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Abstract. We study the existence of infinite-dimensional vector spaces in
the sets of norm-attaining operators, multilinear forms, and polynomials. Our
main result is that, for every set of permutations P of the set {1, . . . , n}, there
exists a closed infinite-dimensional Banach subspace of the space of n-linear
forms on `1 such that, for all nonzero elements B of such a subspace, the Arens
extension associated to the permutation σ of B is norm-attaining if and only if
σ is an element of P . We also study the structure of the set of norm-attaining
n-linear forms on c0.

1. Introduction

The Bishop–Phelps theorem [11, p. 97] states that the set of norm-attaining
forms on a real or complex Banach space is norm-dense in the set of continuous
linear forms. Naturally, we can ask what is the structure of the set of norm-
attaining multilinear maps and when is this set an infinite-dimensional vector
space or does it contain a large vector space. In this paper, we will look more
closely to the existence of nonclosed and closed infinite-dimensional subspaces of
the set of norm-attaining mappings.

In recent years, many examples of functions satisfying certain properties or
pathologies have been studied. The interest of finding large structures formed by
these functions has yielded to the goal of defining concepts such as lineable and
spaceable.
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Definition 1.1. A subset M of a topological vector space E is lineable (respec-
tively, spaceable) in E if M ∪ {0} contains an infinite-dimensional space (respec-
tively, infinite-dimensional closed space).

The terms lineable and spaceable were introduced by Gurariy and Quarta [16]
and by Aron, Gurariy, and Seoane-Sepúlveda [7]. Since then, many authors have
shown their interest in studying the structure and linear properties of several
mathematical sets such as the set of continuous nowhere differentiable functions
in C[0, 1], continuous functions with nonconvergent Fourier series, or the structure
of the set of differentiable nowhere monotone functions, among others. For a
comprehensive background about lineability and spaceability, we recommend the
survey [10] and the very recent book [4].

The concepts of lineability and spaceability of norm-attaining sets have been
deeply studied during the last decade. For instance, Bandyopadhyay and Godefroy
[9] proved among other results that, if the unit ball of the dual of a Banach
space X is w∗-sequentially compact, then the set of norm-attaining functionals
contains a norm closed separable subspace M if and only if the dual M∗ of M
is the canonical quotient of X. More recently, Pellegrino and Teixeira [20] and
Botelho et al. [12] investigated lineability properties of the sets of norm-attaining
operators for spaces containing an isometric copy of `q, 1 ≤ q < ∞.

Here we will focus on the study of lineability and spaceability properties of
the set of norm-attaining operators, multilinear forms, and polynomials. It was
recently proved that there exist compact operators that cannot be approximated
by norm-attaining operators. In the second section of this paper, we investigate
spaceability properties of this set of operators. The third section is devoted to the
study of lineability and spaceability in the set of norm-attaining multilinear forms
with special emphasis on the spaces c0 and `1. We have two main results for these
spaces. First, the set of norm-attaining n-linear forms on c0 is lineable but not
spaceable for every natural number n. Second, given a subset P of permutations
of the first n natural numbers, then the set of n-linear forms on `1 satisfying
that only the Arens extensions associated to elements of P are norm-attaining is
spaceable. Finally, in the last section, we will study spaceability properties of the
set of polynomials whose adjoint is norm-attaining.

1.1. Notation. Here we are considering real Banach spaces. For a Banach
space X, we will denote by BX and SX the closed unit ball and the unit sphere of
X, respectively. As usual, the dual of a Banach space X will be denoted by X∗,
and the bidual of X will be denoted by X∗∗. Given two Banach spaces X and Y ,
L(X;Y ) will denote the set of linear bounded operators from X to Y , L(nX;Y )
will be the set of n-linear continuous mappings from X to Y , and P(nX;Y ) will
stand for the set of n-homogeneous continuous polynomials from X to Y . For
the case of Y = R, we will denote by L(nX) the set of n-linear continuous forms
on X, and for the case n = 1, for convenience, we will denote by L(X) the dual
space of X.

The norm of an operator T ∈ L(X;Y ) is defined by ‖T‖ = sup{‖T (x)‖ :
‖x‖ ≤ 1}, the norm of a multilinear mapping A ∈ L(nX;Y ) is defined by
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‖A‖ = sup{‖A(x1, . . . , xn)‖ : ‖xi‖ ≤ 1 for i = 1, . . . , n}, and the norm of a poly-
nomial P ∈ P(nX;Y ) is defined by ‖P‖ = {‖P (x)‖ : ‖x‖ ≤ 1}. We consider that
an operator, a multilinear mapping, or a polynomial is norm-attaining if the supre-
mum defining the norm is in fact a maximum. The set of norm-attaining linear
bounded operators, n-linear continuous mappings, and n-homogeneous continu-
ous polynomials will be denoted, respectively, by NA(L(X;Y )),NA(L(nX;Y )),
and NA(P(nX;Y )). By Σn, we will denote the set of possible permutations over
the first n natural numbers. Several times we will need to use the c0 sum of
Banach spaces. Given a sequence of Banach spaces {Xn}∞n=1, we will denote the
space obtained by the c0 sum of the spaces Xn by

X =
⊕
c0

Xn =
{
{xn}∞n=1 : xn ∈ Xn for all n ∈ N, lim

n→∞
‖xn‖ = 0

}
,

and we will endow this space with the supremum norm; that is, if x = {xn}∞n=1 ∈
X, then the norm of x is ‖x‖ = maxn∈N ‖xn‖.

2. Operators

In this section, we study the existence of vector spaces in the sets of norm-
attaining operators between Banach spaces. Before we start our study, let us
recall some known properties of the sets of norm-attaining functionals on Banach
spaces. It is known that, for the Banach space c0, the set of norm-attaining linear
forms consists of just the elements of `1 with finite support. Since this set does not
contain an infinite-dimensional closed space, c0 is an example of a Banach space
such that the set of norm-attaining linear forms is lineable but not spaceable.
The same situation happens for the set of n-linear forms on c0, as we will see in
Proposition 3.9.

