) = 0. �

As a simple consequence of the lemma, we have the Frobenius theorem for kth
infinitesimal neighborhoods.

COROLLARY 1.11 (FROBENIUS THEOREM FOR KTH INFINITESIMAL NEIGHBORHOODS)

Suppose that we have a foliation F of S(k) of rank l. Then there exists an atlas
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{Uα, φα}adapted to S such that if Uα ∩ Uβ ∩ S �= ∅, then

(3)
[∂zt

α

∂zi
β

]
k+1

= 0,

for t = 1, . . . ,m,m + l + 1, . . . , n and i = 1, . . . , l on Uα ∩ Uβ .

Proof
We take an atlas adapted to S and extensions w̃i,α as given by Lemma 1.10. By
the holomorphic Frobenius theorem, there exists a coordinate system (modulo
shrinking) on Uα such that

w̃m+1,α =
∂

∂zm+1
α

, . . . , w̃m+l,α =
∂

∂zm+l
α

.

We take such coordinate systems. Since we are dealing with a foliation of S(k), we
know that if Uα ∩ Uβ ∩ S �= ∅ and F is generated on each Uα ∩ S by w1,α, . . . ,wl,α

we have wi,α = [(cαβ)j
i ]k+1wj,β . Hence

[∂zt
α

∂zi
β

]
k+1

= w̃i,β ⊗ [1]k+1(zt
α) = wi,β(zt

α) = [c j
i ]k+1wj,α(zt

α)

= [c j
i ]k+1w̃j,α ⊗ [1]k+1(zt

α) = [c j
i ]k+1

[∂zt
α

∂zj
α

]
k+1

= [c j
i δt

j ]k+1 = [0]k+1. �

REMARK 1.12

It is easily seen that the existence of an atlas satisfying (3) implies the exis-
tence of a foliation of TS(k), generated on each chart Uα intersecting S by
{∂/∂zm+1

α , . . . , ∂/∂zm+l
α }.

DEFINITION 1.13

We say that a foliation F of S extends to the kth infinitesimal neighborhood if
there exists an atlas adapted to S and F such that

[∂zt
β

∂zi
α

]
k+1

= 0,

for t = 1, . . . ,m,m + l + 1, . . . , n and i = 1, . . . , l on Uα ∩ Uβ .
In the special case F = TS we say that S has a kth-order extendable tangent

bundle.

REMARK 1.14

Let M be a complex manifold, and let F be a regular foliation of M . Every leaf
of F has a kth-order extendable tangent bundle for every k.

REMARK 1.15

For a submanifold S, having a first-order extendable tangent bundle is a strong
topological condition. As a matter of fact, as we see in Section 7 of this paper,
this implies the vanishing of many of the characteristic classes of the normal
bundle of S.
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REMARK 1.16

If a submanifold S has a first-order extendable tangent bundle, it is likely that
every foliation on S extends to a foliation of the first infinitesimal neighborhood.
A result in this direction can be found in Corollary 4.9.

2. The Atiyah sheaf for the variation action

The Atiyah sheaf is an important geometric object defined in [Ati]. In that paper,
it was proved that the existence of a holomorphic connection for the sheaf of
sections E of a holomorphic vector bundle E is equivalent to the splitting of the
following sequence:

(4) 0 → Hom(E , E ) → A E → TM → 0,

where A E is the Atiyah sheaf of E . In [ABT1] it was proved that the obstruction
to the existence of a holomorphic connection for the sheaf of sections E of a
holomorphic vector bundle E along a subsheaf F is equivalent to the splitting of
the following sequence:

(5) 0 Hom(E , E ) A E ,F F 0.

REMARK 2.1

Please note that in the whole section, F is a nonsingular foliation of S and TM

and TS are always locally free, due to the fact that M is a manifold and S is
a submanifold. Therefore, we do not distinguish between the sheaves and their
corresponding vector bundles.

DEFINITION 2.2

Let F be a foliation of S; let TM,S(1) := TM ⊗OM
OS(1) and TM,S := TM ⊗OM

OS ;
if θ1 : OS(1) → OS is the canonical projection, we denote by Θ1 the map id ⊗ θ1 :
TM,S(1) → TM,S . We see F as a subsheaf of TM,S ; we define the normal sheaf to
the foliation in the ambient tangent sheaf as the quotient of TM,S by F , and we
will denote it by NF ,M . Let T F

M,S(1) := ker(pr ◦ Θ1), where pr is the quotient map
in the short exact sequence

(6)

TS

0 F i TM,S
pr NF ,M 0.

REMARK 2.3

In our case, we have to replace E in (4) with NF ,M ; the computation of the
obstruction to the splitting of this sequence is a straightforward application of
the procedure in [Ati], and therefore we omit it. In an atlas adapted to S and F ,
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in Čech–de Rham cohomology the class is represented by the cocycle
{

Uαβ , − ∂zt′

α

∂zt
β

∂2zt
β

∂zi
α ∂zw

α

∣∣∣
S

dzi
α ⊗ ωw

β ⊗ ∂t′,β

}
,

where {∂t,α} is the quotient frame for NF,M in Uα and ωt
α is the dual frame for

NF ,M on Uα.

As in [ABT2], we will define a more concrete realization of the Atiyah sheaf for the
sheaf NF ,M . We shall prove that the splitting of the Atiyah sequence for NF ,M

is equivalent to the fact that the foliation F extends to the first infinitesimal
neighborhood.

REMARK 2.4

By definition Θ1(T F
M,S(1)) is contained in the kernel of pr, so, by exactness of

sequence (6), it is contained in the image of F . Moreover, for each v ∈ F , at least
locally, the element ṽ ⊗ [1]2 belongs to T F

M,S(1) and is projected by Θ1 to i(v).
So, Θ1(T F

M,S(1)) = i(F ).

REMARK 2.5

Suppose that we have a coordinate system adapted to S and F (see Defini-
tion 1.8). Then v belongs to T F

M,S(1) if and only if v = [ak]2∂/∂zk, with [at]1 = 0,
where t = 1, . . . ,m,m + l + 1, . . . , n. Analogously v belongs to IS T F

M,S(1) if and
only if v = [ai]2∂/∂zi, where ai ∈ IS for i = m + 1, . . . ,m + l.

LEMMA 2.6

Let F be a foliation of S. Then

(1) every v in T F
M,S(1) induces a derivation g 
→ v(g) of OS(1);

(2) there exists a natural C-linear map {·, · } : T F
M,S(1) ⊗ T F

M,S(1) → T F
M,S(1)

such that
(a) {u, v} = −{v,u},

(b) {u, {v,w} } + {v, {w,u} } + {w, {u, v}} = 0,

(c) {gu, v} = g{u, v} − v(g)u, for all g ∈ OS(1),
(d) Θ1({u, v}) = [Θ1(u),Θ1(v)].

Proof
(1) Let (U ; z1, . . . , zn) be a coordinate chart adapted to S and F . An element

v = [ak]2 ∂
∂zk ∈ TM,S(1) belongs to T F

M,S(1) if and only if [at]1 = 0. Remembering
Remark 1.3 we see that v belongs to TS(1) and Lemma 1.5 gives the assertion.

(2) We define { ·, · } by setting

{u, v}(f) = u
(
v(f)

)
− v

(
u(f)

)
,

for every f ∈ OS(1). Please note that, since u and v belong to TS(1), this bracket
coincides with the bracket defined on TS(1); the first three properties are proved
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exactly as for the usual bracket of vector fields, while the fourth follows from a
simple computation in coordinates. Suppose that (U ; z1, . . . , zn) is a coordinate
chart adapted to S and F , and suppose u = [ak]2 ∂

∂zk , v = [bk]2 ∂
∂zk with [at]1 = 0

and [bt]1 = 0. First of all we compute the Lie brackets on T F
M,S(1) in coordinates:

{u, v} =
[
ah ∂bk

∂zh
− bh ∂ak

∂zh

]
2

∂

∂zk

=
[
at ∂bu

∂zt
+ ai ∂bu

∂zi
− bt ∂au

∂zt
− bi ∂au

∂zi

]
2

∂

∂zu

+
[
at ∂bj

∂zt
− bt ∂aj

∂zt

]
2

∂

∂zj
+

[
ai ∂bj

∂zi
− bi ∂aj

∂zi

]
2

∂

∂zj
.

Please note that the coefficients in the first two summands of the last expression
all belong to IS/I 2

S . Therefore

Θ1({u, v}) =
[
ai ∂bj

∂zi
− bi ∂aj

∂zi

]
1

∂

∂zj
= [Θ1(u),Θ1(v)]. �

REMARK 2.7

In general, given two vector fields u, v in TM,S(1), we can define a bracket as
[u, v](f) = u(v(f)) − v(u(f)), for f ∈ OS(1). Please note that this bracket is not
a well-defined section of TM,S(1) but only of TM,S . In other words [u(v(f)) −
v(u(f))]2 is not well defined, while [u(v(f)) − v(u(f))]1 is.

This shows how, in our treatment, the hypothesis of working with logarithmic
vector fields is fundamental; in Lemma 2.6 the bracket operator is well defined
since the domain is T F

M,S(1).

LEMMA 2.8

Let F be a foliation of S. Then

(1) u ∈ T F
M,S(1) is such that pr([u, s]) = 0 for all s ∈ TM,S(1) if and only if

u ∈ IS T F
M,S(1);

(2) if u ∈ IS T F
M,S(1) and v ∈ T F

M,S(1), then {u, v} ∈ IS T F
M,S(1);

(3) the quotient sheaf

A = T F
M,S(1)/IS T F

M,S(1)

admits a natural structure of an OS locally free sheaf such that the map induced
by Θ1, whose image lies in F , is an OS-morphism.

Proof
(1) Writing u = [ak]2 ∂

∂zk , with [at]1 = 0, and s = [bh]2 ∂
∂zh ∈ TM,S(1), we have

pr([u, s]) =
[
ak ∂bt

∂zk
− bk ∂at

∂zk

]
1

∂

∂zt
.

If u belongs to IS T F
M,S(1) clearly pr([u, s]) = 0.

