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Abstract. For Figà-Talamanca–Herz algebras Ap(G), 1 < p < ∞, of a locally
compact group G and a closed subgroup H of G, we prove an injection theorem
for local Ditkin sets.

1. Introduction and preliminaries

Let G be a locally compact abelian group, let H be a closed subgroup, and
let F be a closed subset of H. The following result is well known and classical
(see [8, Theorem 7.4.13]): F is a Ditkin set in G if and only if F is a Ditkin
set in the subgroup H. In this article we extend this statement to a class of
noncommutative groups, including the amenable groups (Theorem 4.1). In this

generalization we replace L1(Ĝ) by the Fourier algebra A2(G) or, more generally,
by the Figà-Talamanca–Herz algebra Ap(G). Partial results (for p = 2 or for every
1 < p < ∞) are already known. For normal subgroups see [2, Théorème 12],
and for neutral subgroups see [1, Corollary 7]). For other directly related works,
see also E. Kaniuth and A. Lau’s [5, Theorem 3.4] and K. Parthasarathy and
N. S. Kumar’s [7, Theorem 3.5].

We use a natural action (denoted u · T ) of Ap(G) on the Banach space L of
all bounded operators of Lp(G). Our proof requires a new characterization of the
notion of locally p-Ditkin sets involving not only convolution operators but also
general bounded operators of Lp. A closed subset F of G is locally p-Ditkin if and
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only if whenever u ∈ Ap(G) vanishes on F and Y ∈ CV p(G) has support in F ,
then the equation u·X = Y has no solution X ∈ L unless Y = 0 (Propositions 3.4
and 3.5).

2. An action of Ap(G) on L

Let Ap(G) be the set of all pairs ((rn), (sn)) where (rn) is a sequence of
Lp(G) and (sn) is a sequence of Lp′(G) such that

∑
Np(rn)Np′(sn) converges.

For ((rn), (sn)) ∈ Ap(G) we denote by T((rn),(sn)) the trace class operator

〈T((rn),(sn))f, g〉 =
∑〈

[rn], g
〉〈
f, [sn]

〉
(we write T((rn),(sn)) ∈ T ). Putting

F((rn),(sn))(x, y) =
∑

rn(x)sn(y)

if ∑
rn(x)sn(y)

converges and 0 otherwise, we get

〈T((rn),(sn))f, g〉 =
∫
G×G

F((rn),(sn))(x, y)g(x)f(y) dx dy.

The integral formula for T((rn),(sn)) permits to associate in a bilinear way to ϕ ∈
Cb(G×G) and S ∈ T an operator ϕS of L with ‖ϕS‖ ≤ ‖ϕ‖∞‖S‖T . Setting for
ψ : G×G→ C (Ξψ)(x, y) = ψ(y, x) and for ϕ : G→ C (MGϕ)(x, y) = ϕ(yx−1),
we get for u ∈ Ap(G) and S ∈ T ΞMGuS ∈ T and

‖ΞMGuS‖T ≤ ‖u‖Ap(G)‖S‖T .

Via the pairing of L with T , we obtain therefore an action of Ap(G) on L: for
u ∈ Ap(G) and for U ∈ L the operator MGuU is defined by

〈MGuU, S〉L,T = 〈U,ΞMGuS〉L,T
for every S ∈ T .

Definition 2.1. Let G be a locally compact group and 1 < p <∞. For u ∈ Ap(G)
and T ∈ L(Lp(G)) we put

u · T = τp
(
MG(u)τpTτp

)
τp,

where τp(f)(x) = f(x−1)∆G(x
−1)1/p for f : G→ C.