Nevertheless, in most of the spaces, the set of norm-attaining linear forms is
spaceable. For instance, if a Banach space X has a predual, then this predual
can be naturally embedded in the set of norm-attaining linear forms of the space.
This gives us an infinite-dimensional Banach subspace of the set of norm-attaining
linear forms on X.

Proposition 2.1. For every infinite-dimensional Banach space X with pred-
ual X∗, the set of norm-attaining linear forms on X is spaceable.

At the end of their paper, Bishop and Phelps [11, p. 98] raised the question
of extending their results to operators between Banach spaces. Nowadays it is
known that, in general, we do not have a Bishop–Phelps theorem for operators;
that is, in general the set of norm-attaining operators between two Banach spaces
X and Y is not dense in L(X;Y ). The first one who answered this question in the
negative was Lindenstrauss [18], who gave an example of a Banach space X such
that the identity mapping from X to X with an equivalent renorming cannot be
approximated by norm-attaining operators.

As in the Lindenstrauss example, during many years all known cases of oper-
ators which cannot be approximated by norm-attaining operators were noncom-
pact operators. The question of whether there exists a compact operator between
Banach spaces that cannot be approximated by norm-attaining operators was
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asked first by Diestel and Uhl in 1976 [14, problem 2, page 6] and three years later
by Johnson and Wolfe [17, question 2, page 17]. Recently, Mart́ın [19] answered
this question in the negative, making use of the space constructed by Enflo to
solve the approximation problem in the negative.

Theorem 2.2 ([19, Theorem 1]). There exist compact linear operators between
Banach spaces which cannot be approximated by norm-attaining operators.

Now we show not only that there are many compact operators that cannot be
approximated by norm-attaining operators, but also that there exists two Banach
spaces such that the set of compact operators that cannot be approximated by
norm-attaining operators contains a large structure.

Theorem 2.3. There exists two Banach spaces X and Y such that the set of
compact linear operators from X to Y which cannot be approximated by norm-
attaining operators is spaceable.

Proof. By Theorem 2.2, there exist two Banach spaces X and Z and a compact
linear operator T ∈ L(X;Z) of norm 1 such that T cannot be approximated by
norm-attaining operators. Let Y =

⊕
c0
Z, and consider the operators Tm : X →

Y defined by Tm(x) = (0, . . . , 0, T (x), 0 . . .), where T (x) is in the mth coordinate
of Y .

Let us consider the vector space defined by

S :=
{
G =

∑
m∈N

λmTm : {λm}m∈N ∈ c0

}
.

Note that S is a closed infinite-dimensional Banach space, and for all G ∈ S,
‖G‖ = supm∈N |λm|.

To see that the operators G =
∑

m∈N λmTm are compact, we can check that,
for every sequence {xn}∞n=1 in the unit ball of X, the sequence {G(xn)}∞n=1 has a
subsequence convergent to some point in Y . Since T is a compact operator, there
exists a subsequence {xnk

}∞k=1 of the sequence {xn}∞n=1 such that {T (xnk
)}∞k=1 is

convergent to a point z in Z. Let y be the sequence {λmz}∞m=1. Clearly, y is an
element of Y .

Since T (xnk
) is convergent to z when k goes to infinity, we have∥∥G(xnk

)− y
∥∥ = sup

m∈N

∥∥λmT (xnk
)− λmz

∥∥ ≤ sup
m∈N

|λm|
∥∥T (xnk

)− z
∥∥ k→∞−→ 0.

Hence G is a compact operator.
To finish, we only need to see that any operator G in S cannot be approximated

by operators that attain their norm.
Since T cannot be approximated by norm-attaining operators, there exists a

positive number ε such that, if V ∈ L(X;Z) is an operator with ‖T − V ‖ < ε,
then V is not norm-attaining. Let us fix this ε > 0 and a nonzero operator G in
S. Without loss of generality, we can assume that G has norm 1. We will prove
that, if W is an operator in L(X;Y ) of norm 1 such that ‖G − W‖ < ε, then
W is not norm-attaining. Let us assume that this is not the case and that W
is a norm-attaining operator of norm 1 in L(X;Y ) with ‖G − W‖ < ε. Since
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W is norm-attaining, then there exists a point x0 ∈ X of norm 1 such that
‖W (x0)‖ = ‖W‖ = 1. Let us denote by {ym}∞m=1 = W (x0). By the norm of Y ,
there exists some natural number m0 such that ‖ym0‖ = 1. We can consider the
operator V ∈ L(X;Z) defined by V := πm0◦W , where πm0 is the projection of the
m0th coordinate from the space Y into the space Z. Then V is a norm-attaining
operator in L(X;Z) since ‖V (x0)‖ = ‖(πm0 ◦ W )(x0)‖ = ‖ym0‖ = 1 = ‖W‖ ≥
‖V ‖. But ‖T − V ‖ ≤ ‖G − W‖ < ε, contradicting the fact that there does not
exist a norm-attaining operator V in L(X;Z) with ‖T − V ‖ < ε.

Therefore, every operator W in L(X;Y ) with ‖G − W‖ < ε is not norm-
attaining. �

As a consequence of this result, we get that the set of compact operators from
X to Y that do not attain their norm is spaceable.

Corollary 2.4. There exist two Banach spaces X and Y such that the set of
compact linear operators from X to Y that do not attain their norm is spaceable.

Remark 2.5. It is worth mentioning that Mart́ın [19, Theorem 8] gave a version
of Theorem 2.2 where the domain and range spaces of the operators that cannot
be approximated by norm-attaining operators coincide. The same idea used by
Mart́ın to obtain this result can be used here to modify the proof of Theorem 2.3
and Corollary 2.4, obtaining versions where the range space Y is the same as the
domain space X.

