

Ann. Funct. Anal. 7 (2016), no. 1, 96–101

http://dx.doi.org/10.1215/20088752-3334778

ISSN: 2008-8752 (electronic) http://projecteuclid.org/afa

INJECTION THEOREM FOR LOCAL DITKIN SETS

ANTOINE DERIGHETTI

Dedicated to Professor Anthony To-Ming Lau

Communicated by K. F. Taylor

ABSTRACT. For Figà-Talamanca–Herz algebras $A_p(G)$, 1 , of a locally compact group <math>G and a closed subgroup H of G, we prove an injection theorem for local Ditkin sets.

1. Introduction and preliminaries

Let G be a locally compact abelian group, let H be a closed subgroup, and let F be a closed subset of H. The following result is well known and classical (see [8, Theorem 7.4.13]): F is a Ditkin set in G if and only if F is a Ditkin set in the subgroup H. In this article we extend this statement to a class of noncommutative groups, including the amenable groups (Theorem 4.1). In this generalization we replace $L^1(\widehat{G})$ by the Fourier algebra $A_2(G)$ or, more generally, by the Figà-Talamanca–Herz algebra $A_p(G)$. Partial results (for p=2 or for every 1) are already known. For normal subgroups see [2, Théorème 12], and for neutral subgroups see [1, Corollary 7]). For other directly related works, see also E. Kaniuth and A. Lau's [5, Theorem 3.4] and K. Parthasarathy and N. S. Kumar's [7, Theorem 3.5].

We use a natural action (denoted $u \cdot T$) of $A_p(G)$ on the Banach space \mathcal{L} of all bounded operators of $L^p(G)$. Our proof requires a new characterization of the notion of locally p-Ditkin sets involving not only convolution operators but also general bounded operators of L^p . A closed subset F of G is locally p-Ditkin if and

Copyright 2016 by the Tusi Mathematical Research Group.

Received Apr. 23, 2015; Accepted May 11, 2015.

²⁰¹⁰ Mathematics Subject Classification. Primary 43A15; Secondary 43A46, 43A22.

Keywords. abstract harmonic analysis, locally compact group, L^p -spaces and other function spaces on groups, special sets on groups.

only if whenever $u \in A_p(G)$ vanishes on F and $Y \in CV_p(G)$ has support in F, then the equation $u \cdot X = Y$ has no solution $X \in \mathcal{L}$ unless Y = 0 (Propositions 3.4 and 3.5).

2. An action of
$$A_p(G)$$
 on \mathcal{L}

Let $\mathcal{A}_p(G)$ be the set of all pairs $((r_n), (s_n))$ where (r_n) is a sequence of $\mathcal{L}^p(G)$ and (s_n) is a sequence of $\mathcal{L}^{p'}(G)$ such that $\sum N_p(r_n)N_{p'}(s_n)$ converges. For $((r_n), (s_n)) \in \mathcal{A}_p(G)$ we denote by $T_{((r_n), (s_n))}$ the trace class operator

$$\langle T_{((r_n),(s_n))}f,g\rangle = \sum \langle [r_n],g\rangle \langle f,[\overline{s_n}]\rangle$$

(we write $T_{((r_n),(s_n))} \in \mathcal{T}$). Putting

$$F_{((r_n),(s_n))}(x,y) = \sum r_n(x)s_n(y)$$

if

$$\sum r_n(x)s_n(y)$$

converges and 0 otherwise, we get

$$\langle T_{((r_n),(s_n))}f,g\rangle = \int_{G\times G} F_{((r_n),(s_n))}(x,y)\overline{g(x)}f(y)\,dx\,dy.$$

The integral formula for $T_{((r_n),(s_n))}$ permits to associate in a bilinear way to $\varphi \in C^b(G \times G)$ and $S \in \mathcal{T}$ an operator φS of \mathcal{L} with $\|\varphi S\| \leq \|\varphi\|_{\infty} \|S\|_{\mathcal{T}}$. Setting for $\psi : G \times G \to \mathbb{C}$ $(\Xi \psi)(x,y) = \psi(y,x)$ and for $\varphi : G \to \mathbb{C}$ $(M_G \varphi)(x,y) = \varphi(yx^{-1})$, we get for $u \in A_p(G)$ and $S \in \mathcal{T} \Xi M_G uS \in \mathcal{T}$ and

$$\|\Xi M_G uS\|_{\mathcal{T}} \le \|u\|_{A_p(G)} \|S\|_{\mathcal{T}}.$$

Via the pairing of \mathcal{L} with \mathcal{T} , we obtain therefore an action of $A_p(G)$ on \mathcal{L} : for $u \in A_p(G)$ and for $U \in \mathcal{L}$ the operator $M_G uU$ is defined by

$$\langle M_G uU, S \rangle_{\mathcal{L}, \mathcal{T}} = \langle U, \Xi M_G uS \rangle_{\mathcal{L}, \mathcal{T}}$$

for every $S \in \mathcal{T}$.

