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Abstract. An operator T on a complex Hilbert space H is said to be complex
symmetric if T can be represented as a symmetric matrix relative to some
orthonormal basis for H. In this article we explore the stability of complex
symmetry under the condition of similarity. It is proved that the similarity
orbit of an operator T is included in the class of complex symmetric operators
if and only if T is an algebraic operator of degree at most 2.

1. Introduction and preliminaries

Throughout this paper,H will always denote a complex separable Hilbert space.
We let B(H) denote the algebra of all bounded linear operators onH. An operator
T ∈ B(H) is said to be complex symmetric if there exists a conjugation C on H
such that CTC = T ∗; in this case, T is said to be C-symmetric. Recall that a
conjugate-linear map C on H is called a conjugation if C is invertible, C−1 = C,
and 〈Cx,Cy〉 = 〈y, x〉 for all x, y ∈ H. Note that T is complex symmetric if and
only if there is an orthonormal basis of H with respect to which T has a complex
symmetric (i.e., self-transpose) matrix representation (see [4, Lemma 2.16]).

The general study of complex symmetric operators was initiated by Garcia,
Putinar and Wogen in [5]–[8], and has recently received much attention (see
[3], [9], [11]). The class of complex symmetric operators is surprisingly large and
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includes many important special operators such as normal operators, Hankel oper-
ators, binormal operators, truncated Toeplitz operators, and many integral oper-
ators. The reader is referred to [4] for more historical comments about complex
symmetric operators.

The aim of this paper is to study the stability of complex symmetry under
the condition of similarity. Recall that two operators A1, A2 ∈ B(H) are said
to be similar, denoted by A1 ∼ A2, if there exists some invertible X ∈ B(H)
such that A1X = XA2. In general, the complex symmetry is not invariant under
similarity; that is, an operator similar to some complex symmetric operator is
possibly not complex symmetric. In fact, each operator of finite rank is similar to
a complex symmetric operator, and there exist many finite-rank operators that
are not complex symmetric (see [5, Example 4]). The reader is also referred to [4,
Example 2.21] for more concrete examples.

Then it is natural to ask the following question.

Question 1.1. When does an operator T satisfy that every operator similar to T
is complex symmetric?

Given T ∈ B(H), denote by S(T ) the similarity orbit of T ; that is,

S(T ) =
{
A ∈ B(H) : A ∼ T

}
.

A subset E of B(H) is said to be similarity-invariant if S(T ) ⊂ E for all T ∈ E . In
the following, we let CSO denote the set of all complex symmetric operators onH.
Thus Question 1.1 is equivalent to the question of when T satisfies S(T ) ⊂ CSO .

The main result of this paper is the following theorem which gives a complete
answer to Question 1.1.

Theorem 1.2. For T ∈ B(H), the following are equivalent:

(i) S(T ) ⊂ CSO,
(ii) S(T ) ⊂ CSO,

(iii) S(T ) ⊂ CSO,
(iv) T is an algebraic operator of degree at most 2.

Recall that an operator T is algebraic if p(T ) = 0 for some nonzero polynomial
p(z). The degree of an algebraic operator is defined to be the degree of the nonzero
polynomial p(z) of least degree for which p(T ) = 0. By the spectral mapping
theorem, the spectrum of an algebraic operator is finite. By Theorem 1.2, if T
does not satisfy any polynomial of degree 2, then T is always similar to an operator
that is not complex symmetric.

Statement (iv) of Theorem 1.2 means that T satisfies a polynomial of degree 2.
Garcia and Wogen proved that such operators are always complex symmetric
(see [8, Theorem 2]). Since these operators constitute a norm-closed, similarity-
invariant subset of B(H), the following two results are immediate consequences
of Theorem 1.2.

Corollary 1.3. If E is a nonempty subset of CSO, then E is similarity-invariant
if and only if E consists of the similarity orbits of some algebraic operators of
degree at most 2.
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Corollary 1.4. The set of all algebraic operators of degree at most 2 is the largest
similarity-invariant subset of CSO.

2. Proof of the main result

First, we offer some preparation.
A nonempty bounded open subset Ω of the complex plane C is a Cauchy domain

if the following conditions are satisfied: (i) Ω has finitely many components, the
closures of any two of which are disjoint, and (ii) the boundary of Ω is composed
of a finite number of closed rectifiable Jordan curves, no two of which intersect.
If, in addition, all curves of ∂Ω are regular analytic Jordan curves, we say that Ω
is an analytic Cauchy domain.