In the same paper (see [18]) in which he provided the first example where the
Bishop–Phelps theorem fails for operators, Lindenstrauss gave a related result
that involves the second adjoint of linear operators, starting a new research direc-
tion. Let us denote by T ∗ : Y ∗ → X∗ the adjoint of the operator T : X → Y
defined by T ∗(y∗)(x) = y∗(T (x)) for all x ∈ X, y∗ ∈ Y ∗. Lindenstrauss proved
that, for any two Banach spaces X and Y , the set of norm-attaining operators
from X into Y whose second adjoints attain their norms is dense in L(X;Y ). Ten
years later, Zizler [21] improved this result, showing that using only one adjoint
is enough; that is, for any two Banach spaces X and Y , the set of operators
from X to Y such that its adjoint is norm-attaining is norm-dense in L(X;Y ).
Following this idea, we study spaceability of the set of operators whose adjoint is
norm-attaining.

In Section 4 we will prove that every compact polynomial has a norm-attaining
transpose. Since every compact operator from X to Y is a compact polynomial
of degree 1 from X to Y and the adjoint of the operator coincides with the
transpose of the polynomial in this case, as a particular case Theorem 4.1 implies
the following result.

Proposition 2.6. If X and Y are Banach spaces, then every compact operator
from X to Y satisfies that its adjoint is norm-attaining.

As a consequence of this result and using the fact that the class of compact
operators between two Banach spaces is a closed infinite-dimensional vector space,
we obtain the following result.
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Corollary 2.7. Given two Banach spaces X and Y , the set of operators from X
to Y whose adjoint is norm-attaining is spaceable.

3. Multilinear forms

Since there is no general version of the Bishop–Phelps result for operators,
due to the duality between operators and bilinear forms, we cannot expect a
general Bishop–Phelps theorem for bilinear forms. Therefore, there is no general
Bishop–Phelps theorem for multilinear forms. However, we can still study the
existence of subspaces of the set of norm-attaining multilinear forms.

For instance, we can get a generalization of Proposition 2.1 in the following
way.

Proposition 3.1. For every infinite-dimensional Banach space X with predual
X∗ and every natural number n, the set of norm-attaining n-linear forms on X
is spaceable.

Proof. Since X has predual, by Proposition 2.1, NA(L(X)) is spaceable. Hence
there exists an infinite-dimensional Banach space Y ⊂ NA(L(X)).

Let f be a nonzero norm-attaining linear form of X∗. Then, for every norm-
attaining linear form g of X∗, we have that the n-linear form g ∗f ∗ · · · ∗f defined
by (g∗f ∗· · ·∗f)(x1, . . . , xn) = g(x1)

∏n
j=2 f(xi) is a norm-attaining n-linear form

of L(nX). In particular, the space

S := {g ∗ f ∗ · · · ∗ f : g ∈ Y }
is an infinite-dimensional closed subspace of NA(L(nX)). �

However, if the space does not have a predual, then Proposition 3.1 does not
need to be true in general, as we will show in Theorem 3.9 using the space c0.
However, before we give the proof of Theorem 3.9, we will study the behavior of
the norm-attaining multilinear form on c0.

Lemma 3.2. If f is a linear form on c0 that attains its norm on a point x0 ∈ Bc0,
then f(x) = f(x0) for all x ∈ c0 such that x(j) = x0(j) whenever |x0(j)| = 1.

Proof. Let k be such that |x0(k)| < 1, and take 0 < δ < 1− |x0(k)|. Then∣∣f(x0)
∣∣ ≤ 1/2

(∣∣f(x0 − δek)
∣∣+ ∣∣f(x0 + δek)

∣∣) ≤ 1/2
(
‖f‖+ ‖f‖

)
= ‖f‖ =

∣∣f(x0)
∣∣.

Hence |f(x0)| = |f(x0 + δek)|, and so f(ek) = 0.
Let us now consider x ∈ c0 such that x(j) = x0(j) whenever |x0(j)| = 1. Define

z := x− x0. Note that z(j) = 0 whenever |x0(j)| = 1. Then

f(z) =
∞∑
j=1

z(j)f(ej) =
∑

{k:|x0(k)|<1}

z(k)f(ek) = 0;

that is, f(x) = f(x0). �

Lemma 3.3. If A is an n-linear form on c0 that attains its norm on a point
(x1, . . . , xn) ∈ Bc0 ×· · ·×Bc0, then A(y1, . . . , yn) = A(x1, . . . , xn) for all elements
(y1, . . . , yn) in Bc0 × · · · × Bc0 such that, for every i ∈ {1, . . . , n}, yi(j) = xi(j)
whenever |xi(j)| = 1.
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Proof. Let (y1, . . . , yn) ∈ Bc0 × · · · × Bc0 be such that, for every i ∈ {1, . . . , n},
yi(j) = xi(j) whenever |xi(j)| = 1. Decompose

A(y1, . . . , yn)− A(x1, . . . , xn)

= A(y1 − x1, y2, . . . , yn) + A(x1, y2 − x2, y3, . . . , yn) + · · ·
+ A(x1, . . . , xn−1, yn − xn). (3.1)

Define fn(x) := A(x1, . . . , xn−1, x). Clearly, fn is a linear form that has the same
norm as A, and it is attained at xn. By Lemma 3.2, it follows that fn(xn) = fn(yn);
that is, A(x1, . . . , xn−1, yn − xn) = 0.

Define the linear form fn−1(x) := A(x1, . . . , xn−2, x, yn). Since

fn−1(xn−1) = A(x1, . . . , xn−2, xn−1, yn) = fn(yn) = fn(xn) = ‖A‖,

the form fn−1 has the same norm as A and it is attained at xn−1. By Lemma 3.2, it
follows that fn−1(xn−1) = fn−1(yn−1); that is, A(x1, . . . , xn−2, xn−1−yn−1, yn) = 0.