Conversely, let u be such that pr([u, s]) = 0 for each s ∈ TM,S(1). We claim
that it belongs to IS T F

M,S(1). We know that u belongs to T F
M,S(1), so that [at]1 = 0.
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Let s = ∂/∂zr, with r = 1, . . . ,m. Then [∂at/∂zr]1 = 0. Now, we take a represen-
tative hsz

s, with s = 1, . . . ,m, for the class [at]1. After computing,

0 =
[∂at

∂zr

]
1
=

[∂hs

∂zs
zs + hsδ

s
r

]
1
= [hs]1.

So, for each s, we have that hs belongs to IS , implying that [at]2 = 0. Fix now
a j in m + 1, . . . , n, and let s = [zj ]2 ∂

∂z1 . Then

0 = −
[
zj ∂at

∂z1

]
1

∂

∂zt
+ [akδj

k]1
∂

∂z1
= [aj ]1

∂

∂z1
,

where the last equality follows from the preceeding step, where we proved that
[at]2 = 0 and thus that [ ∂at

∂z1 ]1 = 0. So, [aj ]1 = 0, and u belongs to IS T F
M,S(1).

(2) This follows by a direct computation in coordinates.
(3) The sheaf T F

M,S(1) is an OS(1)-submodule of TM,S(1) such that g · v belongs
to IS T F

M,S(1) for every g ∈ IS/I 2
S and v ∈ T F

M,S(1). Therefore the OS(1) structure
induces a natural OS-module structure on A.

Remember that T F
M,S(1) is generated locally, in an atlas adapted to S by

∂/∂zj , with j = m + 1, . . . ,m + l and by [zr]2∂/∂zs, with r and s varying in
1, . . . ,m. Then, the sheaf A is a locally free OS-module freely generated by π

(
∂

∂zj

)
and π

(
[zs]2 ∂

∂zt

)
, where π : T F

M,S(1) → A is the quotient map. Moreover, IS T F
M,S(1)

lies in the kernel of Θ1, so Θ1 factors through a map that we will denote again
by Θ1 : A → F , which is clearly an OS-morphism. �

DEFINITION 2.9

Let F be a foliation of S. The Atiyah sheaf of F is the locally free OS-module

A = T F
M,S(1)/IS T F

M,S(1).

THEOREM 2.10

Let F be a foliation of S. Then there exists a natural exact sequence of locally
free OS-modules

0 Hom(NS , NF ,M ) A
Θ1 F 0

whose splitting is equivalent to the splitting of the sequence (5) taking instead of
E the sheaf NF ,M .

Proof
We work in a chart adapted to S and F . The kernel of Θ1 is locally freely
generated by the images under π : T F

M,S(1) → A of [zs
α]2 ∂

∂zt
α
. We would like to

understand how the generators behave under change of coordinates to see if
ker(Θ1) is isomorphic to any known sheaf of sections of a known vector bundle.
We compute the coordinate change maps:

π
(
[zs

α]2
∂

∂zt

)
= π

(
[zs

α]2
[∂zk

β

∂zt
α

]
2

∂

∂zk
β

)
= π

(
[zs

α]2
[∂zw

β

∂zt
α

]
2

∂

∂zw
β

)
(7)
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= π
([ ∂zs

α

∂zs1
β

]
2
[zs1

β ]2
[∂zw

β

∂zt
α

]
2

∂

∂zw
β

)
(8)

=
[ ∂zs

α

∂zs1
β

∂zw
β

∂zt
α

]
1
π
(
[zs1

β ]2
∂

∂zw
β

)
,

where the last equality in (7) comes from the quotient map and the one in (8)
comes from the newly acquired structure of the OS-module. As a consequence, the
kernel of Θ1 is isomorphic to Hom(NS , NF ,M ). Now, if we define local splittings
of the sequence by setting

σα

( ∂

∂zj
α

)
= π

( ∂

∂zj
α

)
,

for j = m + 1, . . . ,m + l, and extending by OS-linearity, we can compute the
obstruction to find a splitting of the sequence:

(σβ − σα)
( ∂

∂zj
β

)
= σβ

( ∂

∂zj
β

)
− σα

([∂zi
α

∂zj
β

]
1

∂

∂zi
α

)

= σβ

( ∂

∂zj
β

)
−

[∂zi
α

∂zj
β

]
1
σα

( ∂

∂zi
α

)

= π
( ∂

∂zj
β

)
−

[∂zi
α

∂zj
β

]
1
π
( ∂

∂zi
α

)
(9)

= π
([∂zt

α

∂zj
β

]
2

∂

∂zt
α

)
= π

([ ∂2zt
α

∂zr
β ∂zj

β

zr
β

]
2

∂

∂zt
α

)

=
[ ∂2zt

α

∂zr
β ∂zj

β

∂zr
β

∂zs
α

]
1
π
(
[zs

α]2
∂

∂zt
α

)
.

Please note that, since ∂zt
α/∂zj

β lies in the ideal IS for t = 1, . . . ,m,m + l +
1, . . . , n, and j = m + 1, . . . ,m + l, it follows that

∂2zt
α

∂zp
β ∂zj

β

∈ IS

for t = 1, . . . ,m,m+ l+1, . . . , n, j = m+1, . . . ,m+ l, and p = m+1, . . . , n. There-
fore we have [ ∂2zt

α

∂zw
β ∂zj

β

]
1
= [0]1

for t,w = 1, . . . ,m,m + l + 1, . . . , n and j = m + 1, . . . ,m + l if and only if
[ ∂2zt

α

∂zr
β ∂zj

β

]
1
= [0]1

for t,w = 1, . . . ,m,m+ l +1, . . . , n, j = m+1, . . . ,m+ l, and r = 1, . . . ,m. Hence,
class (9) vanishes if and only if (5) splits. �
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It is easily noted that in the case where F is the tangent sheaf to S the Atiyah
sheaf of F is nothing else but the Atiyah sheaf of S, defined in [ABT2].

DEFINITION 2.11

Let F be a sheaf of OS-modules over a complex manifold S, equipped with an
OS-morphism X : F → TS . We say that F is a Lie algebroid of anchor X if there
is a C-bilinear map { ·, · } : F ⊕ F → F such that

(1) {v,u} = −{u, v};
(2) {u, {v,w} } + {v, {w,u} } + {w, {u, v}} = 0;
(3) {g · u, v} = g · {u, v} − X(v)(g) · u for all g ∈ OS and u, v ∈ F .

DEFINITION 2.12

Let E and F be locally free sheaves of OS-modules over a complex manifold
S. Given a section X ∈ H0(S, TS ⊗ F ∗), a holomorphic X-connection on E is a
C-linear map X̃ : E → F ∗ ⊗ E such that

X̃(g · s) = X∗(dg) ⊗ s + gX̃(s),

for each g ∈ OS and s ∈ E , where X∗ is the dual map of X . The notation X̃v(s)
is equivalent to X̃(s)(v).

If F is a Lie algebroid of anchor X we define the curvature of X̃ to be

Ru,v(s) = X̃u ◦ X̃v(s) − X̃v ◦ X̃u(s) − X̃{u,v}(s).

We say that X̃ is flat if R ≡ 0.

PROPOSITION 2.13

Let F be a holomorphic foliation of S. Then

(1) the Atiyah sheaf of F has a natural structure of a Lie algebroid of anchor
Θ1 such that

Θ1{q1, q2} = [Θ1(q1),Θ1(q2)]

for all q1, q2 ∈ A;
(2) there is a natural holomorphic Θ1-connection X̃ : NF ,M → A ∗ ⊗ NF ,M

on NF ,M given by

X̃q(s) = pr([v, s̃])

for all q ∈ A and s ∈ NF ,M , where v ∈ T F
M,S(1) and s̃ ∈ TM,S(1) are such that

π(v) = q and pr ◦Θ1(s̃) = s;
(3) this holomorphic Θ1-connection is flat.

Proof
(1) We set

{q1, q2} = π({v1, v2}),



532 Isaia Nisoli

where vi ∈ T F
M,S(1) are such that qi = π(vi) for i = 1,2. This is well defined: if

q1 = 0, then v1 is in IS T F
M,S(1), and then, by Lemma 2.8(2) we have {q1, q2} = 0.

The other properties follow directly from Lemma 2.6.
(2) We check that the connection is well defined. Suppose now q = 0; this

means that v ∈ IS T F
M,S(1); then, by Lemma 2.8.1, we have pr([v, s̃]) = 0, for every

s̃ ∈ TM,S(1). Now, if pr ◦ Θ1(s̃) = 0, we have s̃ ∈ T F
M,S(1), so {v, s̃} is in T F

M,S(1),
which implies that X̃q(s) = 0.

We check now that it is a Θ1-connection. It is OS-linear in the first entry
since

X̃[f ]1·q(s) = pr
([

[f ]2v, s̃
])

= pr
(
[f ]1[v, s̃] − s̃([f ]2)Θ1(v)

)
= [f ]1X̃q(v),

where the last equality comes from the fact that v belongs to T F
M,S(1), which is

the kernel of pr ◦Θ1. We check the Θ1-Leibniz rule for the second entry:

X̃q([f ]1s) = pr
([

v, [f ]2s̃
])

= pr
(
[f ]1[v, s̃] + v([f ]2) · Θ1(s̃)

)
= [f ]1X̃q(s) + Θ1(q)([f ]1) · s,

where the last equality comes from the equality[
v([f ]2)

]
1
= Θ1(v)([f ]1) = Θ1

(
π(v)

)
([f ]1),

for every [f ]2 ∈ OS(1) and for every v ∈ T F
M,S(1). Thus, X̃ is a holomorphic Θ1-

connection.
(3) We compute the curvature:

Rq1,q2(s) = X̃q1 ◦ X̃q2(s) − X̃q2 ◦ X̃q1(s) − X̃{q1,q2}(s)

= pr
([

u, ˜pr([v, s̃])
])

− pr
([

v, ˜pr([u, s̃])
])

− pr
([

[u, v], s̃
])

.

As we proved before, the connection does not depend on the extension chosen
for the second entry, so we can rewrite the expression as

pr
([

u, [v, s̃]
])

− pr
([

v, [u, s̃]
])

− pr
([

[u, v], s̃
])

.