Let T ∈ B(H). If σ is a clopen subset of σ(T ), then there exists an analytic
Cauchy domain Ω such that σ ⊆ Ω and [σ(T )\σ]∩Ω = ∅. We let E(σ;T ) denote
the Riesz idempotent of T corresponding to σ; that is,

E(σ;T ) =
1

2πi

∫
Γ

(λ− T )−1 dλ,

where Γ = ∂Ω is positively oriented with respect to Ω in the sense of complex
variable theory. In this case, we denote by H(σ;T ) the range of E(σ;T ). Since
E(σ;T )T = TE(σ;T ), one can see T (H(σ;T )) ⊆ H(σ;T ). Note that E(σ;T ) is
the Riesz–Dunford functional calculus of T with respect to the following function:

f(z) =

{
1, z ∈ Ω,

0, z ∈ C \ Ω,

which is analytic on a neighborhood of σ(T ). If λ0 is an isolated point of σ(T )
and dimH({λ0};T ) < ∞, then λ0 is called a normal eigenvalue of T . Denote by
σ0(T ) the set of all normal eigenvalues of T . The reader is referred to Chapter 1
of [10] for more details about Riesz idempotents.

Lemma 2.1 ([14, Lemma 2.2]). Let T ∈ B(H) and σ be a clopen subset of σ(T ).
Then T can be written as

T =

[
A F
0 B

]
H(σ;T )
H(σ;T )⊥

,

where σ(A) = σ and σ(B) = σ(T ) \ σ.

Lemma 2.2 ([10, Corollary 3.22]). Let T ∈ B(H), and let H = H1 ⊕ H2. If T
can be written as

T =

[
A F
0 B

]
H1

H2

and σ(A) ∩ σ(B) = ∅, then T ∼ A⊕B.

Given a subset ∆ of C, we let ∆∗ denote the set {z ∈ C : z ∈ ∆}.

Lemma 2.3. Let T ∈ B(H) and σ be a clopen subset of σ(T ). If C is a conjuga-
tion on H and CTC = T ∗, then CE(σ;T )C = E(σ;T )∗.
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Proof. Since T is C-symmetric, one can easily verify that r(T ) is C-symmetric
for any rational function r(z) with poles off σ(T ). If f is a function analytic
on a neighborhood Ω of σ(T ), then, by Runge’s theorem, there exist rational
functions {rn(z)}∞n=1 with poles off σ(T ) such that f(T ) = limn rn(T ). It follows
that Cf(T )C = f(T )∗. Therefore, CE(σ;T )C = E(σ;T )∗. �

Let T ∈ B(H). Denote by kerT and ranT the kernel of T and the range of
T , respectively. T is called a semi-Fredholm operator if ranT is closed and either
dimkerT or dimkerT ∗ is finite; in this case, indT := dimkerT − dimkerT ∗ is
called the index of T . In particular, if −∞ < indT < ∞, then T is called a
Fredholm operator. The Wolf spectrum σlre(T ) and the essential spectrum σe(T )
are defined by

σlre(T ) := {λ ∈ C : T − λ is not semi-Fredholm}
and

σe(T ) := {λ ∈ C : T − λ is not Fredholm},
respectively.

Lemma 2.4 ([2, Chapter XI, Theorem 6.8, Proposition 6.9]). If T ∈ B(H), then
∂σ(T ) ⊂ σlre(T ) ∪ σ0(T ).

An operator T ∈ B(H) is said to be polynomially compact if p(T ) is compact for
some nonzero polynomial p(z). Olsen [12] proved that each polynomially compact
operator is the sum of an algebraic operator and a compact one, and so, if T is
polynomially compact, then σe(T ) is finite. Given a subset ∆ of C, we let iso∆
denote the set of all isolated points of ∆.

Lemma 2.5 ([1, Theorem 9.2]). If T ∈ B(H) is not polynomially compact, then

S(T ) contains all operators R ∈ B(H) satisfying

isoσ(R) = ∅ and σ(T ) ⊂ σ(R) = σlre(R).