Definition 2.1. Let G be a locally compact group and $1 . For <math>u \in A_p(G)$ and $T \in \mathcal{L}(L^p(G))$ we put

$$u \cdot T = \overline{\tau_p(M_G(u)\tau_p\overline{T}\tau_p)\tau_p},$$

where $\tau_p(f)(x) = f(x^{-1})\Delta_G(x^{-1})^{1/p}$ for $f: G \to \mathbb{C}$.

Proposition 2.2. Let G be a locally compact group and 1 . Then:

- (1) for $u \in A_p(G)$, $T \in \mathcal{L}$ and $\alpha \in \mathbb{C}$ we have $\alpha(u \cdot T) = (\overline{\alpha}u) \cdot T = u \cdot (\alpha T)$;
- (2) $(uv) \cdot T = u \cdot (v \cdot T)$ for $u, v \in A_n(G)$ and $T \in \mathcal{L}$;
- (3) $(u+v) \cdot T = u \cdot T + v \cdot T$ for $u, v \in A_p(G)$ and $T \in \mathcal{L}$;
- (4) $u \cdot (S+T) = u \cdot S + u \cdot T \text{ for } u \in A_p(G) \text{ and } S, T \in \mathcal{L};$
- (5) $||u \cdot T|| \le ||u||_{A_p} ||T||$ for $u \in A_p(G)$ and $T \in \mathcal{L}$;
- (6) for $u \in A_p(G)$ and $T \in CV_p(G)$ we have $u \cdot T = uT$.

Proof. We verify (6) at first for $u = \overline{k} * \check{l}$ with $k, l \in C_{00}(G)$. For every $S \in \mathcal{T}$ we get

$$\langle \overline{k} * \widetilde{l} \cdot T, S \rangle_{\mathcal{L}, \mathcal{T}} = \int_{G} \langle M_{t^{-1}(\widetilde{l})} T M_{t^{-1}(\widetilde{k})}, S \rangle_{\mathcal{L}, \mathcal{T}} dt.$$

Putting for $\varphi, \psi \in C_{00}(G)$ $S = T_{(\varphi),(\overline{\psi})}$ we have

$$\langle \overline{k} * \widetilde{l} \cdot T, S \rangle_{\mathcal{L}, \mathcal{T}} = \int_{G} \langle T M_{t^{-1}(\widetilde{k})}[\varphi], M_{t^{-1}(\widetilde{l})}[\psi] \rangle_{L^{p}, L^{p'}} dt,$$

and, consequently,

$$\langle \overline{k} * \widetilde{l} \cdot T[\varphi], [\psi] \rangle_{L^p, L^{p'}} = \int_G \langle T[_{t^{-1}}(\widetilde{k})\varphi], [_{t^{-1}}(\widetilde{l})\psi] \rangle_{L^p, L^{p'}} dt.$$

For an arbitrary $u \in A_p(G)$ we choose for $\varepsilon > 0$ two sequences (k_n) , (l_n) of $C_{00}(G)$ such that $\sum N_p(k_n)N_{p'}(l_n) < \infty$ and such that

$$u = \sum \overline{k_n} * \widetilde{l_n}.$$

Let N be a positive integer with

$$\sum_{N+1}^{\infty} N_p(k_n) N_{p'}(l_n) < \varepsilon (2||T||)^{-1}.$$

It suffices then to put

$$v = \sum_{n=N+1}^{\infty} \overline{k_n} * \check{l_n}$$

to get

$$||u \cdot T - v \cdot T|| < \frac{\varepsilon}{2},$$

and, consequently,

$$||u \cdot T - uT|| \le ||u \cdot T - v \cdot T|| + ||v \cdot T - vT|| + ||vT - uT|| \le \varepsilon.$$

Remark 2.3. As a consequence of (6), for $u \in A_p(G)$ and for $T \in PM_p(G)$ we have $\langle v, u \cdot T \rangle = \langle uv, T \rangle$ for every $v \in A_p(G)$. In particular, for G abelian, $u \in A_2(G)$, and $T \in CV_p(G)$, we have

$$\widehat{u \cdot T} = \Phi_{\widehat{G}}^{-1}(\overline{u}) * \widehat{T},$$

where $\Phi_{\widehat{G}}(f)(x) = \int_{\widehat{G}} f(\chi)\chi(x) d\chi$ for $f \in L^1(\widehat{G})$ and $x \in G$.