Computing in coordinates, it follows from the usual Jacobi identity for vector
fields that it is identically zero. �

DEFINITION 2.14

Let F be a foliation of S. The holomorphic Θ1-connection X̃ : NF ,M → A ∗ ⊗
NF ,M just introduced is called the universal holomorphic connection on NF ,M .

COROLLARY 2.15

Suppose that there exists a foliation F of the first infinitesimal neighborhood of S.
Then, there exists a flat partial holomorphic connection (δ, F |S) on NF |S ,M along
F |S .

Proof
We want to define now the splitting map between F |S and A; in an atlas adapted
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to S and F each of [1]2 ⊗ ∂/∂zi
α belongs to T F

M,S(1). Therefore we define ψ : F |S →
A as

ψ :
∂

∂zi
α


→ π
(
[1]2 ⊗ ∂

∂zi
α

)
,

for each i = m+1, . . . ,m+ l, where π is the map from T F
M,S(1) to A. We compute

now the explicit form of the induced partial holomorphic connection. Indeed,
let v belong to F , and let s belong to NF ,M ; since ψ(v) belongs to T F

M,S(1), if
we take a lift s̃ of s to T F

M,S(1), that is, pr ◦ Θ1(s̃) = s, we have that the partial
holomorphic connection (δ, F ) along F induced by the universal holomorphic
connection for NF ,M is given by:

δv(s) = X̃ψ(v)(s) = pr
(
[ψ(v), s̃]

)
.

We prove now that this partial holomorphic connection is flat; indeed

δu

(
δv(s)

)
− δv

(
δu(s)

)
− δ[u,v]

(
(s)

)
= pr

([
ũ, [ṽ, s̃]

]
−

[
ṽ, [ũ, s̃]

]
−

[
[ũ, ṽ], s̃

])
= 0,

by the Jacobi identity. �

3. Splittings and foliations of the first infinitesimal neighborhood

In this section we deal with a stronger version of splitting (see Definition 3.1). The
main idea is that, given a splitting of a submanifold, there exist maps which per-
mit us to “project” vector fields transversal to the first infinitesimal neighborhood
into vector fields which are tangential to the first infinitesimal neighborhood.

Proposition 2.7 of [ABT2], which follows from [Ei, Proposition 16.2], proves
that the splitting of the conormal sequence

0 IS/I 2
S

d2 ΩM ⊗ OS
p

ΩS 0

is equivalent to the splitting of the following short exact sequences:

0 IS/I 2
S

i1 OS(1)
θ1 OS 0.

If one of these sequences splits, then also the following sequence splits:

0 TS
ι TM,S

p2 NS 0.

DEFINITION 3.1

We say that S splits in M if there exists a morphism of sheaves σ : ΩS → ΩM,S

such that p ◦ σ = id where p : ΩM,S → ΩS is the canonical projection.

REMARK 3.2

In [ABT2] it is proved that a submanifold splits if and only if there exists an
atlas adapted to S such that

[∂zp
β

∂zr
α

]
1
= 0.
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A natural generalization of the concept of splitting is the notion of k-splitting,
developed in [ABT2] and [ABT3]. We will use extensively the notion of 2-
splitting.

DEFINITION 3.3

We say that S k-splits into M if and only if there is an infinitesimal retraction
of S(k) onto S, that is, if there is a kth-order lifting ρ : OS → OM/I k+1

S or, in
still other words, if the exact sequence

(10) 0 → IS/I k+1
S → OM/I k+1

S → OM/IS → 0

splits as a sequence of sheaves of rings.

REMARK 3.4

Please note that, in the case where the sequence above splits, the map ρ̃ :
OM/I k+1

S → IS/I k+1
S is a θk-derivation; that is,

ρ̃([fg]k+1) = θk([f ]k+1)ρ̃([g]k+1) + θk([g]k+1)ρ̃([f ]k+1).

The sheaf IS/I k+1
S has a natural structure of an OS(1)-module: the multiplication

given by [f ]k[h]k+1 = [fh]k+1 is well defined; indeed, let [f̃1]k+1 and [f̃2]k+1 be
two representatives of [f ]k. Then [f̃2 − f̃1]k+1 belongs to I k

S/I k+1
S , and therefore

[f̃1h]k+1 − [f̃2h]k+1 = [0]k+1 since h belongs to IS/I k+1
S .

REMARK 3.5

Theorem 2.1 of [ABT3] proves that S is k-splitting if and only if there exists a
k-splitting atlas, that is, an atlas {Uα, zα} adapted to a complex submanifold S

such that
∂zp

β

∂zr
α

∈ I k
S

for all r = 1, . . . ,m, p = m + 1, . . . , n and for each pair of indices α,β such that
Uα ∩ Uβ ∩ S �= ∅.

DEFINITION 3.6

If F is foliation of M of rank l strictly smaller than the dimension of S and if
we denote by σ∗ the map from TM,S to TS given in [ABT2, Proposition 2.7], we
shall denote by F σ the coherent sheaf of OS-modules given by

F σ := σ∗(F |S).

We shall say that σ∗ is F -faithful outside an analytic subset Σ ⊂ S if F σ is a
regular foliation of S of rank l on S \ Σ. If Σ = ∅ we shall simply say that σ∗ is
F -faithful.

We refer to [ABT2] for a treatment of F -faithfulness in the case of splittings.
Assume that σ∗ is F -faithful; an interesting question is whether there exists an
analogue of σ∗ from TM,S(1) to TS(1), which restricted to TM,S coincides with σ∗;
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this would permit us to project a transversal foliation to a foliation of the first
infinitesimal neighborhood.

First of all, we can suppose that we are working on a splitting submanifold S.

DEFINITION 3.7

We will call the sheaf TM,S(k) := TM ⊗ OS(k) the restriction of the ambient tangent
sheaf to the kth infinitesimal neighborhood.

We look for a splitting of the following sequence:

(11) 0 → TS(1) → TM,S(1) → NS(1) → 0,

where NS(1) is the quotient of the two modules.

REMARK 3.8

Let (Uα, z1
α, . . . , zn

α) be a coordinate system adapted to S. Please remember
Remark 1.3; since S is a submanifold the ideal of S is generated by z1

α, . . . , zr
α,

and we have that TS(1) is generated in Uα by

[zr
α]2

∂

∂zs
α

,
∂

∂zm+1
α

, . . . ,
∂

∂zn
α

,

for r, s varying in 1, . . . ,m, while TM,S(1) is generated on Uα by

∂

∂z1
α

, . . . ,
∂

∂zn
α

.

Let ∂r,α be the image of ∂/∂zr
α in NS(1), and let ωr

α be its dual element. Now let

v = [fk
α]2

∂

∂zk
α

be a section of TM,S(1); we can see that the image of v in NS(1) is nothing
else but [fr

α]1∂r,α. We denote by [v] the equivalence class of v in NS(1); please
note that, given a function [g]2 in OS(1), the OS(1)-module structure is given
by

[g]2 · [v] =
[
θ1([g]2) · v

]
.

We compute now the transition functions of NS(1); if we are in an atlas adapted
to S we have zs

α = hs
αβ,rz

r
β . We have

∂r,α =
[ ∂

∂zr
α

]
=

[∂zk
β

∂zr
α

∂

∂zk
β

]
=

[∂zs
β

∂zr
α

∂

∂zs
β

]
=

[∂(hs
αβ,r′ zr′

β )
∂zr

α

∂

∂zs
β

]

=
[∂(hs

αβ,r′ )
∂zr

α

zr′

β

∂

∂zs
β

]
+

[
hs

αβ,r′ δr′

r

∂

∂zs
β

]
= [hs

αβ,r]2∂s,β ,

where the last equality comes from the equivalence relations that define NS(1).

REMARK 3.9

Please note that the transition functions for (NS(1))∗ as an OS(1)-module are
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given by

ωs
β = [hs

αβ,r]2ω
r
α.

Please note that (NS(1))∗ is isomorphic to IS/I 2
S with the structure of an OS(1)-

module given by the projection θ1 : OS(1) → OS .

LEMMA 3.10

Let M be an n-dimensional complex manifold, and let S be a submanifold of
codimension r. Then sequence (11) splits if S is 2-splitting, that is, there exists
an atlas adapted to S such that

(12)
[∂zp

β

∂zr
α

]
2

≡ [0]2,

for p = m + 1, . . . , n and r = 1, . . . ,m.

Proof
We have to compute the image in H1(S,Hom(NS(1), TS(1))) through the cobound-
ary operator of cochain {Uα ∩ S,ωr

α ⊗ ∂r,α} representing the identity in H0(U ,

Hom(NS(1), NS(1))). We compute then

δ(Uα, ωr
α ⊗ ∂r,α) = ωr

β ⊗ ∂

∂zr
β

− ωs
α ⊗ ∂

∂zs
α

= ωr
β ⊗ ∂

∂zr
β

−
[ ∂zs

α

∂zr′
β

∂zk
β

∂zs
α

]
2
ωr′

β ⊗ ∂

∂zk
β

= ωr
β ⊗ ∂

∂zr
β

−
[ ∂zs

α

∂zr′
β

∂zr
β

∂zs
α

]
2
ωr′

β ⊗ ∂

∂zr
β

(13)

−
[∂zp

β

∂zs
α

∂zs
α

∂zr′
β

]
2
ωr′

β ⊗ ∂

∂zp
β

= −
[∂zp

β

∂zs
α

∂zs
α

∂zr′
β

]
2
ωr′

β ⊗ ∂

∂zp
β

.

This class is clearly zero if we are using a 2-splitting atlas. �

REMARK 3.11

In the last equality of the computation above there is marginal subtle point. If S

is 2-splitting, then it is splitting. We saw above that this implies that in an atlas
adapted to S and to the splitting

∂zp
α

∂zr
β

∈ IS ,
∂zr

α

∂zp
β

∈ IS .