For e, f ∈ H, define e⊗ f ∈ B(H) as (e⊗ f)(x) = 〈x, f〉e for x ∈ H.

Lemma 2.6. Let T ∈ B(H) be quasinilpotent; that is, σ(T ) = {0}. If T 2 6= 0,

then S(T ) contains 0, e1 ⊗ e2 and e1 ⊗ e2 + e2 ⊗ e3 for any orthonormal triple
{e1, e2, e3} in H.

Proof. If T n 6= 0 for all n ≥ 1, then, by Lemma 8.1 in [10], S(T ) contains all
compact nilpotent operators.

Now we assume that T k = 0 and T k−1 6= 0 for some integer k with 2 < k < ∞.
Then dimH ≥ k. For any orthonormal subset {ei}k1=1 of H, by the discussion on

page 221 of [10], we have
∑k−1

i=1 ei ⊗ ei+1 ∈ S(T ). In view of Theorem 2.1 in [10],

we deduce that S(T ) contains 0, e1 ⊗ e2 and e1 ⊗ e2 + e2 ⊗ e3. �

Using a similar argument as in Lemma 2.6, one can prove the following result.

Lemma 2.7. Let T ∈ B(H) be quasinilpotent. Then

(i) If T 6= 0, then S(T ) contains 0 and e1 ⊗ e2 for any orthonormal pair
{e1, e2} in H;

(ii) 0 ∈ S(T ).
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Recall that an operator T is said to be essentially normal if T ∗T − TT ∗ is
compact.

Lemma 2.8. If T ∈ B(H) is polynomially compact, then S(T ) contains an essen-
tially normal operator R ∈ B(H) with σ(T ) = σ(R).

Proof. By Lemma 7.1 in [10], we need only prove the case that T is essentially
nilpotent; that is, there exists 1 ≤ k < ∞ such that T k is compact. Then σ(T ) =
{0} ∪ σ0(T ) and σe(T ) = σlre(T ) = {0}. Without loss of generality, we may
assume that T k−1 is not compact.

We need only consider the case that T k−1 + T ∗ is not a Fredholm operator. In
fact, if T k−1+T ∗ is a Fredholm operator, then, by the discussion at the beginning
of Section 8.3.1 of [10], S(T ) contains an operator A ∈ B(H) similar to T ⊕ 0
on H ⊕ H. Thus A is essentially nilpotent of order k, and Ak−1 + A∗ is not a
Fredholm operator. It suffices to prove that S(A) contains an essentially normal
operator R ∈ B(H) with σ(A) = σ(R).

Now we assume that T k−1 + T ∗ is not a Fredholm operator.
Case 1. σ0(T ) = ∅.
This implies that T is quasinilpotent. By Proposition 8.5 in [10], we obtain

0 ∈ S(T ).
Case 2. σ0(T ) is nonempty and finite.
Assume that σ0(T ) = {λn : 1 ≤ n ≤ m}. Then, by Lemmas 2.1 and 2.2,

T ∼ T0 ⊕F , where F acts on a finite-dimensional space and T0 is quasinilpotent.
One can check that T0 is essentially nilpotent of order k and T k−1

0 + T ∗
0 is not a

Fredholm operator. By the proof in Case 1, S(T0) contains an essentially normal
operator R0 with σ(R0) = {0} = σ(T0). Then R := R0 ⊕ F is essentially normal

lying in S(T ) and σ(R) = σ(T ).
Case 3. σ0(T ) is infinite.
Assume that σ0(T ) = {λn : n ≥ 1}, where λn 6= λm whenever n 6= m. Since T is

essentially nilpotent and σe(T ) = {0}, it follows that λn → 0 as n → ∞. Denote
by Jn the Jordan form of (T −λn)|H({λn};T ) for n ≥ 1. Set R =

⊕∞
n=1(λn+λnJn).

Then R is compact, and σ(R) = σ(T ). By Proposition 8.6 in [10], we obtain

R ∈ S(T ). �

Corollary 2.9. If T ∈ B(H) and σ(T ) is contained in a Cauchy domain Ω, then

S(T ) contains an essentially normal operator R with σ(R) ⊂ Ω.