For H an arbitrary closed subgroup of G we denote by i the canonical extension to $CV_p(H)$ of the inclusion of H into G.

The proof of the injection theorem for locally Ditkin sets strongly depends on the following theorem (see [3, Theorem 5]).

Theorem 2.4. Let G be a locally compact group, let H be a closed subgroup, and let $1 . Then there is a linear map <math>\mathcal{P}$ of $\mathcal{L}(L^p(G))$ into $\mathcal{L}(L^p(H))$ such that

(1)
$$\|\mathcal{P}(T)\| \le \|T\|$$
 for every $T \in \mathcal{L}(L^p(G))$;

- (2) $\mathcal{P}(i(S)) = S$ for every $S \in CV_p(H)$;
- (3) $\mathcal{P}(u \cdot T) = \operatorname{Res}_H u \cdot \mathcal{P}(T)$ for every $u \in A_p(G)$ and every $T \in \mathcal{L}(L^p(G))$.

3. A CHARACTERIZATION OF DITKIN SETS INVOLVING BOUNDED OPERATORS

Using the generalization of Wiener's theorem to $CV_p(G)$ twice, we first obtain the following lemma.

Lemma 3.1. Let G be a locally compact group, let $1 , and let <math>T \in CV_p(G)$. If $k * l \cdot T = 0$ for every $k, l \in C_{00}(G)$, we have necessarily T = 0.

Proof. Suppose that $T \neq 0$. By the generalization of Wiener's theorem (see [4]) there is $x \in \text{supp } T$. Choose $k, l \in C_{00}(G)$ such that $k * l(x) \neq 0$; this implies (see [4, p. 119]) $x \in \text{supp}(k * l) \cdot T$ and therefore $k * l \cdot T \neq 0$.

Definition 3.2. Let G be a locally compact group, let 1 , and let <math>F be a closed subset of G. We say that F is a locally p-Ditkin subset of G if for every $u \in A_p(G) \cap C_{00}(G)$ vanishing on F and for every $\varepsilon > 0$ there is $v \in A_p(G) \cap C_{00}(G)$ with supp $v \cap F = \emptyset$ and $||u - uv|| < \varepsilon$. The set is said to be a p-Ditkin set of G if for every $u \in A_p(G)$ vanishing on F and for every $\varepsilon > 0$ there is $v \in A_p(G) \cap C_{00}(G)$ with supp $v \cap F = \emptyset$ and $||u - uv|| < \varepsilon$.

Remark 3.3. If G is amenable, then every locally p-Ditkin set is indeed p-Ditkin.

The following characterization of locally p-Ditkin set will be useful. For G abelian and p = 2, see [8, Theorem 7.4.17].

Proposition 3.4. Let G be a locally compact group, let F be a closed subset of G, and let 1 . Then the following statements are equivalent:

- (1) the set F is locally p-Ditkin;
- (2) for every $T \in PM_p(G)$ and for every $u \in A_p(G)$ with compact support, with supp $u \cdot T \subset F$ and $\operatorname{Res}_F u = 0$ we have $\langle u, T \rangle = 0$;
- (3) for every $T \in CV_p(G)$ with compact support and for every $u \in A_p(G)$ with compact support, with supp $u \cdot T \subset F$ and $\text{Res}_F u = 0$ we have $\langle u, T \rangle = 0$;
- (4) for every $T \in CV_p(G)$ and for every $u \in A_p(G)$ with supp $u \cdot T \subset F$ and $\operatorname{Res}_F u = 0$ we have $u \cdot T = 0$.

Proof. 1. (1) implies (2).

Let $T \in PM_p(G)$ and $u \in A_p(G) \cap C_{00}(G)$ with $\operatorname{Res}_H u = 0$ and $\sup u \cdot T \subset F$. Let ε be a positive real number. There is $v \in A_p(G) \cap C_{00}(G)$ with $\operatorname{supp} v \cap F = \emptyset$ and

$$||u - uv||_{A_p} < \left(1 + ||T||\right)^{-1} \varepsilon.$$

From supp $(uv) \cdot T = \emptyset$ it follows that $(uv) \cdot T = 0$. Choose now $w \in A_p(G) \cap C_{00}(G)$ such that w(x) = 1 for every $x \in \text{supp } v$. We get

$$\langle uv, T \rangle = \langle v, u \cdot T \rangle = \langle vw, u \cdot T \rangle = \langle w, (uv) \cdot T \rangle = 0,$$

and finally

$$\left| \langle u, T \rangle \right| \leq \left| \langle u, T \rangle - \langle uv, T \rangle \right| + \left| \langle uv, T \rangle \right| < \varepsilon.$$

2. (2) implies (3).