We know also that

∂zk
α

∂zr
β

∂zs
β

∂zk
α

= δs
r .
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Restricting ourselves to the first infinitesimal neighborhood we have

[δs
r ]2 =

[∂zk
α

∂zr
β

∂zs
β

∂zk
α

]
2
=

[∂zr′

α

∂zr
β

∂zs
β

∂zr′
α

]
2
+

[∂zp
α

∂zr
β

∂zs
β

∂zp
α

]
2
=

[∂zr′

α

∂zr
β

∂zs
β

∂zr′
α

]
2
,

using the splitting hypothesis.

REMARK 3.12

Looking at how we have constructed the splitting in the former lemma, if ρ̃ is the
θ1-derivation associated to the splitting of S, we have that the splitting morphism
σ∗ : TM,S(1) → TS(1) is given in an atlas adapted to the two splitting by

fk ∂

∂zk

→ ρ̃(fr)

∂

∂zr
+ fp ∂

∂zp
.

Now the natural question is under which conditions the splitting of sequence
(11) is equivalent to the existence of a 2-splitting atlas. It seems like the splitting
of this sequence is not enough. Indeed, if we try to follow the usual approach
in proving the argument, as in [ABT3, Theorem 2.1], we have some problems.
The first thing we can remark is that the dual of TM,S(1) is nothing else but
ΩM ⊗ OS(1). Now, a splitting of (11) implies that there exists a map γ from
ΩM ⊗ OS(1) to (NS(1))∗ and, since we remarked that (NS(1))∗ is isomorphic to
IS/I 2

S as an OS(1)-module, through a map

τ : (NS(1))∗ → IS/I 2
S .

This gives rise to a splitting of the map

d2 : IS/I 2
S → ΩM ⊗ OS(1)

which sends an element [f ]2 of IS/I 2
S into df ⊗ [1]2. Now, there exists a well-

defined map d3 from OM/I 3
S to ΩM ⊗ OS(1), which sends a class [f ]3 to df̃ ⊗ [1]2.

The big problem is that, even if we suppose S to be comfortably embedded (see
[ABT3]), that is, the sequence

0 I 2
S/I 3

S IS/I 3
S IS/I 2

S 0

splits, we have that the splitting of (11) only gives us a map between OS(1) and
the image through the splitting ν : IS/I 3

S → IS/I 2
S of IS/I 2

S in IS/I 3
S and this

map is not surjective. Therefore it is not a θ2,1-derivation splitting the short
exact sequence of morphisms of rings

0 IS/I 3
S

OS(1) OS 0.

REMARK 3.13

To solve this problem we could find under which conditions there exists a splitting
of the map d̃3 : I 2

S/I 3
S → ΩM,S(1). Using such a splitting and the comfortable

embedding we could find a θ2,1-derivation splitting ι : IS/I 3
S → OS(1).

We define now a notion parallel to the one in Definition 3.6.
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DEFINITION 3.14

If F is foliation of M of rank l strictly smaller than dimension S and if we denote
by σ∗

2 the map from TM,S(1) to TS(1) splitting sequence (11), we shall denote by
F σ2 the coherent sheaf of OS(1)-modules given by

F σ2 := σ∗
2(F |S(1)).

We shall say that σ∗
2 is first-order F -faithful outside an analytic subset Σ ⊂ S if

F σ2 is a regular foliation of S(1) of rank l on S \ Σ. If Σ = ∅ we shall simply say
that σ∗

2 is first-order F -faithful.

Speaking of first-order F -faithfulness we have a simple results which gives us
some insight.

LEMMA 3.15

Let S be 2-splitting in M , and let F be a one-dimensional holomorphic foliation
on M . Let σ∗

2 : TM,S(1) → TS(1) be the splitting morphism. If σ∗
2 |S is F -faithful

outside an analytic subset Σ, then σ∗
2 is first-order F -faithful outside Σ.

Proof
We check that F σ2 satisfies the requests of Definition 1.6. By hypothesis F σ2 |S
is a foliation of S. Since the rank of F σ2 is 1 it is an involutive subbundle of
TS(1); moreover, for each point x ∈ S \ Σ we can find a generator v of F σ2

x such
that v|S is nonzero. Therefore, TS(1),x/F σ2

x is OS(1)-free. �

Directly from this last lemma and [ABT2, Lemma 7.6] we have the following.

COROLLARY 3.16

Let S be the splitting in M , and let F be a holomorphic foliation on M of
dimension equal to 1 or to the dimension of S. If there exists x0 ∈ S \ Sing(F )
such that F is tangent to S at x0, that is, (F |S)x0 ⊂ TS,x0 , then any 2-splitting
morphism is first-order F -faithful outside a suitable analytic subset of S.

4. Extension of foliations and embedding in the normal bundle

DEFINITION 4.1

Let S(1) be the first infinitesimal neighborhood of S, and let SN (1) be the
first infinitesimal neighborhood of the embedding of S as the zero section of
its normal bundle in M . We denote by ONS

the structure sheaf of the normal
bundle of S and by IS,NS

the ideal sheaf of S in NS . We say that SN (1) is
isomorphic to S(1) if there exists an isomorphism φ : ONS

/I 2
S,NS

→ OM/I 2
S such

that θ1 ◦ φ = θN
1 , where θ1 : OM/I 2

S → OS and θN
1 : ONS

/I 2
S,NS

→ OS are the
canonical projections.

Proposition 1.3 in [ABT2] tells us that, for a splitting submanifold S in M ,
the first infinitesimal neighborhood in the normal bundle is isomorphic to its
infinitesimal neighborhood in M .
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REMARK 4.2

In general, given a vector bundle E over a submanifold S, we have that TE|S is
canonically isomorphic to TS ⊕ E. When E is NS this implies that the projection
on the second summand of TNS |S = TS ⊕ NS gives rise to an isomorphism of
NS and N0S

, that is, the normal bundle of S as the zero section of NS . Therefore
we have an isomorphism between IS/I 2

S and IS,NS
/I 2

S,NS
.

Let F be a foliation of S. Thanks to the holomorphic Frobenius theorem, we know
that there exists an atlas {(Uα; z1

α, . . . , zn
α)} adapted to S and F . In such an atlas

we know that F = ker(dzm+l+1
α |S , . . . , dzn

α |S). An equivalent formulation of the
Frobenius theorem states that a submodule of Ω1(S) is integrable if and only
if each stalk is generated by exact forms. We denote by π : NS → S the normal
bundle of S. The map π is holomorphic; therefore π∗(dzk

α|S) is a well-defined local
holomorphic 1-form on π−1(Uα) ⊂ NS . Moreover, since {dzm+l+1

α |S , . . . , dzn
α |S }

is an integrable system of 1-forms, so is {π∗(dzm+l+1
α |S), . . . , π∗(dzn

α |S)}. Then
{π∗(dzm+l+1

α |S), . . . , π∗(dzn
α |S)} defines a foliation F̃ of NS , whose leaves are the

preimages of the leaves of F through π. Since S is regular, TM is trivialized
on each coordinate neighborhood and so is NS . In the following we use the
atlas {(π−1(Uα), v1

α, . . . , vm
α , zm+1

α , . . . , zn
α } of NS given by the trivializations of

the normal bundle, where vr
α are the coordinates in the fiber; then F̃ is generated

on π−1(Uα) by

∂

∂v1
α

, . . . ,
∂

∂vm
α

,
∂

∂zm+1
α

∣∣∣
S
, . . . ,

∂

∂zm+l
α

∣∣∣
S
.

The fibers of π are the leaves of a holomorphic foliation of NS , called the vertical
foliation, which we denote by V . On π−1(Uα) it is generated by

∂

∂v1
α

, . . . ,
∂

∂vm
α

.

We study now the splitting of the following sequence, when restricted to the first
infinitesimal neighborhood of the embedding of S as the zero section of NS :

(14) 0 V ι
F̃

pr
F̃ /V 0.

A result of Grothendieck [Gro] tells us that the splitting of the sequence is equiv-
alent to the vanishing of a cohomology class in H1(M,Hom(F̃ /V , V )). The split-
ting of this sequence is equivalent to the fact that there exists an isomorphism
F̃ � V ⊕ F̃ /V compatible with the projection pr and the map ι. Even though this
result was already used implicitly in Section 2 we sketch a proof to show how
it can be used operatively in our work. Indeed, let ω be the cohomology class
associated to the splitting of a short exact sequence of sheaves

(15) 0 → E → F → G → 0;

this obstruction is the image of the identity homomorphism in H0(M,Hom(G, G))
into H1(M,Hom(G, E )). By the long exact sequence theorem for Čech cohomol-
ogy we compute ω in the following way: let {Uα, Id} be the class representing the
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identity in H0(M,Hom(G, G)); we take a lift (Uα, τα) in C0(U ,Hom(G, F )) and
take its Čech coboundary, {Uαβ , τβ − τα}. Clearly, pr ◦ τβ − pr ◦ τα = 0, so this
is a well-defined element of C1(U ,Hom(G, E )). By diagram chasing, it is shown
that this is a Čech cocycle which represents ω. Suppose now that ω is zero in
cohomology; this means there exists a cochain {Uα, σα} in C0(U ,Hom(G, E ))
whose coboundary is ω, that is, σβ − σα = τβ − τα. We define now a Čech
cochain in C0(U ,Hom(E ⊕ G, F )) as {Uα, θα} where θα is defined on each Uα

as

θα : (v,w) 
→
(
ι(v − σα(w)) + τα(w)

)
.

We compute now δ{Uα, θα}; on each Uαβ :

ι
(
v − σβ(w)

)
+ τβ(w) − ι

(
v − σα(w)

)
+ τα(w)

= ι
(
σα(w) − σβ(w)

)
+ τβ(w) − τα(w) = 0.

So, we have a global isomorphism of sheaves between E ⊕ G and F satisfying our
requests.

REMARK 4.3

Please note that F̃ /V when restricted to S is nothing else but the foliation F .
This follows directly from our construction of F̃ as the pullback foliation defined
by the integrable system {π∗(dzm+l+1

α |S), . . . , π∗(dzn
α |S)}.

LEMMA 4.4

Let S be a splitting in M . If there exists a foliation of the first infinitesimal
neighborhood of the embedding of S as the zero section of its normal bundle, then
there exists a foliation of the first infinitesimal neighborhood of S embedded in M .