Clearly, the last step of this iterative process will be as follows. Define f1(x) :=
A(x, y2, . . . , yn). Since

f1(x1) = A(x1, y2, . . . , yn) = f2(y2) = f2(x2) = · · · = fn(yn) = fn(xn) = ‖A‖,

the linear form f1 has the same norm as A, and it is attained at x1. By Lemma 3.2,
it follows that f1(x1) = f1(y1); that is, A(x1 − y1, y2, . . . , yn) = 0. Equality (3.1)
gives the result. �

Let us denote by Extn,m = {(x1, . . . , xn) ∈ c0 × · · · × c0 : xi(j) = ±1 for j ≤
m and xi(j) = 0 for j > m, 1 ≤ i ≤ n}. Note that c0 does not have extreme
points and that the set {x ∈ c0 : x(j) = ±1 for j ≤ m,x(j) = 0 for j > m}
is the set of extremal points of the finite-dimensional space (Rm, ‖ · ‖∞) when
considering the natural embedding of the space Rm in c0.

Corollary 3.4. Every norm-attaining n-linear form on c0 attains its norm at a
point of Extn,m for some m (that depends on the n-linear form).

Proof. Let A be an n-linear form on c0 that attains its norm at (x1, . . . , xn) ∈
Bc0 × · · · × Bc0 . For each i ∈ {1, . . . , n}, consider mi := min{j : |xi(k)| <
1 for all k ≥ j}, and take m := max{mi : i = 1, . . . , n}. For each i ∈ {1, . . . , n},
define yi(j) := 1 whenever xi(j) > 0 and j ≤ m, define yi(j) := −1 whenever
xi(j) < 0 and j ≤ m, and define yi(j) = 0 for all j > m. By Lemma 3.3, we
conclude that A(y1, . . . , yn) = A(x1, . . . , xn) = ‖A‖. �

Corollary 3.5. For every natural number n,

NA
(
L(nc0)

)
⊆

{
A ∈ L(nc0) : ∃m ∈ N such that A(ek1 , . . . , ekn) = 0

if k1, . . . , kn > m
}
.

Proof. Given a norm-attaining n-linear form A on c0, by Corollary 3.4 there exist
a natural number m and an n-tuple (x1, . . . , xn) ∈ Extn,m where A is norm-
attaining.
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Then, by Corollary 3.4 again, for every k > m we have

A(x1, . . . , xn) = A(x1, . . . , xi−1, xi + ek, xi+1, . . . , xn)

= A(x1, . . . , xi−1, xi, xi+1, . . . , xn)

+ A(x1, . . . , xi−1, ek, xi+1, . . . , xn),

and so A(x1, . . . , xi−1, ek, xi+1, . . . , xn) = 0 if k > m.
Now, given k1, k2 > m, we have that

A(x1, . . . , xn) = A(x1, . . . , xi−1, xi + ek1 , xi+1, . . . , xr−1, xr + ek2 , xr+1, . . . , xn)

= A(x1, . . . , xn) + A(x1, . . . , ek1 , . . . , xr, . . . , xn)

+ A(x1, . . . , xi, . . . , ek2 , . . . , xn) + A(x1, . . . , ek1 , . . . , ek2 , . . . , xn)

= A(x1, . . . , xn) + A(x1, . . . , ek1 , . . . , ek2 , . . . , xn),

and so A(x1, . . . , ek1 , . . . , ek2 , . . . , xn) = 0 if k1, k2 > m. After n steps we see that
A(ek1 , . . . , ekn) = 0 for all k1, . . . , kn > m, and so the conclusion holds. �

Remark 3.6. For n ≥ 2, the inclusion in Corollary 3.5 is strict. Indeed, if we

denote ϕ(x) =
∑∞

j=1
x(j)
2j

, then the continuous n-linear form A : cn0 → R defined
by

A(x1, . . . , xn) = x1(1)
n∏

k=2

ϕ(xk)

satisfies A(ek1 , . . . , ekn) = 0 if k1 ≥ 2, but A does not attain its norm.
On the other hand, notice that, for the linear case, the set of linear forms on c0

that are norm-attaining are the elements of `1 with finite support. However, for
n ≥ 2, there exist n-linear forms that are norm-attaining but do not have finite
support. For instance, the n-linear form

A(x1, . . . , xn) =
((x1(1) + x1(2)

2

)
x2(1) +

(x1(1)− x1(2)

2

) ∞∑
k=2

x2(k)

2k

) n∏
j=3

xj(1)

has norm 1, and satisfies A(e1 + e2, e1, e1, . . . , e1) = 1, but if k is bigger than 1,
then A(e1 − e2, ek, e1, . . . , e1) = 2−k.

Lemma 3.7. Let us fix a natural number m. If S is a vector space of norm-
attaining n-linear forms on c0 such that, for all A in S, A is norm-attaining at
an n-tuple (x1, . . . , xn) ∈ Extn,m, then the dimension of S is at most mn.

Proof. We prove this by contradiction. Let S be the aforementioned vector space,
and assume that S has dimension bigger than mn. Then we can find a set
{Aj}m

n+1
j=1 of n-linear forms in S that are linearly independent.

Now we construct a new set of mn n-linear forms in S in the following way. If
every n-linear form of the set {Aj}m

n+1
j=1 is zero at the n-tuple (e1, . . . , e1), then

define Bj = Aj for j = 1, . . . ,mn. If this is not the case, then there exists an
n-linear form in the set {Aj}m

n+1
j=1 that is not zero at the n-tuple (e1, . . . , e1).

Without loss of generality, we can assume that Amn+1(e1, . . . , e1) 6= 0. Then we

define the n-linear forms Bj = Aj − Aj(e1,...,e1)

Amn+1(e1,...,e1)
Amn+1 for j = 1, . . . ,mn. By

construction, Bj(e1, . . . , e1) = 0 for j = 1, . . . ,mn.