Proof. Assume that {Ωi}mi=1 are all components of Ω. Then {Ωi}mi=1 is an open
cover of σ(T ). Since σ(T ) is compact, there exists a finite subcover {Ωni

}ki=1

such that σ(T ) ⊂
⋃k

i=1Ωni
and σ(T ) ∩ Ωni

6= ∅ for each i with 1 ≤ i ≤ k. Set
σi = σ(T ) ∩ Ωni

for 1 ≤ i ≤ k. Then σi’s are pairwise disjoint clopen subsets

of σ(T ) and σ(T ) =
⋃k

i=1 σi. Then, by Lemmas 2.1 and 2.2, T is similar to an

operator A of the form A =
⊕k

i=1 Ti, where Ti satisfies σ(Ti) = σi for 1 ≤ i ≤ k.
Fix an i with 1 ≤ i ≤ k. It suffices to show that there exists an essentially

normal Ri in S(Ti) with σ(Ri) ⊂ Ωni
. If Ti is polynomially compact, then, by

Lemma 2.8, there exists an essentially normal operator Ri with σ(Ri) = σ(Ti) ⊂
Ωni

. Now assume that Ti is not polynomially compact. Since Ωi is connected and
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σi ⊂ Ωi, we can choose a connected Cauchy domain G satisfying σi ⊂ G ⊂ G ⊂
Ωi. Obviously we can construct a normal operator Ri on the underlying space
of Ti with σ(Ri) = G. Since G is a domain, we deduce that σ(Ri) = σlre(Ri)
and iso σ(Ri) = ∅. Noting that σ(Ti) ⊂ σ(Ri), it follows from Lemma 2.5 that

Ri ∈ S(Ti). This ends the proof. �

Let H1,H2 be two complex Hilbert spaces. Denote by B(H1,H2) the set of all
bounded linear operators from H1 to H2. Assume that Ai ∈ B(Hi), i = 1, 2. The
Rosenblum operator τA2,A1 induced by A2 and A1 is defined as

τA2,A1 : B(H1,H2) −→ B(H1,H2),

X 7−→ A2X −XA1.

Then it is easy to see that τA2,A1 is a bounded linear operator on B(H1,H2).

Lemma 2.10 ([10, Corollary 3.20]). Let A1, A2 be as above. If σ(A1)∩σ(A2) = ∅,
then τA2,A1 is invertible.

Lemma 2.11. Let R ∈ B(H). Assume that H =
⊕3

i=1Hi with respect to which
R admits the following matrix representation:

R =

A1 X Y
0 A2 0
0 0 A3

 .

If σi = σ(Ai) for 1 ≤ i ≤ 3 and σi ∩ σj = ∅ whenever i 6= j, then

E(σ2;R) =

0 −τ−1
A1,A2

(X) 0

0 I2 0
0 0 0

 and E(σ3;R) =

0 0 −τ−1
A1,A3

(Y )

0 0 0
0 0 I3

 ,

where Ii is the identity on Hi, i = 2, 3.

Proof. For λ /∈ σ(R), since

(λ−R)−1 =

λ− A1 −X −Y
0 λ− A2 0
0 0 λ− A3

−1

=

(λ− A1)
−1 (λ− A1)

−1X(λ− A2)
−1 (λ− A1)

−1Y (λ− A3)
−1

0 (λ− A2)
−1 0

0 0 (λ− A3)
−1

 ,

it follows that E(σ2;R) and E(σ3;R) can be written respectively as

E(σ2;R) =

0 U 0
0 I2 0
0 0 0

 and E(σ3;R) =

0 0 V
0 0 0
0 0 I3

 .

Noting that E(σi;R)R = RE(σi;R) for i = 2, 3, a direct matrical calculation
shows that

A1U +X = UA2 and A1V + Y = V A3.
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Since σ(A1) ∩ σ(A2) = ∅ = σ(A1) ∩ σ(A3), it follows from Lemma 2.10 that
τA1,A2 , τA1,A3 are both invertible. Then U = −τ−1

A1,A2
(X) and V = −τ−1

A1,A3
(Y ). �

Lemma 2.12. Let Ai ∈ B(Hi), i = 1, 2, 3. If σ(A1), σ(A2), and σ(A3) are
pairwise disjoint, then there exist rank-one operators X ∈ B(H2,H1) and Y ∈
B(H3,H1) such that the operator R defined by

R =

A1 X Y
0 A2 0
0 0 A3

H1

H2

H3

is not complex symmetric.