The operator T having compact support belongs to $PM_p(G)$. 3. (3) implies (4).

Let $T \in CV_p(G)$, and let $u \in A_p(G)$ with supp $u \cdot T \subset F$ and with $\operatorname{Res}_F u = 0$. Consider four arbitrary functions $\varphi, \psi, k, l \in C_{00}(G)$. The convolution operator $(k*l) \cdot T$ has compact support; the support of $(u\varphi * \psi) \cdot ((k*l) \cdot T)$ is contained in F; and $\operatorname{Res}_F u\varphi * \psi = 0$, and, consequently, $\langle u\varphi * \psi, (k*l) \cdot T \rangle = 0$. This implies $\langle k*l\varphi * \psi, u \cdot T \rangle = 0$, and, applying Lemma 3.1 twice, we conclude that $u \cdot T = 0$. 4. (4) implies (1).

Suppose that there exists a function $u \in A_p(G) \cap C_{00}(G)$ with $\operatorname{Res}_H u = 0$ which is not in the norm closure in $A_p(G)$ of

$$\{uv \mid v \in A_p(G) \cap C_{00}(G), \operatorname{supp} v \cap F = \emptyset\}.$$

There is $T \in PM_p(G)$ with $\langle u, T \rangle \neq 0$ and $\langle uv, T \rangle = 0$ for every $v \in A_p(G) \cap C_{00}(G)$ with supp $v \cap F = \emptyset$.

Let $x \in G \setminus F$. We claim that $x \notin \operatorname{supp} u \cdot T$. Suppose that $x \in \operatorname{supp} u \cdot T$. Choose a compact neighborhood V of x such that $V \cap F = \emptyset$. There is $v \in A_p(G)$ with $\operatorname{supp} v \subset V$ and $\langle v, u \cdot T \rangle \neq 0$. But from $v \in C_{00}(G)$ and $\operatorname{supp} v \cap F = \emptyset$ we get $\langle uv, T \rangle = 0$. This implies $x \notin \operatorname{supp} u \cdot T$.

We have proved that supp $u \cdot T \subset F$ and, consequently, that $u \cdot T = 0$. It suffices finally to choose $w \in A_p(G) \cap C_{00}(G)$ with w(x) = 1 on supp u to get $\langle u, T \rangle = \langle uw, T \rangle = \langle w, u \cdot T \rangle = 0$, which is a contradiction.

To obtain our main result we need the following improvement of Proposition $3.4(1) \Rightarrow (4)$.

Proposition 3.5. Let G be a locally compact group, let F be a closed subset of G, let $1 , <math>u \in A_p(G)$, and let $T \in \mathcal{L}(L^p(G))$. Suppose that F is locally p-Ditkin, that $u \cdot T \in CV_p(G)$, that $\operatorname{Res}_F u = 0$, and that $\sup u \cdot T \subset F$; we have then $u \cdot T = 0$.

Proof. Let $v \in A_p(G) \cap C_{00}(G)$, and let $\varepsilon > 0$. There is $w \in A_p(G) \cap C_{00}(G)$ with supp $w \cap F = \emptyset$ and

$$||vu - vuw||_{A_p} < (1 + ||T||)^{-1} \varepsilon.$$

We have $v \cdot (u \cdot T) \in CV_p(G)$ and supp $v \cdot (u \cdot T) \subset F$, and therefore $(wuv) \cdot T = 0$. On the other hand,

$$||(uv) \cdot T - (uvw) \cdot T|| \le ||uv - uvw||_{A_p} ||T|| \le \frac{\varepsilon ||T||}{(1 + ||T||)} < \varepsilon.$$

This implies $(uv) \cdot T = 0$, and consequently $v \cdot (u \cdot T) = 0$, and finally $u \cdot T = 0$. \square Remark 3.6. This result is new even for $G = \mathbb{R}$ and p = 2.

4. Injection theorem for Ditkin sets

Theorem 4.1. Let G be a locally compact group, let H be an arbitrary closed subgroup of G, 1 , and let <math>F be a closed subset of H. Then the following statements are equivalent:

- (1) the set F is locally p-Ditkin in G;
- (2) the set F is locally p-Ditkin in H.