Proposition 2.2. Let G be a locally compact group and 1 < p <∞. Then:

(1) for u ∈ Ap(G), T ∈ L and α ∈ C we have α(u · T ) = (αu) · T = u · (αT );
(2) (uv) · T = u · (v · T ) for u, v ∈ Ap(G) and T ∈ L;
(3) (u+ v) · T = u · T + v · T for u, v ∈ Ap(G) and T ∈ L;
(4) u · (S + T ) = u · S + u · T for u ∈ Ap(G) and S, T ∈ L;
(5) ‖u · T‖ ≤ ‖u‖Ap‖T‖ for u ∈ Ap(G) and T ∈ L;
(6) for u ∈ Ap(G) and T ∈ CV p(G) we have u · T = uT .
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Proof. We verify (6) at first for u = k ∗ ľ with k, l ∈ C00(G). For every S ∈ T we
get

〈k ∗ ľ · T, S〉L,T =

∫
G

〈M
t−1 (̌l)

TM
t−1 (ǩ)

, S〉L,T dt.

Putting for ϕ, ψ ∈ C00(G) S = T(ϕ),(ψ) we have

〈k ∗ ľ · T, S〉L,T =

∫
G

〈
TM

t−1 (ǩ)
[ϕ],M

t−1 (ľ)
[ψ]

〉
Lp,Lp′ dt,

and, consequently,〈
k ∗ ľ · T [ϕ], [ψ]

〉
Lp,Lp′ =

∫
G

〈
T
[
t−1(ǩ)ϕ

]
,
[
t−1(ľ)ψ

]〉
Lp,Lp′ dt.

For an arbitrary u ∈ Ap(G) we choose for ε > 0 two sequences (kn), (ln) of C00(G)
such that

∑
Np(kn)Np′(ln) <∞ and such that

u =
∑

kn ∗ ľn.

Let N be a positive integer with
∞∑
N+1

Np(kn)Np′(ln) < ε
(
2‖T‖

)−1
.

It suffices then to put

v =
∞∑

n=N+1

kn ∗ ľn

to get

‖u · T − v · T‖ < ε

2
,

and, consequently,

‖u · T − uT‖ ≤ ‖u · T − v · T‖+ ‖v · T − vT‖+ ‖vT − uT‖ < ε. �

Remark 2.3. As a consequence of (6), for u ∈ Ap(G) and for T ∈ PM p(G) we have
〈v, u · T 〉 = 〈uv, T 〉 for every v ∈ Ap(G). In particular, for G abelian, u ∈ A2(G),
and T ∈ CV p(G), we have

û · T = Φ−1

Ĝ
(u) ∗ T̂ ,

where ΦĜ(f)(x) =
∫
Ĝ
f(χ)χ(x) dχ for f ∈ L1(Ĝ) and x ∈ G.

For H an arbitrary closed subgroup of G we denote by i the canonical extension
to CV p(H) of the inclusion of H into G.

The proof of the injection theorem for locally Ditkin sets strongly depends on
the following theorem (see [3, Theorem 5]).

Theorem 2.4. Let G be a locally compact group, let H be a closed subgroup, and
let 1 < p < ∞. Then there is a linear map P of L(Lp(G)) into L(Lp(H)) such
that

(1) ‖P(T )‖ ≤ ‖T‖ for every T ∈ L(Lp(G));
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(2) P(i(S)) = S for every S ∈ CV p(H);
(3) P(u · T ) = ResH u · P(T ) for every u ∈ Ap(G) and every T ∈ L(Lp(G)).

3. A characterization of Ditkin sets involving bounded operators

Using the generalization of Wiener’s theorem to CV p(G) twice, we first obtain
the following lemma.

Lemma 3.1. Let G be a locally compact group, let 1 < p < ∞, and let T ∈
CV p(G). If k ∗ l · T = 0 for every k, l ∈ C00(G), we have necessarily T = 0.