Proof
If there exists a foliation of the first infinitesimal neighborhood of the embedding
of S as the zero section of its normal bundle, we can find an atlas of NS given
by {Vα, u1

α, . . . , um
α , zm+1

α , . . . , zn
α } such that, if Vα ∩ Vβ ∩ S �= ∅ we have

[∂ur
α

∂zi
β

]
2
= [0]2,

∂zt′

α

∂zi
β

= 0,

where r = 1, . . . ,m and t′ = m + l + 1, . . . , n.
We use the isomorphism φ : ONS

/I 2
S,NS

→ OM/I 2
S , taking the images

[z̃1
α]2 = φ([u1

α]2), . . . , [z̃r
α]2 = φ(ur

α), [z̃m+1
α ]2 = φ([zm+1

α ]2), . . . , [z̃n
α]2 = φ(zn

α);

there exist open sets Uα ⊃ π(Vα) (modulo shrinking) where we can choose rep-
resentatives of these classes such that (Uα, z̃1

α, . . . , z̃n
α) is a coordinate system

adapted to S and F . If Uα ∩ Uβ ∩ S �= ∅ we can check that, since ∂/∂z̃m+1
β , . . . ,

∂/∂z̃m+l
α are logarithmic

∂[z̃r
β ]2

∂z̃i
α

=
[∂z̃r

β

∂z̃i
α

]
2
=

[∂ur
β

∂zi
α

]
2
= [0]2,
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for r = 1, . . . ,m and i = m + 1, . . . ,m + l + 1. Following the same line of thought

∂[z̃t′

β ]2
∂z̃i

α

=
[∂z̃t′

β

∂z̃i
α

]
2
=

[∂zt′

β

∂zi
α

]
2
= [0]2,

for t′ = m + l + 1, . . . , n and i = m + 1, . . . ,m + l + 1. �

So, the problem of extending a foliation outside a submanifold boils down in
the splitting case to understanding when (14) splits, and the image through the
splitting of F /V is involutive. We start by finding a sufficient condition for this
to happen.

PROPOSITION 4.5

Let M be a complex manifold of dimension n, and let S be a splitting codimension
m submanifold. Let F be a foliation of S, and let π : NS → M be the normal
bundle of S in M . Let F̃ = π∗(F ), and let V be the vertical foliation given by
kerdπ. The sequence

0 V ι
F̃

pr
F̃ /V 0

splits if there exists an atlas adapted to F and S such that

∂2zr
α

∂zi
β ∂zs

β

∈ IS ,

for all r, s = 1, . . . ,m and i = m + 1, . . . ,m + l.

Proof
We compute the obstruction to the splitting of the sequence, following [Ati] and
[Gro]: we apply the functor Hom(F̃ /V , ·) to sequence (14) and compute the image
of the identity through the coboundary map

δ : H0
(
S,Hom(F̃ /V , F̃ /V )

)
→ H1

(
S,Hom(F̃ /V , V )

)
.

We fix an atlas {Uα, zα} adapted to S and F , and we denote the quotient
frame for F̃ /V by {∂m+1,α, . . . , ∂m+l,α} (i.e., ∂m+1,α is the equivalence class of
∂/∂zm+1

α |S) and by {ωm+1
α , . . . , ωm+l

α } its dual frame. The cocycle representing
the identity in H0(S,Hom(F̃ /V , F̃ /V )) is then represented as {Uα, ωj

α ⊗ ∂j,α};
the obstruction to the splitting of the sequence is then

δ{ωj
α ⊗ ∂j,α} = ωj

β ⊗ ∂

∂zj
α

− ωj
α ⊗ ∂

∂zj
α

= ωj
β ⊗ ∂

∂zj
α

−
[∂zj

α

∂zi
β

∂zj′

β

∂zj
α

]
2
ωi

β ⊗ ∂

∂zj′

β

−
[∂zj

α

∂zi
β

∂vr
β

∂zj
α

]
2
ωi

β ⊗ ∂

∂vr
β

(16)

= −
[∂zj

α

∂zi
β

∂vr
β

∂zj
α

]
2
ωi

β ⊗ ∂

∂vr
β

.
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The vanishing of (16) is a sufficient condition for the splitting of the sequence;
this class vanishes if ∂vr

β/∂zj
α belong to I 2

NS
. Moreover, the coordinate-change

maps of NS have a peculiar structure:

vr
β = vs

α

∂zr
α

∂zs
β

.

Therefore

−
[∂zj

α

∂zi
β

∂vr
β

∂zj
α

]
2

= −
[∂zj

α

∂zi
β

∂

∂zj
α

(
∂zr

α

∂zs
β

)
]
2

= −
[
vs

α

∂zj
α

∂zi
β

∂2zr
α

∂zj
α ∂zs

β

]
2
= −

[
vs

α

∂zj
α

∂zi
β

∂2zr
α

∂zs
α ∂zj

β

]
2
;

using the isomorphism between IS/I 2
S and IS,NS

/I 2
S,NS

we see that the last
expression vanishes if ∂zs

α/∂zj
β ∈ I 2

S . �

REMARK 4.6

Since we are working in an atlas of NS adapted to S and F we have

∂zp
α

∂vr
β

≡ 0,
∂zt

α

∂zi
β

≡ 0,

for p = m + 1, . . . , n, r = 1, . . . ,m, t = m + l + 1, . . . , n, i = m + 1, . . . , n. (Please
note that we are not following our usual convention.) Looking at the transition
functions of the tangent bundle of NS , in an atlas adapted to S and F , on the
first infinitesimal neighborhood of the embedding of S as the zero section of NS ,
we find that the following equality holds:

[δi
j ]2 =

[∂vr
α

∂zj
β

∂zi
β

∂vr
α

+
∂zp

α

∂zj
β

∂zi
β

∂zp
α

]
2
.

Now, since ∂zp
α/∂vr

β ≡ 0 we have

[δi
j ]2 =

[∂zp
α

∂zj
β

∂zi
β

∂zp
α

]
2

and since ∂zt
α/∂zi

β ≡ 0 for t = m + l + 1, . . . , n, i = m + 1, . . . , n we have

[δi
j ]2 =

[∂zi′

α

∂zj
β

∂zi
β

∂zi′
α

]
2
,

where i, j = m + 1, . . . ,m + l and we sum over i′ = m + 1, . . . ,m + l.

LEMMA 4.7

Let S be splitting in M , and let F be a foliation of S; if the sequence

0 V ι
F̃

pr
F̃ /V 0

splits on the first infinitesimal neighborhood of S embedded as the zero section of
its normal bundle in M , then F extends as a subsheaf of TS(1).
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Proof
Suppose that we are working in an atlas adapted to S and F ; on S we have the
following isomorphism:

(17) F̃ |S = V |S ⊕ F .

This follows directly from our construction of F̃ as the pullback foliation defined
by the integrable system {π∗(dzm+l+1

α |S), . . . , π∗(dzn
α |S)}. Therefore we have

F̃ /V |S � F , and this implies that the cochain representing (16) vanishes identi-
cally when restricted to S. Therefore we know that the components of the cochain
{Uα, σα} are identically zero when restricted to S. Let v be a section of F̃ /V ; its
image τα − σα(v) is a section of F̃ . From the discussion above we can remark is
that σα(v)|S ≡ 0; moreover, since on S (17) holds we have τα(v)|S ∈ F ⊂ TS , and
this proves that v belongs to TS(1). �

COROLLARY 4.8

Let S be a splitting submanifold in M , and let F be a rank 1 foliation of S; if
the sequence

0 V ι
F̃

pr
F̃ /V 0

splits on the first infinitesimal neighborhood of S embedded as the zero section of
its normal bundle in M , then F extends as a foliation of the first infinitesimal
neighborhood of S in M . Moreover, we can find an atlas adapted to S and F given
by a collection of charts {Uα, (v1

α, . . . , vm
α , zm+1

α , . . . , zn
α)} such that the class (16)

can be represented by the zero cochain.

Proof
If F̃ /V has rank 1 we have that its image through the splitting morphism of (14)
is a rank 1 (therefore involutive) subbundle of TSN (1). Thanks to Lemma 4.4 we
have the first part of the assertion. Corollary 1.11 gives us the second part of the
assertion. �

COROLLARY 4.9

Let M be an n-dimensional complex manifold, let S be a codimension m splitting
submanifold, and let F be a regular foliation of S. Suppose that S admits a
first-order extendable tangent bundle; then F extends to a subsheaf of TS(1).

Proof
The first-order extendable tangent bundle implies the vanishing of (16) and the
splitting of sequence (14); the extension of F is then given by the image of F̃ /V
in F̃ . �

REMARK 4.10

The reason why the splitting of (14) is not a sufficient condition for the foliation
to extend to the first infinitesimal neighborhood lies in the fact that the image
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of F̃ /V may not be involutive. If this image is involutive we have a statement
similar to the one in the last corollary; anyway, even if it is not involutive, thanks
to the results in Section 5, the splitting of (14) is enough to get some important
insights on the Khanedani–Lehmann–Suwa action.

REMARK 4.11

We want to see what happens in coordinates when we can extend the foliation.
First of all, the vanishing of the class (16) in cohomology means there exists a
cochain {Uα, σα} ∈ C0(SN (1), (F /V ))∗ ⊗ V ) such that

σβ − σα = −
[∂zj

α

∂zi
β

∂vr
β

∂zj
α

]
2
ωi

β ⊗ ∂

∂vr
β

.

In a coordinate system adapted to S and F on each Uα we can write the elements
of the cochain as

σα = [cs
j,α]2ωj

α ⊗ ∂

∂vs
α

.

Since the sequence splits when it is restricted to S we can assume that the
coefficients cs

j,α of each σα belong to IS/I 2
S . Without loss of generality we can

suppose that the local lifts τα send the generators of F̃ /V , which we denote by
∂i,α, in the coordinate fields ∂/∂zi

α. (The difference about two different choices of
lifts is absorbed by the cochain.) Then a generator ∂/∂zi

α|S of F on Uα extends
to the section v of TS(1) given by

−[cs
j,α]2

∂

∂vs
α

+
∂

∂zj
α

.