Proof. For 1 ≤ i ≤ 3, take a unit vector ei ∈ Hi. Define F1 ∈ B(H2,H1) and
F2 ∈ B(H3,H1) as

F1 = e1 ⊗ e2, F2 = e1 ⊗ e3.

One can see that ranF1 = ranF2 = Ce1. Define X = F1A2 − A1F1 and Y =
F2A3−A1F2. Since σ(A1)∩σ(A2) = ∅ = σ(A1)∩σ(A3), it follows from Lemma 2.10
that τA1,A2 and τA1,A3 are both invertible,

F1 = −τ−1
A1,A2

(X) and F2 = −τ−1
A1,A3

(Y ). (2.1)

Set

R =

A1 X Y
0 A2 0
0 0 A3

 .

In view of Lemma 2.11 and (2.1), we have

E(σ2;R) =

0 F1 0
0 I2 0
0 0 0

 and E(σ3;R) =

0 0 F2

0 0 0
0 0 I3

 .

Then we obtain

E(σ2;R)∗ =

 0 0 0
F ∗
1 I2 0
0 0 0

 and E(σ3;R)∗ =

 0 0 0
0 0 0
F ∗
2 0 I3

 .

Thus 〈
E(σ2;R)∗x,E(σ3;R)∗y

〉
= 0, ∀x, y ∈ H. (2.2)

Now it suffices to prove that R is not complex symmetric. In fact, if not, then
there exists a conjugation C such that CRC = R∗. By Lemma 2.3, CE(σi;R)C =
E(σi;R)∗ for 1 ≤ i ≤ 3. Then, by (2.2), we have

1 = 〈e1, e1〉 =
〈
E(σ2;R)e2, E(σ3;R)e3

〉
=

〈
CE(σ2;R)∗Ce2, CE(σ3;R)∗Ce3

〉
=

〈
E(σ3;R)∗Ce3, E(σ2;R)∗Ce2

〉
= 0,

which is absurd. This ends the proof. �
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Corollary 2.13. If T ∈ B(H) and σ(T ) consists of at least three components,
then T is similar to an operator that is not complex symmetric.

Proof. Since σ(T ) consists of at least three components, we can find nonempty
clopen subsets σ1, σ2, σ3, which are pairwise disjoint so that σ(T ) =

⋃3
i=1 σi. Using

Lemma 2.1 twice, we can write T as

T =

A1 ∗ ∗
0 A2 ∗
0 0 A3

H1

H2

H3

,

where H =
⊕3

i=1Hi and σ(Ai) = σi, i = 1, 2, 3. By Lemma 2.12, there exist
rank-one operators X : H2 → H1 and Y : H3 → H1 such that the operator R
defined by

R =

A1 X Y
0 A2 0
0 0 A3

H1

H2

H3

is not complex symmetric. By Lemma 2.2, one can see that

T ∼
3⊕

i=1

Ai ∼ R.

This ends the proof. �

Lemma 2.14 ([9, Theorem 7.3]). If T ∈ B(H) is essentially normal, then T ∈
CSO if and only if T ∈ CSO.

Proposition 2.15. If T ∈ B(H) and σ(T ) consists of at least three components,
then S(T ) * CSO.

Proof. Since σ(T ) consists of at least three components, we can find nonempty
clopen subsets σ1, σ2, σ3, which are pairwise disjoint so that σ(T ) =

⋃3
i=1 σi. Using

Lemma 2.1 twice, we can write T as

T =

A1 ∗ ∗
0 A2 ∗
0 0 A3

H1

H2

H3

,

where H =
⊕3

i=1 Hi and σ(Ai) = σi, i = 1, 2, 3.
Choose analytic Cauchy domains Ω1,Ω2, and Ω3 such that σi ⊂ Ωi and Ωi∩Ωj =

∅ whenever i 6= j. By Corollary 2.9, we can choose essentially normal Bi ∈ S(Ai)
with σ(Bi) ⊂ Ωi for 1 ≤ i ≤ 3, and so

⊕3
i=1Bi lies in the closure of the similarity

orbit of
⊕3

i=1Ai.
By Lemma 2.12, there exists rank-one operators X : H2 → H1 and Y : H3 →

H1 such that the operator R defined by

R =

B1 X Y
0 B2 0
0 0 B3

H1

H2

H3
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is not complex symmetric. Since R is essentially normal, it follows from Lemma
2.14 that R /∈ CSO . Since σ(Ai)’s are pairwise disjoint, it follows from Lemma 2.2
that

R ∼
3⊕

i=1

Bi and T ∼
3⊕

i=1

Ai.