98 J. FALCÓ ET AL.

By repeating the same process for all the vectors (ej1 , . . . , ejn), 1 ≤ j1, . . . , jn ≤
m, and using the fact that {Aj}m

n+1
j=1 is a set of linearly independent n-linear

forms, we can find a nonzero n-linear form A with A(ej1 , . . . , ejn) = 0 for all
1 ≤ j1, . . . , jn ≤ m. Then, since S is a vector space, the n-linear form A is in S.
Therefore,

0 6= ‖A‖ = max
{
A(x1, . . . , xn) : (x1, . . . , xn) ∈ Extn,m

}
= max

{ ∑
1≤j1,...,jn≤m

A(ej1 , . . . , ejn)
n∏

i=1

xi(ji) : (x1, . . . , xn) ∈ Extn,m

}
= 0,

which is a contradiction. Hence S has dimension at most mn. �

Lemma 3.8. Let S be an infinite-dimensional vector space of norm-attaining
n-linear forms on c0. Let A be a norm-attaining n-linear form in S, and let ε
be a positive number. If A is norm-attaining at an n-tuple in Extn,m, then there
exist an n-linear form B in S and a natural number m̃ > m such that A + εB
is norm-attaining at an n-tuple in Extn,m̃, but A + εB is not norm-attaining
at any n-tuple in Extn,j for j < m̃. Even more, B can be chosen such that
‖A‖ < ‖A+ εB‖ ≤ ‖A‖+ ε.

Proof. Fix a positive number ε. Then, for every n-linear form B in S of norm 1,
we have that A± εB are norm-attaining n-linear forms of S. Since S has infinite
dimensions, if H is an algebraic complement in S of span(A), then H is infinite-
dimensional too. Hence, if {Bi : i ∈ I} is a Hamel basis of H with ‖Bi‖ = 1
for every i ∈ I, then {A + εBi : i ∈ I} is an infinite set of linearly independent
elements of S. Thus, by Lemma 3.7, there exists one B in S with ‖B‖ = 1 and
such that A ± εB are not norm-attaining at any n-tuple in Extn,m. Also, as a
consequence of Corollary 3.4, A ± εB are not norm-attaining at any n-tuple in
Extn,j for j ≤ m.

By hypothesis, A is norm-attaining at an n-tuple (y1, . . . , yn) ∈ Extn,m. Then,
since A± εB is not norm-attaining at any n-tuple of Extn,m, we have that A± εB
is not norm-attaining at (y1, . . . , yn). Since we are working on the real case, we
have that |(A + εB)(y1, . . . , yn)| ≥ |A(y1, . . . , yn)| or |(A − εB)(y1, . . . , yn)| ≥
|A(y1, . . . , yn)|. Without loss of generality, we assume that |(A+εB)(y1, . . . , yn)| ≥
|A(y1, . . . , yn)|. Then

‖A‖+ ε ≥ ‖A+ εB‖ >
∣∣(A+ εB)(y1, . . . , yn)| ≥ |A(y1, . . . , yn)

∣∣ = ‖A‖.
Since A+εB is norm-attaining, by Corollary 3.4, there exists a positive number

k such that A+εB is norm-attaining at an n-tuple in Extn,k. Let m̃ be the smallest
natural number such that A+ εB is norm-attaining at an n-tuple in Extn,m̃. By
construction, m̃ needs to be bigger than m, and A+ εB is not norm-attaining at
any n-tuple in Extn,j for j smaller than m̃. �

Now we are ready to present our main result about norm-attaining n-linear
forms on c0.

Theorem 3.9. For every natural number n, the set of norm-attaining n-linear
forms on c0 is lineable but not spaceable.
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Proof. Let us denote by Rn0 the real n0-dimensional space equipped with the
supremum norm. Notice that the space (Rn0×· · ·×Rn0 , ‖·‖∞) is finite-dimensional;
hence its unit ball is compact. Therefore, every element of L(nRn0) is norm-
attaining. Hence every element A of L(nc0) with all but a finite number of coor-
dinates zero is norm-attaining. Therefore, NA(L(nc0)) is lineable.

Now, let us show that NA(L(nc0)) is not spaceable. Assume this is not the case.
Then there exists an infinite-dimensional closed subspace S of NA(L(nc0)).

By Lemma 3.8, we can find a natural number m1 bigger than 1 and an n-linear
form A1 in S such that A1 is norm-attaining at an n-tuple of Extn,m1 , but A1 is
not norm-attaining at any n-tuple of Extn,r for r < m1. Consider

ε1 = ‖A1‖ − max
(x1,...,xn)∈Extn,m1−1

∣∣A1(x1, . . . , xn)
∣∣ > 0.

By Lemma 3.8 again, we can find a natural number m2 bigger than m1 and an
n-linear form B in S such that A2 = A1 +

ε1
3
B is norm-attaining at an n-tuple

in Extn,m2 , but it is not norm-attaining at any n-tuple in Extn,k for k ≤ m1 and
‖A2‖ > ‖A1‖. Let

δ2 = ‖A2‖ − max
(x1,...,xn)∈Extn,m1

∣∣A2(x1, . . . , xn)
∣∣ > 0,

and let ε2 = min{ ε1
3
, δ2}.

Using this idea and proceeding by induction, we are going to construct three
sequences as follows. If we have the first j elements {Ak}jk=1, {mk}jk=1, and

{εk}jk=1, then, by Lemma 3.8, we can find an n-linear form B in S and a natural
number mj+1 bigger than mj such that Aj+1 = Aj +

εj
3
B is norm-attaining at

an n-tuple in Extn,mj+1
, but it is not norm-attaining at any n-tuple in Extn,k for

k ≤ mj and ‖Aj+1‖ > ‖Aj‖. Let

δj+1 = ‖Aj+1‖ − max
(x1,...,xn)∈Extn,mj

∣∣Aj+1(x1, . . . , xn)
∣∣ > 0,

and let εj+1 = min{ ε1
3j
, ε2
3j−1 , . . . ,

εj
3
, δj+1}.