Proof. 1. (1) implies (2).

Let $u \in A_p(H) \cap C_{00}(H)$ with $\operatorname{Res}_F u = 0$ and $\varepsilon > 0$. According to C. Herz (see [4]) there is $v' \in A_p(G)$ with $\operatorname{Res}_H v' = u$. Choose $v'' \in A_p(G) \cap C_{00}(G)$ with v''(x) = 1 for every $x \in \operatorname{supp} u$. Putting v = v'v'' we get $v \in A_p(G) \cap C_{00}(G)$ and $\operatorname{Res}_H v = u$. There is, consequently, $w \in A_p(G) \cap C_{00}(G)$ with $\operatorname{supp} w \cap F = \emptyset$ and $\|v - vw\|_{A_p} < \varepsilon$. It follows that $\|u - u\operatorname{Res}_H w\|_{A_p} < \varepsilon$ with $\operatorname{supp} \operatorname{Res}_H w \cap F = \emptyset$. 2. (2) implies (1).

It suffices to show that, for $u \in A_p(G)$ and for $T \in CV_p(G)$ with $\operatorname{Res}_H u = 0$ and $\sup u \cdot T \subset F$, we have $u \cdot T = 0$.

By Lohoué's theorem (see [6, Théorème 5]) there is $S \in CV_p(H)$ such that $i(S) = u \cdot T$. Let \mathcal{P} be the linear map of $\mathcal{L}(L^p(G))$ into $\mathcal{L}(L^p(H))$ of Theorem 2.4; then, applying (2) and (3) of Theorem 2.4, we get

$$S = \mathcal{P}(i(S)) = \mathcal{P}(u \cdot T) = \operatorname{Res}_H u \cdot \mathcal{P}(T).$$

Taking into account that $\operatorname{supp} i(S) = \operatorname{supp} S$ we obtain that $\operatorname{Res}_H u \cdot \mathcal{P}(T) \in CV_p(H)$ and that $\operatorname{supp} \operatorname{Res}_H u \cdot \mathcal{P}(T) \subset F$. We cannot assert that the operator $\mathcal{P}(T)$ belongs to $CV_p(H)$, but Proposition 3.5 implies $\operatorname{Res}_H u \cdot \mathcal{P}(T) = 0$; hence S = 0, and finally $u \cdot T = 0$.

Acknowledgment. Thanks to the anonymous referee for corrections and helpful comments.

References

- J. Delaporte and A. Derighetti, Invariant projections and convolution operators, Proc. Amer. Math. Soc. 129 (2000), no. 5, 1427–1435. Zbl 0957.43001. MR1814169. DOI 10.1090/S0002-9939-00-05874-3. 96
- A. Derighetti, Quelques observations concernant les ensembles de Ditkin d'un groupe localement compact, Monatsh. Math. 101 (1986), no. 2, 95–113. Zbl 0583.43007. MR0843295. DOI 10.1007/BF01298924. 96
- A. Derighetti, Closed subgroups as Ditkin sets, J. Funct. Anal. 266 (2014), no. 3, 1702–1715.
 Zbl 1296.43001. MR3146833. DOI 10.1016/j.jfa.2013.11.001. 98
- C. Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 3, 91–123. Zbl 0257.43007. MR0355482. 99, 101
- 5. E. Kaniuth and A. T. Lau, Spectral synthesis for A(G) and subspaces of VN(G), Proc. Amer. Math. Soc. **129** (2001), no. 11, 3253–3263. Zbl 0976.43002. MR1845000. DOI 10.1090/S0002-9939-01-05924-X. 96
- N. Lohoué, Estimations L^p des coefficients de représentation et opérateurs de convolution, Adv. Math. 38 (1980), no. 2, 178–221. MR0597197. DOI 10.1016/0001-8708(80)90004-3. 101
- K. Parthasarathy and N. S. Kumar, Ditkin sets in homogeneous spaces, Studia Math. 203 (2011), no. 3, 291–307. Zbl 1227.43010. MR2786168. DOI 10.4064/sm203-3-5.
- H. Reiter and J. D. Stegeman, Classical Harmonic Analysis and Locally Compact Groups, Clarendon Press, Oxford, 2000. MR1802924. 96, 99

EPFL SB-DO, MA A1 354 (BATIMENT MA), STATION 8, CH-1015 LAUSANNE, SWITZER-LAND.

E-mail address: antoine.derighetti@epfl.ch