Thus R ∈ S(T ). This means that S(T ) * CSO or, equivalently, S(T ) * CSO . �

Lemma 2.16. Let {e1, e2, e3} be an orthonormal basis of C3, and let T = e1 ⊗
e2 + λe3 ⊗ e3, where λ ∈ C is nonzero. Then T is similar to an operator that is
not complex symmetric.

Proof. Obviously, T can be written as

T =

0 1 0
0 0 0
0 0 λ

 e1
e2
e3

.

By Lemma 2.2, T is similar to the following operator:

R =

0 1 1
0 0 0
0 0 λ

 e1
e2
e3

.

Now it remains to show that R is not complex symmetric.
For a proof by contradiction, we assume that C is a conjugation on C3 and

CRC = R∗. Compute to see that

kerR = {αe1 : α ∈ C}, kerR∗ = {αe2 : α ∈ C},

and

ker(R− λ) =
{
α(e1 + λe3) : α ∈ C

}
, ker(R− λ)∗ = {αe3 : α ∈ C}.

From CRC = R∗ one can see that C(kerR∗) = kerR. Then there exists nonzero
α1 such that Ce2 = α1e1. On the other hand, since CRC = R∗, we deduce that
C(R − λ)C = (R − λ)∗ and C(ker(R − λ)∗) = ker(R − λ). Then there exists
nonzero α2 such that Ce3 = α2(e1 + λe3). Hence

0 = 〈e2, e3〉 = 〈Ce3, Ce2〉 =
〈
α2(e1 + λe3), α1e1

〉
= α1α2 6= 0,

a contradiction. Thus R is not complex symmetric. This ends the proof. �

Lemma 2.17 ([9, Lemma 3.2]). If T = A ⊕ N , where N is normal, then T is
complex symmetric if and only if A is complex symmetric.

Lemma 2.18. If T ∈ B(H) is not polynomially compact, then S(T ) * CSO.

Proof. Choose a real number δ > ‖T‖. Choose two infinite-dimensional subspaces
H1,H2 of H such that H = H1⊕H2. Choose a normal operator N ∈ B(H1) with
σ(N) = {z ∈ C : |z| ≤ δ}. Assume that {ei}∞i=1 is an orthonormal basis of H2.
Define A ∈ B(H2) as

Aei = δei+1, ∀i ≥ 1.
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Set R = N ⊕ A. It is easy to see that R is essentially normal with σ(R) =

σlre(R) = {z ∈ C : |z| ≤ δ}. By Lemma 2.5, we obtain R ∈ S(T ).
On the other hand, noting that dimkerA = 0 6= 1 = dimkerA∗, we deduce

that A is not complex symmetric. In view of Lemma 2.17, R is not complex
symmetric. Since R is essentially normal, it follows from Lemma 2.14 R /∈ CSO .
This shows that S(T ) * CSO or, equivalently, S(T ) * CSO . �

Proposition 2.19. Let T ∈ B(H), and assume that σ(T ) consists of two com-
ponents. If S(T ) ⊆ CSO, then there exist distinct complex numbers λ1, λ2 such
that (T − λ1)(T − λ2) = 0.

Proof. Assume that σ(T ) = σ1 ∪ σ2, where σ1 and σ2 are components of σ(T ).
Clearly, σ1 and σ2 are connected clopen subsets of σ(T ). Then T can be written
as

T =

[
A1 ∗
0 A2

]
H1

H2
,

where H = H1⊕H2 and σ(Ai) = σi, i = 1, 2. Then, by Lemma 2.2, T ∼ A1⊕A2.
We claim that each of σ1, σ2 is a singleton. In fact, if not, then we may assume

that σ1 is not a singleton. Since σ1 is connected, it follows that ∂σ1 is infinite
and, by Lemma 2.4, σe(T ) ⊃ σe(A1) ⊃ ∂σ1 is infinite. Then T is not polynomially
compact and, by Lemma 2.18, we obtain S(T ) * CSO , a contradiction.