Then, since the sequence {εj}∞j=1 is convergent to zero, we have that {Aj}∞j=1

is a Cauchy sequence with ‖Ar − Aj‖ ≤ εj
3
+

εj
32

+ · · · + εj
3k−j <

εj
2
for all r, j ∈ N

with r > j. Let A be the limit of the sequence {Aj}∞j=1. Then, since the sequence
{‖Aj‖}∞j=1 is strictly increasing, ‖A‖ > ‖Aj‖ for all j ∈ N, and since S is closed,
A is an element of S. By Corollary 3.4, there exist a natural number m and an
n-tuple (x1, . . . , xn) ∈ Extn,m where A is norm-attaining. Also by Corollary 3.4,
for anymj bigger than or equal tom, A is norm-attaining at an n-tuple in Extn,mj

.
Let us fix mj bigger than m. Then Aj+1 is not norm-attaining at (x1, . . . , xn),
and hence

‖A‖ =
∣∣A(x1, . . . , xn)

∣∣
≤

∣∣Aj+1(x1, . . . , xn)
∣∣

+
∣∣(A− Aj+1)(x1, . . . , xn)

∣∣
≤

∣∣Aj+1(x1, . . . , xn)
∣∣+ εj+1/2

≤ ‖Aj+1‖ − δj+1 + εj+1/2



100 J. FALCÓ ET AL.

≤ ‖Aj+1‖ − εj+1 + εj+1/2

< ‖Aj+1‖ < ‖A‖,
which is a contradiction. Hence S cannot be closed. �

3.1. Multilinear Arens extensions on `1. In 1951, Arens [3] found a natu-
ral way to extend a continuous bilinear mapping between Banach spaces. This
procedure was generalized by Aron and Berner [5] to arbitrary multilinear map-
pings, and was simplified by Davie and Gamelin [13] by using Goldstine’s theorem
and limits in the weak-star topology denoted by w(X∗∗, X∗). In this method, the
Arens extension of an n-linear form A ∈ L(X1, . . . , Xn) at a point (x∗∗

1 , . . . , x∗∗
n )

of X∗∗
1 × · · · ×X∗∗

n associated to a permutation σ ∈ Σn is defined by

Aσ(x
∗∗
1 , . . . , x∗∗

n ) = lim
dσ(1)

· · · lim
dσ(n)

A(xd1 , . . . , xdn),

where {xdi}di is a bounded net in Xi (‖xdi‖ ≤ ‖x∗∗
i ‖ for all di) w(X

∗, X) conver-
gent to x∗∗

i ∈ X∗∗
i for i = 1, . . . , n. The mapping Aσ is called an Arens extension

of A, and there are n! Arens extensions that may be different from each other.
Motivated by Lindenstrauss’s result and using the Arens extensions to the

second duals, Acosta [1] proved a Lindenstrauss-type result for bilinear forms.
Afterward, in [6] the denseness of bilinear forms whose Arens extensions to the
biduals attain their norms at the same point was established. The generalization
of Lindenstrauss’ result to n-linear vector-valued mappings was finally obtained in
[2] in its strongest form, where the authors showed that, for any n Banach spaces,
the set of n-linear forms such that all of their Arens extensions are norm-attaining
is norm-dense.

It is important to remark that in the generalization of Lindenstrauss’s result all
the extensions attain their norm at the same point. However, there exist n-linear
forms such that only some of its extensions are norm-attaining and the others are
not. The first example of these multilinear forms was given in 2003 by Aron et
al. [6], where the authors provided a bilinear form such that only one of its two
Arens extensions attains its norm. This example was generalized to n-linear forms
and subsets of Σn by Falcó et al. [15]. The authors obtained an n-linear form on
`1 such that only the extensions associated to an arbitrary but fixed subset of Σn

are norm-attaining.

Theorem 3.10 ([15, Theorem 13]). Given a subset P ⊆ Σn, there exists an
n-linear form A(P ) ∈ L(n`1) with ‖A(P )‖ = 1 such that A(P )σ is norm-attaining
if and only if σ ∈ P .

To be more specific, the n-linear form they used was

A(P )(ek1 , ek2 , . . . , ekn) =

{
( k1
k1+1

)n if k1 = k2 = · · · = kn,

0 otherwise,

if P is the empty set, and

A(P )(ek1 , ek2 , . . . , ekn) =

{∏n
i=1

ki
ki+1

if ∃σ ∈ P, kσ(1) ≤ · · · ≤ kσ(n),

0 otherwise,

if P is not empty.
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This asymmetry between the Arens extensions reveals the importance of the
stronger condition of attaining their norms simultaneously in the result of Acosta
et al. [6].

Here we will prove that, for a fixed subset P of Σn, if we denote by

NAP

(
L(n`1)

)
=

{
A ∈ L(n`1) : Aσ is norm-attaining if and only if σ ∈ P

}
,

then NAP (L(n`1)) is spaceable. To prove the spaceability of these multilinear
forms, in Theorem 3.12 we will need to make use of the following lemma.

Lemma 3.11. For every natural number n, consider n sequences of nonnegative
numbers {xi(t)}∞t=1, i = 1, . . . , n with

∑∞
t=1 xi(t) ≤ 1. If

∞∑
t=1

x1(t) · · ·xn(t) > δ

for some 1 > δ > 3/4, then there exists only one natural number m0 such that
x1(m0), . . . , xn(m0) > δ.

Proof. First, we will prove that there exists m1 such that x1(m1) > δ. Assume
that this is not the case. Then x1(t) ≤ δ for all t ∈ N. Therefore,

δ <
∞∑
t=1

x1(t) · · ·xn(t)

≤ δ
∞∑
t=1

x2(t) · · ·xn(t)

≤ δ
∞∑

t2,...,tn=1

x2(t2) · · ·xn(tn)

= δ
( ∞∑
t2=1

x2(t2)
)
· · ·

( ∞∑
tn=1

xn(tn)
)

≤ δ,

which is a contradiction. Therefore, there exists m1 with x1(m1) > δ. Note that,
since

∑∞
t=1 x1(t) ≤ 1, m1 is unique.