5. Action of subsheaves of F on NF ,M

As usual let F be a foliation of S: in this section we shall discuss how the existence
of coherent subsheaves of TS(1) that, restricted to S, are subsheaves of F gives
rise to variation actions on NF ,M .

LEMMA 5.1

Let E be a coherent subsheaf of TS(1) that, restricted to S, is a subsheaf of F .
Then E is a subsheaf of T F

M,S(1).

Proof
Let {Uα, zα} be an atlas adapted to S and F . On each coordinate chart, a section
v of E can be written as

[au]2
∂

∂zu
+ [ai]2

∂

∂zi
,

with au ∈ IS . Therefore, thanks to Remark 2.5, we know that v belongs to
T F

M,S(1). �
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DEFINITION 5.2

Let E be a coherent subsheaf of TS(1); we say it is S-faithful if the restriction
map |S : E → E |S is injective.

PROPOSITION 5.3

Suppose that E is a coherent subsheaf of TS(1) that, restricted to S, is a subsheaf
of F , that is generated on an open set Uα by ṽ1,α, . . . , ṽk,α, and that is S-faithful.
Then there exists a partial holomorphic connection (δ, E ) for NF ,M .

Proof
Since there are no generators sent to zero by the restriction to S, then E |S∩Uα is
generated by vk,α := ṽk,α|S . Please keep in mind that the generators of E |S are
always the restriction of the generators of E , so, choosing the local generators of
E we have a canonical way to extend the local generators of E |S .

Let π be the projection from T F
M,S(1) to A, and let w be a section of E |S ;

we define a map π̃ : E |S → A by π(w) := π(w̃), where w̃ is an extension of w as
a section of E . On a trivializing neighborhood for E a section has the following
form: w = [fk]1vk,α ∈ E |S∩Uα . The difference between two representatives w̃1 and
w̃2 of w in E on Uα can be written in the following form:

[gk]2ṽk,α,

where the gk belong to IS/I 2
S and therefore belong to IS T F

M,S(1). Therefore the
map π̃ does not depend on the extension chosen.

Suppose now that we have a section w of E |S and two coordinate charts Uα

and Uβ on which the section is represented as wα = [fk
α]1vk,α and wβ = [fk

β ]1vk,β .
Now, we have that, since E is a subbundle of TS(1),

ṽk,α = [(hαβ)h
k ]2ṽh,β ,

which implies also that

[fk
α(hαβ)h

k ]1 = [fh
β ]1.

We take two extensions w̃α and w̃β on Uα and Uβ , respectively: we claim their
difference lies in IS T F

M,S(1). We compute

(w̃β − w̃α)|S = ([f̃k
α]2ṽk,α − [f̃h

β ]2ṽh,β)|S

= ([f̃k
α]2[hh

αβ,k]2ṽh,β − [f̃h
β ]2ṽh,β)|S

=
[
[fk

α(hαβ)h
k ]2 − [fh

β ]2
]
1
vh,β = [0]1.

As stated, the difference between the two extensions lies in IS T F
M,S(1). So, the

map π̃ : E |S → A is an OS-morphism between E |S and A giving a splitting of the
following sequence:

0 Hom(NS , NF ,M ) A F ,E |S

Θ1 E |S 0,

where A F ,E |S
is the preimage of E |S in A through Θ1. �
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Therefore, recalling Section 2 we have that there is a partial holomorphic con-
nection on NF ,M along E |S , given as follows:

δv(s) = X̃π(ṽ)(s),

where X̃ is the universal connection on ANF ,M
.

REMARK 5.4

This connection may not be flat. Therefore we can use the Bott vanishing theorem
(see [ABT2, Theorem 6.1]) only in its noninvolutive form.

COROLLARY 5.5

Suppose that E is an involutive coherent subsheaf of TS(1) that, restricted to S,
is a subsheaf of F and S-faithful. Then there exists a flat partial holomorphic
connection (δ, E ) for NF ,M .

Proof
From Proposition 5.3 we already know there exists a partial holomorphic con-
nection along E ; since E is involutive we can check if it is flat:

δu

(
δv(s)

)
− δv

(
δu(s)

)
− δ[u,v]

(
(s)

)
= pr

([
ũ, [ṽ, s̃]

]
−

[
ṽ, [ũ, s̃]

]
−

[
[ũ, ṽ], s̃

])
= 0,

by the Jacobi identity. �

REMARK 5.6

In the paper [ABT2] is defined the notion of the Lie algebroid morphism; given
an involutive coherent subsheaf of TS(1) the splitting that gives rise to the partial
holomorphic connection is a Lie algebroid morphism, and Corollary 5.5 mirrors
the fact that the universal partial holomorphic connection is flat (see Proposi-
tion 2.13).

COROLLARY 5.7

Suppose that E is an involutive coherent subsheaf of TS(1), whose restriction to S

is a foliation of S and is S-faithful. Then there exists a flat partial holomorphic
connection (δ, E ) for NS .

Proof
If we take F = TS in Corollary 5.5 the assertion follows. �

6. Singular holomorphic foliations of the first infinitesimal neighborhood

This section is devoted to making precise what we mean by singular foliations of
infinitesimal neighborhoods. In some sense, we want to prove an analogue of the
following proposition, stated in [Su] and proved in [MY].
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PROPOSITION 6.1

If a foliation is reduced, then CodimS(F ) ≥ 2. If F is locally free and if
CodimS(F ) ≥ 2, then F is reduced.

DEFINITION 6.2

A singular foliation of S(k) is a rank l coherent subsheaf (see Definition 0.2) F
of TS(k), such that

• for every x ∈ S we have [Fx, Fx] ⊆ Fx (where the bracket is the one defined
in Lemma 1.5);

• the restriction F |S (see Definition 1.2) is a rank l singular foliation of S

(see [Su, Definition 1.1]).

DEFINITION 6.3

Let F be a singular holomorphic foliation of S(k). We set NF = TS(k)/F , and
we denote by S(F ) := Sing(NF ) the singular set of the foliation.

DEFINITION 6.4

Let F be a singular foliation of S(k). We say that F is reduced if it is full in
TS(k); that is, for any open set U in S we have

Γ(U, TS(k)) ∩ Γ
(
U \ S(F ), F

)
= Γ(U, F ).

LEMMA 6.5

Let F be a singular foliation of S(k); then there exists a canonical way to associate
to it a reduced singular foliation of S(k).

Proof
We cover now a neighborhood of S by open sets {Uα} such that FUα ∩S is gener-
ated by v1,α, . . . , vl,α and on each Uα we can extend the vi,α to logarithmic vector
fields ṽi,α on Uα. On Uα the ṽi,α define a distribution with a sheaf of sections
Dα; please note that this is a sheaf on Uα, not on the whole M . We define NDα =
TM |Uα/Dα and denote by S(Dα) the singularity set of NDα . In general, this distri-
bution may not be reduced, that is, Γ(Uα, TM ) ∩ Γ(Uα \ S(Dα), Dα) �= Γ(Uα, Dα).
We take now the annihilator (Dα)a = {ω ∈ ΩM | ω(v) = 0 for every v ∈ Dα}. If we
take its annihilator D̃α := ((Dα)a)a = {w ∈ TM | ω(w) = 0 for every ω ∈ (Dα)a}
we get now a reduced sheaf of sections of the distribution, generated by sections
w̃1,α, . . . , w̃l,α; we can take the same l because, since we are dealing with coherent
sheaves, the rank is constant outside the singularity set.

Since Γ(Uα, Dα) ⊂ Γ(Uα, D̃α) we have ṽi,α = (hα)j
i w̃j,α, where (hα)j

i is a
matrix of holomorphic functions that may be singular on a subset of Uα of
codimension smaller than 2, contained in S(Dα). We remark also that S(F ) ⊂
S(Dα) and that the w̃i,α are logarithmic vector fields.

We want to check now that D̃α ⊗ OS(k)|(Uα ∩S)\S(F ) generates F and is invo-
lutive. We will denote the restriction of w̃i,α to the kth infinitesimal neighborhood
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by wi,α. Indeed, outside the singularity set, the matrix (hα)j
i is invertible as a

matrix of holomorphic functions, with inverse (gα)i
j which implies that the wi,α’s

generate F . We check the involutivity:

[w̃i,α, w̃i′,α] ⊗ [1]k+1 = [(gα)j
i ṽj,α, (gα)j′

i′ ṽj′,α] ⊗ [1]k+1

= [(gα)j
i ]k+1vj,α

(
[(gα)j′

i′ ]k+1

)
vj′,α

− [(gα)j′

i′ ]k+1vj′α

(
[(gα)j

i ]k+1

)
vj,α

+ [(gα)j′

i′ ]k+1[(gα)j
i ]k+1[vj,α, vj′,α].

Note that (gα)j
i is a matrix of meromorphic functions on Uα (this follows from the

Cramer rule for the inverse of a matrix), and its inverse is a matrix of holomorphic
functions. Now, for each vj,α we have

vj,α

(
[(gα)j′

i′ ]k+1

)
= −[(gα)j′ ′

i′ ]k+1vj,α

(
[(hα)i′ ′

j′ ′ ]k+1

)
[(gα)j′

i′ ′ ]k+1,

and therefore

[(gα)j
i ]k+1vj,α

(
[(gα)j′

i′ ]k+1

)
vj′,α

= −[(gα)j
i ]k+1[(gα)j′ ′

i′ ]k+1vj,α

(
[(hα)i′ ′

j′ ′ ]k+1

)
[(gα)j′

i′ ′ ]k+1vj′,α

= −[(gα)j′ ′

i′ ]k+1wi,α

(
[(hα)i′ ′

j′ ′ ]k+1

)
wi′ ′,α.

A similar reasoning holds for the second summand in the involutivity check. If
we denote by [aj′ ′

j,j′ ]k+1 the elements of OS(k) such that

[vj,α, vj′,α] = [aj′ ′

j,j′ ]k+1vj′ ′,α

we have

[(gα)j′

i′ ]k+1[(gα)j
i ]k+1[vj,α, vj′,α]

= −[(gα)j′

i′ ]k+1[(gα)j
i ]k+1[a

j′ ′

j,j′ ]k+1vj′ ′,α

= −[(gα)j′

i′ ]k+1[(gα)j
i ]k+1[a

j′ ′

j,j′ ]k+1[(hα)i′ ′

j′ ′ ]k+1wi′ ′,α.