Assume that σ(Ai) = {λi} for i = 1, 2. Without loss of generality, we may
assume that λ1 = 0. Otherwise, noting that S(T ) ⊂ CSO implies S(T − λ1) ⊂
CSO , we need only deal with T − λ1.

Now it suffices to prove that A1 = 0 and A2 = λ2I2, where I2 is the identity
operator onH2. For a proof by contradiction, we may directly assume that A1 6= 0.
Choose two unit vectors e1, e2 ∈ H1 with 〈e1, e2〉 = 0. Then, by Lemma 2.7,

e1 ⊗ e2 ∈ S(A1) and λ2I2 ∈ S(A2). Hence R = (e1 ⊗ e2)⊕ λ2I2 ∈ S(A1 ⊕ A2) =

S(T ).
Choose a unit vector e3 ∈ H2. Set H3 = ∨{e1, e2, e3}, and set H4 = H 	H3,

where ∨ denotes closed linear span. Then H3 reduces R, N := R|H4 is normal,
and

R|H3 =

0 1 0
0 0 0
0 0 λ2

 e1
e2
e3

.

By Lemma 2.16, R|H3 is similar to an operator F on H3 that is not complex
symmetric. By Lemma 2.17, N ⊕ F is not complex symmetric. Since N ⊕ F is
essentially normal, it follows from Lemma 2.14 that N ⊕ F /∈ CSO . Noting that
R ∼ N ⊕ F and R ∈ S(T ), we obtain N ⊕ F ∈ S(T ). Hence S(T ) * CSO .

Equivalently, we obtain S(T ) * CSO , a contradiction. This ends the proof. �

Proposition 2.20. Let T ∈ B(H), and assume that σ(T ) is connected. If S(T ) ⊂
CSO, then there exists λ ∈ C such that (T − λ)2 = 0.

Proof. First we claim that σ(T ) is a singleton. In fact, if not, then σ(T ) is an infi-
nite, connected set. It follows that ∂σ(T ) is infinite and, by Lemma 2.4, σe(T ) ⊃
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∂σ(T ) is infinite. Then T is not polynomially compact and, by Lemma 2.18, we
have S(T ) * CSO , a contradiction.

Assume that σ(T ) = {λ} for some λ ∈ C. It remains to prove that (T−λ)2 = 0.
For a proof by contradiction, we assume that (T−λ)2 6= 0. Choose an orthonormal
triple {e1, e2, e3} ⊂ H. Then, by Lemma 2.6, S = e1 ⊗ e2 +

e2
2
⊗ e3 ∼ e1 ⊗ e2 +

e2 ⊗ e3 ∈ S(T − λ). Hence S + λ ∈ S(T ).
Denote H1 = ∨{e1, e2, e3}, and denote H2 = H 	 H1. Then H1 reduces S,

S|H2 = 0, and

S|H1 =

0 1 0
0 0 1

2

0 0 0

 e1
e2
e3

.

By Lemma 2.17 and [13, Proposition 5.6], S is not complex symmetric. Since S
is essentially normal, it follows from Lemma 2.14 that S /∈ CSO . This implies
S+λ /∈ CSO . Thus S(T ) * CSO or, equivalently, S(T ) * CSO , a contradiction.
This ends the proof. �

Now we are going to give the proof of Theorem 1.2.

Proof of Theorem 1.2. The implications (iii)=⇒(i)=⇒(ii) are clear.

(iv)=⇒(iii). Assume that λ1, λ2 ∈ C and (T − λ1)(T − λ2) = 0. If R ∈ S(T ),
then there exist invertible operators {Xn : n ≥ 1} so that XnTX

−1
n → R. It

follows that (XnTX
−1
n − λ1)(XnTX

−1
n − λ2) −→ (R− λ1)(R− λ2). Noting that

(XnTX
−1
n − λ1)(XnTX

−1
n − λ2) = Xn(T − λ1)(T − λ2)X

−1
n = 0,

we obtain (R − λ1)(R − λ2) = 0. Then, in view of [8, Theorem 2], R is complex
symmetric.

(ii)=⇒(iv). Since S(T ) ⊂ CSO , by Proposition 2.15, σ(T ) consists of at most
two components. In view of Propositions 2.19 and 2.20, we deduce that T is an
algebraic operator of degree at most 2. �
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