Proof. Suppose that T 6= 0. By the generalization of Wiener’s theorem (see [4])
there is x ∈ suppT . Choose k, l ∈ C00(G) such that k ∗ l(x) 6= 0; this implies (see
[4, p. 119]) x ∈ supp(k ∗ l) · T and therefore k ∗ l · T 6= 0. �

Definition 3.2. Let G be a locally compact group, let 1 < p < ∞, and let F be
a closed subset of G. We say that F is a locally p-Ditkin subset of G if for every
u ∈ Ap(G)∩C00(G) vanishing on F and for every ε > 0 there is v ∈ Ap(G)∩C00(G)
with supp v∩F = ∅ and ‖u−uv‖ < ε. The set is said to be a p-Ditkin set of G if for
every u ∈ Ap(G) vanishing on F and for every ε > 0 there is v ∈ Ap(G)∩C00(G)
with supp v ∩ F = ∅ and ‖u− uv‖ < ε.

Remark 3.3. If G is amenable, then every locally p-Ditkin set is indeed p-Ditkin.

The following characterization of locally p-Ditkin set will be useful. For G
abelian and p = 2, see [8, Theorem 7.4.17].

Proposition 3.4. Let G be a locally compact group, let F be a closed subset of G,
and let 1 < p <∞. Then the following statements are equivalent:

(1) the set F is locally p-Ditkin;
(2) for every T ∈ PM p(G) and for every u ∈ Ap(G) with compact support,

with suppu · T ⊂ F and ResF u = 0 we have 〈u, T 〉 = 0;
(3) for every T ∈ CV p(G) with compact support and for every u ∈ Ap(G) with

compact support, with suppu · T ⊂ F and ResF u = 0 we have 〈u, T 〉 = 0;
(4) for every T ∈ CV p(G) and for every u ∈ Ap(G) with suppu · T ⊂ F and

ResF u = 0 we have u · T = 0.

Proof. 1. (1) implies (2).
Let T ∈ PM p(G) and u ∈ Ap(G)∩C00(G) with ResH u = 0 and suppu ·T ⊂ F .

Let ε be a positive real number. There is v ∈ Ap(G)∩C00(G) with supp v∩F = ∅
and

‖u− uv‖Ap <
(
1 + ‖T‖

)−1
ε.

From supp(uv)·T = ∅ it follows that (uv)·T = 0. Choose now w ∈ Ap(G)∩C00(G)
such that w(x) = 1 for every x ∈ supp v. We get

〈uv, T 〉 = 〈v, u · T 〉 = 〈vw, u · T 〉 =
〈
w, (uv) · T

〉
= 0,

and finally ∣∣〈u, T 〉∣∣ ≤ ∣∣〈u, T 〉 − 〈uv, T 〉
∣∣+ ∣∣〈uv, T 〉∣∣ < ε.

2. (2) implies (3).
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The operator T having compact support belongs to PM p(G).
3. (3) implies (4).
Let T ∈ CV p(G), and let u ∈ Ap(G) with supp u ·T ⊂ F and with ResF u = 0.

Consider four arbitrary functions ϕ, ψ, k, l ∈ C00(G). The convolution operator
(k ∗ l) · T has compact support; the support of (uϕ ∗ ψ) · ((k ∗ l) · T ) is contained
in F ; and ResF uϕ∗ψ = 0, and, consequently, 〈uϕ∗ψ, (k∗ l) ·T 〉 = 0. This implies
〈k ∗ lϕ∗ψ, u ·T 〉 = 0, and, applying Lemma 3.1 twice, we conclude that u ·T = 0.

4. (4) implies (1).
Suppose that there exists a function u ∈ Ap(G) ∩ C00(G) with ResH u = 0

which is not in the norm closure in Ap(G) of{
uv

∣∣ v ∈ Ap(G) ∩ C00(G), supp v ∩ F = ∅
}
.

There is T ∈ PM p(G) with 〈u, T 〉 6= 0 and 〈uv, T 〉 = 0 for every v ∈ Ap(G) ∩
C00(G) with supp v ∩ F = ∅.