The point these computations prove is that [w̃i,α, w̃i′,α] ⊗ [1]k+1 belongs to the
module generated by the wi,α’s over the meromorphic functions. But, a priori,
we know that this bracket is a holomorphic section of TS(k) and therefore belongs
to the OS(k)-module generated by the wi,α’s. �

REMARK 6.6

By the proof of Lemma 6.5 and by Proposition 6.1 we have that each one of the
extensions w̃i,α has a singularity set of codimension at least 2.

7. Index theorems for foliations and involutive closures

Following the work [Su] and the articles [ABT1] and [ABT2], we know that
the existence of a partial holomorphic connection gives rise to the vanishing of
some of the Chern classes of a vector bundle and therefore to an index theorem
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thanks to Bott’s vanishing theorem (see [Su, Theorem 9.11, p. 76] for the version
for virtual bundles and [ABT2, Theorem 6.1] for the version for noninvolutive
subbundles).

In Section 2 we found a concrete realization of the Atiyah sheaf for the normal
bundle of a foliation as a quotient of the ambient tangent bundle, and we proved
that the Atiyah sequence splits if there exists a foliation of the first infinitesimal
neighborhood. In this section we state the index theorems that follow directly
from our treatment.

The proofs for all the points of the theorem follow from the fact that the
existence of a partial holomorphic connection implies the vanishing of the charac-
teristic classes, following the general theory of [Su], [ABT1], [ABT2], and [ABT3].
Therefore, from the theory developed in the previous sections, we have the fol-
lowing theorem.

THEOREM 7.1

Suppose alternatively that

(1) there exists a rank l foliation F on S, such that it extends to the first
infinitesimal neighborhood of S \ S(F );

(2) there exists a foliation F on S and a rank l subsheaf E of TS(1) that,
restricted to S, is a subsheaf of F , and is S-faithful;

(3) there exists a rank l holomorphic foliation F defined on a neighborhood
of S and a 2-splitting, first-order F -faithful outside an analytic subset Σ of U

containing S(F ) ∩ S, S � Σ;
(4) there exists a rank l holomorphic foliation F defined on S and that

sequence (14) splits;
(5) there exists a rank l holomorphic foliation F defined on S and that

sequence (14) splits and the image F̃ /V in F̃ is involutive;
(6) S is splitting and admits a first-order extendable tangent bundle and

there exists F , a rank l holomorphic foliation defined of S.

Let Σ = S(F ) (resp., Σ = S(F ) ∩ S(E ) in (2)), let G = F (resp., G = E in (2)),
and let Σ =

⋃
λ Σλ be the decomposition of Σ in connected components. By abuse

of notation denote by NF σ,M the sheaf NF ,M even if F is tangent to S. Then
for every symmetric homogeneous polynomial φ of degree k larger than n − m − l

(resp., n − m − l + �l/2� in (2), (5), (6) if the sheaf along which we construct
the partial holomorphic connection is not involutive) we can define the residue
Resφ(G, NF σ,M ;Σλ) ∈ H2(n−m−k)(Σα) depending only on the local behaviour of
G and NF σ,M near Σλ such that

∑
λ

Resφ(G, NF σ,M ;Σλ) =
∫

S

φ(NF σ,M ),

where φ(NF σ,M ) is the evaluation of φ on the Chern classes of NF σ,M .

Another interesting result following from our theory is obtained by defining,
for a coherent subsheaf E of TS(1), a natural object, its involutive closure, the
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smallest involutive subsheaf containing E . Thanks to the machinery developed
in Section 5, it is proved that the existence of E gives rise to vanishing theorems
for its involutive closure.

DEFINITION 7.2

Let E be a coherent subsheaf of TS(1) such that E |S is nonempty. We denote by
Sing(E ) the set {x ∈ S | TS(1)/E is not OS(1),x-free}. On S \ Sing(E ) we define the
involutive closure G of E in S to be the intersection of all the coherent involutive
subsheaves of TS containing E |S .

Recall that the intersection of coherent subsheaves of TS is again a coherent
subsheaf of TS ; now, G is involutive by definition and therefore gives rise to a
foliation of S. Clearly, E |S is a subsheaf of G, and we can apply Proposition 5.3,
getting the following result.

THEOREM 7.3

Suppose that E is a coherent subsheaf of TS(1) of rank l, whose restriction E |S has
rank l. Let G be the involutive closure of E in S. Let Σ = S(E ) ∪ S(G) =

⋃
α Σα

be the decomposition of Σ in connected components. Then, for every symmetric
homogeneous polynomial φ of degree k larger than n − m − l + �l/2� we can
define the residue Resφ(E |S , NG,M ;Σα) ∈ H2(n−m−k)(Σα) depending only on the
local behaviour of E |S and NG,M near Σα such that:

∑
λ

Resφ(E |S , NG,M ;Σα) =
∫

S

φ(NG,M ),

where φ(NG,M ) is the evaluation of φ on the Chern classes of NG,M .

8. Computing the residue in the simplest case

In this section we compute the residue for a codimension 1 foliation of the first
infinitesimal neighborhood of a codimension 1 submanifold in a surface. Let
(U1, x, y) be a neighborhood of zero in C2, let S = {x = 0}, let F be a folia-
tion of S(1) such that Sing(F ) = {0}, and let v be a generator of F , that is, a
holomorphic section of TS(1) with an isolated singularity in zero. Supposing F
reduced, from Section 6 and Remark 6.6 we see that this assumption does not
give rise to a loss of generality for our computation.

REMARK 8.1

Please note also that, if we denote by ṽ an extension of v to U1 and by F̃ the
foliation generated by it, thanks to how we defined the holomorphic action and
the theory developed for local extensions, the computation of this residue could
be reduced to the computation of the residue given by the Lehmann–Khanedani–
Suwa action of ṽ on NF |S , which can be found, for example, in [Su, Chapter IV,
Theorem 5.3].
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We will, anyway, compute the index explictly in the framework we developed. Call
U0 := U1 \ {0}; with an abuse of notation we will also say M := U1. Let G be the
trivial line bundle on S; we can see v|S as a holomorphic homomorphism between
G and TS. On U0 we can see G as a subbundle of TM |S ; moreover G embedded
through v|S is nothing else but the bundle associated to F |S . Therefore, we can
speak of the virtual bundle [TM |S − G], which coincides, on U0, with the normal
bundle to the foliation F |U0∩S in the ambient tangent bundle TM |U0∩S , denoted
by NF ,M . Since the only homogeneous symmetric polynomial in dimension 1
is the trace, we would like to compute the residue for the first Chern class of
[TM |S − G], whose sheaf of sections is NF ,M . The first Chern class being additive,
we are going to compute c1(TM |S) − c1(G). If U0 is small enough, thanks to the
embedding of G into TM |S we have that on U0 we can see TM |S as the direct
sum G ⊕ NF ,M . We are going to apply [Su, Proposition 8.4, p. 73] to the following
sequence:

0 F |U0∩S TM |U0∩S NF ,M 0.

We want to build on U0 a family of connections compatible with the sequence,
so that the Bott vanishing theorem for virtual bundles (see [Su, Theorem 9.11,
p. 76]) implies that c1(NF ,M ) on U0 is zero. We proved that the existence of a
foliation of the first infinitesimal neighborhood gives rise to partial connection
on NF ,M . Now, thanks to Corollary 2.15 we can compute the actual connection
matrix of this partial holomorphic connection on NF ,M and extend it to a con-
nection on NF ,M , denoted by ∇. To build a family of connections simplifying
our computations we take on U0 ∩ S the connection ∇G

0 which is trivial with
respect to the generator 1G of the trivial line bundle G. Since TM |S on U0 ∩ S

is the direct sum of G and NF ,M we let the connection for TM |S be the direct
sum connection ∇TM

0 := ∇ ⊕ ∇G
0 . Both ∇TM

0 and ∇G
0 are holomorphic connec-

tions along F ; therefore we can apply Bott’s vanishing theorem in the version for
virtual bundles and obtain c1(NF ,M ) ≡ 0 on U0.

In Čech–de Rham cohomology relative to the cover {U0,U1} the first Chern
class of NF ,M is represented as a triple (ω0, ω1, σ01), where ω0 is the first Chern
class of NF ,M on U0 and ω1 is the first Chern class of NF ,M on U1, while σ01

is a 1-form, the Bott difference form, that is, a 1-form such that ω1 − ω0 = dσ01

on U0 ∩ U1 (for a complete treatment, refer to [Su]). Due to the additivity of the
first Chern class, to compute the first Chern class of NF ,M we need to compute
the first Chern classes of G and TM |S on U1 (we already know that the first
Chern class of NF ,M on U0 is zero) and the Bott difference forms c1(∇TM

0 , ∇TM
1 )

and c1(∇G
0 , ∇G

1 ). On U1 we can take, again, as a connection for G the connection
which is trivial with respect to the generator 1G of G: therefore c1(∇G

0 , ∇G
1 ) = 0,

since the connections for G on U0 and U1 are the same. On U1 we take as ∇TM
1

the ∂/∂x, ∂/∂y trivial connection; then c1(∇TM
1 ) = 0 and the problem reduces

to computing the Bott difference form c1(∇TM
0 , ∇TM

1 ). To compute it we need
the connection matrix for ∇TM

0 with respect to the frame ∂/∂x, ∂/∂y. First of
all we compute the action of ∇ on the equivalence class ν = [∂/∂x] in NF ,M . The
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generator v of F is written in coordinates as

[A]2
∂

∂x
+ [B]2

∂

∂y
,

where [A]2 belongs to IS/I 2
S . In the following, we shall denote by vS the restric-

tion of ṽ to S; in coordinates we have vS = [B]1∂/∂y. We compute now the action
of F on NF ,M , recalling Corollary 2.15:

∇vS
(ν) = pr

([
[A]2

∂

∂x
+ [B]2

∂

∂y
,

∂

∂x

]∣∣∣
S

)
= −

[∂A

∂x

]
1
ν.