We can repeat the same argument to see that, for i = 1, . . . , n, there exists
only one mi such that xi(mi) > δ. It only remains to see that m1 = · · · = mn and
take m0 = m1. Assume that mi 6= mj for some 1 ≤ i, j ≤ n, i 6= j. Then

δ <
∞∑
t=1

x1(t) · · ·xn(t) ≤
∞∑
t=1

xi(t)xj(t)

= xi(mi)xj(mi) + xi(mj)xj(mj) +
∑
t∈N,

t6=mi,mj

xi(t)xj(t)

≤ xi(mi)1/4 + 1/4xj(mj) +
∑

ti,tj∈N,
ti,tj 6=mi,mj

xi(ti)xj(tj)
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≤ 1/2 +
( ∑

ti∈N,
ti 6=mi,mj

xi(ti)
)( ∑

tj∈N,
tj 6=mi,mj

xj(tj)
)

< 1/2 + 1/16 < 3/4 < δ,

which is a contradiction. Therefore, considering m0 = m1, we have the result and
m0 is unique. �

Now we present one of our main results of this paper.

Theorem 3.12. For every set P ⊆ Σn, the set NAP (L(n`1)) is spaceable.

Proof. Let us fix a set P ⊆ Σn, and consider a disjoint partition of the natural
numbers into an infinite number of infinite sets {Nm}∞m=1; that is,

⋃
m Nm = N

and Nm ∩ Nm′ = ∅ iff m 6= m′ with Nm being infinite for m = 1, 2, . . . .
The sets Nm are naturally ordered by the order defined on the natural numbers.

Therefore, we can assume that Nm = {(m, t)}∞t=1 with (m, t) < (m, k) if and only
if t < k.

Let

A(m)(ek1 , . . . , ekn) =

{
A(P )(et1 , . . . , etn) if ki = (m, ti) ∈ Nm, i = 1, . . . , n,

0 otherwise,

where A(P ) is the n-linear form of Theorem 3.10.
Let S be the vector space defined by

S :=
{
B =

∑
m∈N

λmA(m) : λm ∈ R, lim
m→∞

λm = 0
}
.

For every B in S, we have

‖B‖ = sup
x1,...,xn∈B`1

∣∣B(x1, . . . , xn)
∣∣

= sup
k1,...,kn

∣∣B(ek1 , . . . , ekn)
∣∣

= sup
m∈N

sup
k1,...,kn∈N

∣∣λmA(m)(ek1 , . . . , ekn)
∣∣

= sup
m∈N

|λm|
∥∥A(P )

∥∥ = sup
m∈N

|λm|

= max
m∈N

|λm|.

Now, we prove that, for all B in S \ {0}, Bσ is norm-attaining if and only if
σ ∈ P . Let us fix B ∈ S \ {0} of norm 1.

First, we prove that Bσ is norm-attaining for σ ∈ P . Let us fix σ in P . Since B
has norm 1, there exists m0 with ‖B‖ = |λm0| = 1. For simplicity, we will assume
that λm0 = 1. Then, since σ ∈ P ,

lim
(m0,kσ(1))→∞

· · · lim
(m0,kσ(n))→∞

B(e(m0,k1), . . . , e(m0,kn))

= lim
kσ(1)→∞

· · · lim
kσ(n)→∞

A(P )(ek1 , . . . , ekn) = 1.
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Hence, considering a weak-star cluster point x∗∗ of the sequence {e(m0,k)}∞k=1,
we obtain

Bσ(x
∗∗, . . . , x∗∗) = 1.

Thus Bσ is norm-attaining.
Now we see that, if σ /∈ P , then Bσ is not norm-attaining. Fix σ /∈ P , and

assume thatBσ attains its norm. Then there exists (x∗∗
1 , . . . , x∗∗

n ) ∈ B`∗∗1
×· · ·×B`∗∗1

with Bσ(x
∗∗
1 , . . . , x∗∗

n ) = 1. Let {xdi}di∈Di
be nets in B`1 weak-star convergent to

x∗∗
i for i = 1, . . . , n. To simplify the notation, we will assume that σ is the identity

permutation denoted by Id. Therefore,

lim
d1

· · · lim
dn

B(xd1 , . . . , xdn) = BId(x
∗∗
1 , . . . , x∗∗

n ) = 1.

Fix 1 > δ > 3/4. Then there exists α1 ∈ D1 with

lim
d2

· · · lim
dn

B(xd1 , xd2 , . . . , xdn) > δ

for all d1 > α1. For fixed d1 > α1, there exists α1,2 ∈ D2 with

lim
d3

· · · lim
dn

B(xd1 , xd2 , xd3 , . . . , xdn) > δ

for all d2 > α1,2. Fix d2 with d2 > α1,2.
In this way, for fixed d1, . . . , di, for 1 ≤ i < n− 1, there exists α1,...,i+1 with

lim
di+2

· · · lim
dn

B(xd1 , xd2 , . . . , xdn) > δ

for all di+1 > α1,...,i+1. Fix di+1 with di+1 > α1,...,i+1.
After n− 1 steps, for fixed d1, . . . , dn−1, there exists α1,...,n with

B(xd1 , xd2 , . . . , xdn) > δ

for all dn > α1,...,n. Fix dn with dn > α1,...,n.
Then

B(xd1 , . . . , xdn) > δ.

Now, for every m ∈ N, define πm : `1 7→ `1 by (πm(x))(t) = x(t) if t ∈ Nm and
(πm(x))(t) = 0 if t /∈ Nm.