Let x ∈ G \ F . We claim that x /∈ suppu · T . Suppose that x ∈ suppu · T .
Choose a compact neighborhood V of x such that V ∩F = ∅. There is v ∈ Ap(G)
with supp v ⊂ V and 〈v, u · T 〉 6= 0. But from v ∈ C00(G) and supp v ∩ F = ∅ we
get 〈uv, T 〉 = 0. This implies x /∈ suppu · T .

We have proved that suppu · T ⊂ F and, consequently, that u · T = 0. It
suffices finally to choose w ∈ Ap(G) ∩ C00(G) with w(x) = 1 on supp u to get
〈u, T 〉 = 〈uw, T 〉 = 〈w, u · T 〉 = 0, which is a contradiction. �

To obtain our main result we need the following improvement of Proposi-
tion 3.4(1) ⇒ (4).

Proposition 3.5. Let G be a locally compact group, let F be a closed subset of
G, let 1 < p < ∞, u ∈ Ap(G), and let T ∈ L(Lp(G)). Suppose that F is locally
p-Ditkin, that u ·T ∈ CV p(G), that ResF u = 0, and that suppu ·T ⊂ F ; we have
then u · T = 0.

Proof. Let v ∈ Ap(G)∩C00(G), and let ε > 0. There is w ∈ Ap(G)∩C00(G) with
suppw ∩ F = ∅ and

‖vu− vuw‖Ap <
(
1 + ‖T‖

)−1
ε.

We have v ·(u ·T ) ∈ CV p(G) and supp v ·(u ·T ) ⊂ F , and therefore (wuv) ·T = 0.
On the other hand,∥∥(uv) · T − (uvw) · T

∥∥ ≤ ‖uv − uvw‖Ap‖T‖ ≤ ε‖T‖
(1 + ‖T‖)

< ε.

This implies (uv) ·T = 0, and consequently v ·(u ·T ) = 0, and finally u ·T = 0. �

Remark 3.6. This result is new even for G = R and p = 2.

4. Injection theorem for Ditkin sets

Theorem 4.1. Let G be a locally compact group, let H be an arbitrary closed
subgroup of G, 1 < p <∞, and let F be a closed subset of H. Then the following
statements are equivalent:

(1) the set F is locally p-Ditkin in G;
(2) the set F is locally p-Ditkin in H.
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Proof. 1. (1) implies (2).
Let u ∈ Ap(H) ∩ C00(H) with ResF u = 0 and ε > 0. According to C. Herz

(see [4]) there is v′ ∈ Ap(G) with ResH v
′ = u. Choose v′′ ∈ Ap(G)∩C00(G) with

v′′(x) = 1 for every x ∈ suppu. Putting v = v′v′′ we get v ∈ Ap(G) ∩C00(G) and
ResH v = u. There is, consequently, w ∈ Ap(G)∩C00(G) with suppw∩F = ∅ and
‖v− vw‖Ap < ε. It follows that ‖u− uResH w‖Ap < ε with suppResH w ∩F = ∅.

2. (2) implies (1).
It suffices to show that, for u ∈ Ap(G) and for T ∈ CV p(G) with ResH u = 0

and suppu · T ⊂ F , we have u · T = 0.
By Lohoué’s theorem (see [6, Théorème 5]) there is S ∈ CV p(H) such that

i(S) = u ·T . Let P be the linear map of L(Lp(G)) into L(Lp(H)) of Theorem 2.4;
then, applying (2) and (3) of Theorem 2.4, we get

S = P
(
i(S)

)
= P(u · T ) = ResH u · P(T ).

Taking into account that supp i(S) = suppS we obtain that ResH u · P(T ) ∈
CV p(H) and that suppResH u · P(T ) ⊂ F . We cannot assert that the operator
P(T ) belongs to CV p(H), but Proposition 3.5 implies ResH u · P(T ) = 0; hence
S = 0, and finally u · T = 0. �

Acknowledgment. Thanks to the anonymous referee for corrections and helpful
comments.
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