We compute now the connection matrix for ∇. Since

−
[∂A

∂x

]
1
= ([C]1 · dx + [D]1 · dy)

(
[B]1

∂

∂y

)
= [D · B]1,

it follows that the connection matrix is nothing else but

ω = −
[∂A

∂x

1
B

]
1
dy.

We have now all the tools needed to compute the connection matrix for ∇TM
0 :

∇TM
0

( ∂

∂x

)
= ∇(ν) = −

[∂A

∂x
· 1
B

]
1
dy ⊗ ∂

∂x
,

∇TM
0

( ∂

∂y

)
= ∇G

0

( 1
B

· v
)

= −
[dB

B2

]
1

· v = −
[dB

B

]
1

⊗ ∂

∂y
.

Thus the connection matrix has the following form:[
−

[
∂A
∂x

1
B

]
1
dy 0

0 −
[

dB
B

]
1

]
.

Considering the bundle TM × [0,1] → M × [0,1] and the connection ∇̃ given
by ∇̃ := (1 − t)∇TM

0 + t∇TM
1 we can compute the Bott difference form given by

π∗(c1(∇̃)) where π∗ is integration along the fiber of the projection π : M × [0,1] →
M . The Bott difference form is then[ 1

B

∂A

∂x

]
1
dy +

[dB

B

]
1
.

So, the residue for c1(NF ,M ) in zero is

1
2π

√
−1

∫
{x=0,|y|=ε}

[ 1
B

(∂A

∂x
+

∂B

∂y

)]
1
dy.

9. The residue for the simplest transversal case

Let (U1, x, y) be a neighborhood of zero in C2, and let S = {x = 0}. Let now v be
a holomorphic section of TM,S(1) with an isolated singularity in zero. As before,
we say U0 := U1 \ {0} and M = U1. Please note that we drop the hypothesis
about v belonging to TS(1). We want to compute the variation index for such
a foliation. Since the situation is local we can assume that we have a local 2-
splitting, first-order F -faithful outside zero and that we are in a chart adapted
to it and therefore we have a map TM,S(1) to TS(1). Write ṽ in coordinates as
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ṽ = [A(x, y)]2
∂

∂x
+ [B(x, y)]2

∂

∂y
.

Now we can write [A(x, y)]2 = [ρ̃([A(x, y)]2) + R(x, y)]2, where ρ̃ is the θ1-deri-
vation associated to the 1-splitting induced by the 2-splitting; then,

σ∗(ṽ) = (ρ̃([A(x, y)]2))∂/∂x + B(x, y)∂/∂y.

Moreover, we have a splitting σ∗ : TM,S → TS , giving rise on U0 ∩ S to an iso-
morphism between FS , the sheaf of germs of sections of the foliation generated
by vS := v|S and the sheaf of germs of sections of F σ. Now, the vector field

w =
[
ρ̃
(
[A(x, y)]2

)]
2
∂/∂x + [B(x, y)]2∂/∂y

is a section of TS(1), giving rise to a foliation of the first infinitesimal neighbor-
hood. We can now compute the index as in Section 8: the residue for c1(NF σ,M )
is therefore

1
2π

√
−1

∫
{ |y|=ε}

[ 1
B

(∂[ρ̃([A]2)]2
∂x

+
∂B

∂y

)]
1
dy

=
1

2π
√

−1

∫
{ |y|=ε}

[
1
B

(
∂

∂x

(∂A

∂x
· x

)
+

∂B

∂y

)]
1

dy

=
1

2π
√

−1

∫
{ |y|=ε}

[ 1
B

(∂A

∂x
+

∂B

∂y

)]
1
dy.

REMARK 9.1

The term
∂2A

∂x2
· x

in the last computation disappears since it belongs to IS .

10. A couple of remarks about extendability of foliations

In this short section we summarize some of the results of this paper, stressing
their importance towards the understanding of the following problem: “When is it
possible to extend a holomorphic foliation on a submanifold S of codimension m

in a complex manifold M to a neighborhood of S?” Thanks to Theorem 2.10 we
know that, if there exists a rank l foliation of the first infinitesimal neighborhood
and if we take any symmetric polynomial φ of degree larger than n − m − l, then
φ(NF ,M ) vanishes. Given a foliation F on S, the classes φ(NF ,M ) are obstructions
to finding an extension to the first infinitesimal neighborhood, where φ is a
symmetric polynomial of degree larger than n − m − l. In the splitting case we
have much more information. As a matter of fact, if the sequence

0 → V → F̃ → F̃ /V → 0

splits on the first infinitesimal neighborhood of the zero section of NS we know
that F can be extended in a noninvolutive way. Therefore, if S splits, the char-
acteristic classes φ(NF ,M ) with φ a symmetric polynomial of degree larger than
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n − m − l+ �l/2� are obstructions to finding an extension of F as a noninvolutive
subbundle of TS(1). If the extension is involutive, also the characteristic classes
φ(NF ,M ) with φ a symmetric polynomial of degree larger n − m − l and smaller
than n − m − l + �l/2� vanish. Therefore, in the splitting case, where it is known
that there is a noninvolutive extension, the classes φ(NF ,M ) where φ is a sym-
metric polynomial of degree larger n − m − l and smaller than n − m − l + �l/2�
are obstructions to finding an involutive extension.

Another interesting remark can follow from a simple example; we look at the
procedure we built in Section 4 to extend a foliation in the case where we have
a rank 1 foliation F of a codimension 1 splitting submanifold S in a complex
surface M . Thanks to Remark 4.11 we have that the local generators of the
extension to the first infinitesimal neighborhood of the foliation F on M are
given on each Uα (modulo rescaling) by

∂

∂z2
α

− [cα]2
∂

∂z1
α

.

As expected, recalling the computation of the residue in Section 8 we see that, if
F has an isolated singular point in Uα, the computation of the residue depends
on the function cα.

Extending a holomorphic foliation is an important global problem; we have
shown that this problem is strictly connected with the residues and the charac-
teristic classes of NF ,M .

Acknowledgments. The article is part of the author’s Ph.D. dissertation work
and he would like to thank Professor Marco Abate, his advisor, for his thoughtful
guidance and useful advice and hints; Professor Tatsuo Suwa for many precious
conversations, his patience, and his wisdom; and Professor Filippo Bracci for
an important suggestion. The author would like to thank Professor Kyoji Saito,
the Institute for the Physics and Mathematics of the Universe, Kashiwa, Japan,
and the International Centre for Theoretical Physics, Trieste, Italy for the warm
hospitality and wonderful research environment offered to him. The author would
like also to thank Gruppo Nazionale per le Strutture Algebriche, Geometriche e
le loro Applicazioni, for the help in funding his mission to Japan.

References

[ABT1] M. Abate, F. Bracci, and F. Tovena, Index theorems for holomorphic

self-maps, Ann. of Math. (2) 159 (2004), 819–864.

[ABT2] , Index theorems for holomorphic maps and foliations, Indiana Univ.

Math J. 57 (2008), 2999–3048.

[ABT3] , Embeddings of submanifolds and normal bundles, Adv. Math. 220

(2009), 620–656.

[Ati] M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer.

Math. Soc. 85 (1957), 182–207.



Partial holomorphic connections and extension of foliations 555

[Br] F. Bracci, First order extensions of holomorphic foliations, Hokkaido Math.

J. 33 (2004), 473–490.

[Bru] M. Brunella, Some remarks on indices of holomorphic vector fields, Publ.

Mat. 41 (1997), 527–544.

[Ca] C. Camacho, “Dicritical singularities of holomorphic vector fields” in

Laminations and Foliations in Dynamics, Geometry and Topology (Stony

Brook, N.Y., 1998), Contemp. Math. 269, Amer. Math. Soc., Providence,

2001, 39–45.

[CL] C. Camacho and D. Lehmann, Residues of holomorphic foliations relative to

a general submanifold, Bull. London Math. Soc. 37 (2005), 435–445.

[CMS] C. Camacho, H. Movasati, and P. Sad, Fibered neighborhoods of curves in

surfaces, J. Geom. Anal. 13 (2003), 55–66.

[CS] C. Camacho and P. Sad, Invariant varieties through singularities of

holomorphic vector fields, Ann. of Math. (2) 115 (1982), 579–595.

[Ei] D. Eisenbud, Commutative Algebra: With a View Toward Algebraic

Geometry, Grad. Texts in Math. 150, Springer, New York, 1995.

[Gro] A. Grothendieck, A general theory of Fibre Spaces With Structure Sheaf,

preprint, 2nd. ed., 1958, www.math.jussieu.fr/ l̃eila/grothendieckcircle/

GrothKansas.pdf

[Ho] T. Honda, Tangential index of foliations with curves on surfaces, Hokkaido

Math. J. 33 (2004), 255–273.

[KS] B. Khanedani and T. Suwa, First variations of holomorphic forms and

some applications, Hokkaido Math. J. 26 (1997), 323–335.

[Lee] J. M. Lee, Introduction to Smooth Manifolds, Grad. Texts in Math. 218,

Springer, New York, 2003.

[LS1] D. Lehmann and T. Suwa, Residues of holomorphic vector fields relative to

singular invariant subvarieties, J. Differential Geom. 42 (1995), 165–192.

[LS2] , Generalization of variations and Baum–Bott residues for

holomorphic foliations on singular varieties, Internat. J. Math. 10 (1999),

367–384.

[MS] J. W. Milnor and J. Stasheff, Characteristic Classes, Princeton Univ. Press,

Princeton, 1957.

[MY] Y. Mitera and J. Yoshizaki, The local analytical triviality of a complex

analytic singular foliation, Hokkaido Math. J. 33 (2004), 275–297.

[Sa] K. Saito, Theory of logarithmic differential forms and logarithmic vector

fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 265–291.

[Su] T. Suwa, Indices of Vector Fields and Residues of Singular Holomorphic

Foliations, Actualités Math., Hermann, Paris, 1998.
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