Observe that

δ < B(xd1 , . . . , xdn) = B
(∑
m1∈N

πm1(xd1), . . . ,
∑
mn∈N

πmn(xdn)
)

=
∑

m1,...,mn∈N

B
(
πm1(xd1), . . . , πmn(xdn)

)
=

∑
m∈N

B
(
πm(xd1), . . . , πm(xdn)

)
=

∑
m∈N

A(m)
(
πm(xd1), . . . , πm(xdn)

)
≤

∑
m∈N

∥∥πm(xd1)
∥∥ · · · ∥∥πm(xdn)

∥∥.
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Therefore, by Lemma 3.11, there exists only one natural number m0 such that
‖πm0(xd1)‖, . . . , ‖πm0(xdn)‖ > δ.

Now, if we consider another d̃n > α1,...,n, by the same argument, there exists
only one natural number m̃0 with∥∥πm̃0(xd1)

∥∥, . . . , ∥∥πm̃0(xd̃n
)
∥∥ > δ.

But, since 1 ≥ ‖xd1‖ =
∑

m∈N ‖πm(xd1)‖, and ‖πm0(xd1)‖, ‖πm̃0(xd1)‖ > δ > 3/4,
we have m̃0 = m0.

Therefore, for fixed d1, . . . , dn−1, there exists m0 with∥∥πm0(xd1)
∥∥, . . . , ∥∥πm0(xdn)

∥∥ > δ

for all dn ∈ Dn with dn > α1,...,n.

Now, fix d1, . . . , dn−2, and consider d̃n−1 ∈ Dn−1 with d̃n−1 > α1,...,n−1. Then
there exists α̃1,...,n with

B(xd1 , . . . , xd̃n−1
, xdn) > δ

for all dn > α̃1,...,n, α1,...,n.
Fix dn > α1,...,n, α̃1,...,n. Arguing as before, we find m̃0 with∥∥πm̃0(xd1)

∥∥, . . . , ∥∥πm̃0(xd̃n−1
)
∥∥,∥∥πm̃0(xdn)

∥∥ > δ

for all dn ∈ Dn with dn > α̃1,...,n, α1,...,n. But, as before, we have 1 ≥ ‖xdn‖ =∑
m∈N ‖πm(xdn)‖, and ‖πm0(xdn)‖, ‖πm̃0(xdn)‖ > δ > 3/4, and hence m̃0 = m0.
Therefore, if d1, . . . , dn−2 are fixed, then∥∥πm0(xd1)

∥∥, . . . , ∥∥πm0(xdn)
∥∥ > δ

for every dn−1 ∈ Dn−1 with dn−1 > α1,...,n−1 and every dn ∈ Dn with dn > α1,...,n,
where α1,...,n−1 depends on d1, . . . , dn−2 and α1,...,n depends on d1, . . . , dn−1.

We will do one more case for the sake of completeness. Fix d1, . . ., dn−3, and
consider d̃n−2 ∈ Dn−2 with d̃n−2 > α1,...,n−2. Then there exists α̃1,...,n−1 with

lim
dn

B(xd1 , . . . , xd̃n−2
, xd̃n−1

, xdn) > δ

for all d̃n−1 > α̃1,...,n−1, α1,...,n−1. Then, for fixed d̃n−1, there exists α̃1,...,n with

B(xd1 , . . . , xd̃n−2
, . . . , xd̃n−1

, . . . , xd̃n
, . . . , xdn) > δ

for all d̃n > α̃1,...,n, α1,...,n.

Fix d̃n > α1,...,n, α̃1,...,n. Arguing as before, we find m̃0 with∥∥πm̃0(xd1)
∥∥, . . . , ∥∥πm̃0(xd̃n−2

)
∥∥,∥∥πm̃0(xd̃n−1

)
∥∥,∥∥πm̃0(xdn)

∥∥ > δ

for all dn ∈ Dn with dn > α̃1,...,n. But, as before, 1 ≥ ‖xdn‖ =
∑

m∈N ‖πm(xdn)‖,
and ‖πm(xdn)‖, ‖πm0(xd̃n

)‖ > δ > 3/4, and hence m̃0 = m0.
Therefore, if d1, . . . , dn−3 are fixed, then∥∥πm0(xd1)

∥∥, . . . , ∥∥πm0(xdn)
∥∥ > δ
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for every dn−2 ∈ Dn−2 with dn−2 > α1,...,n−2, every dn−1 ∈ Dn−1 with dn−1 >
α1,...,n−1, and every dn ∈ Dn with dn > α1,...,n, where α1,...,n−2 depends on d1, . . . ,
dn−3, α1,...,n−1 depends on d1, . . . , dn−2, and α1,...,n depends on d1, . . . , dn−1.

The same argument can be repeated to get∥∥πm0(xd1)
∥∥, . . . , ∥∥πm0(xdn)

∥∥ > δ

for every d1 ∈ D1 with d1 > α1, d2 ∈ D2 with d2 > α1,2, . . . , dn ∈ Dn with
dn > α1,...,n, where α1,...,i depends on d1, . . . , di−1 for i = 2, . . . , n.

Since this holds for every δ with 3/4 < δ < 1, we have

lim
di

∥∥πm0(xdi)− xdi

∥∥ = 0,

and hence {πm0(xdi)}di∈Di
weak-star converges to x∗∗

i for i = 1, . . . , n.
Now, consider the map π : `1 7→ `1 defined by (π(x))(t) = x(m0, t). Since π is

‖ · ‖-‖ · ‖-continuous, π is ω-ω-continuous, and the canonical extension π̂ defined
from `∗∗1 into `∗∗1 is ω∗-ω∗-continuous. Therefore, as {xdi}di∈Di

is ω∗-convergent
to x∗∗

i , we have that {π(xdi)}di∈Di
is ω∗-convergent to π̂(x∗∗

i ), and since π has
norm 1, π̂(x∗∗

i ) ∈ B`∗∗1
.

Then, by using the multilinear form A(m) defined at the beginning of the proof
and the multilinear form A(P ) of Theorem 3.10, we have

A(P )Id
(
π̂(x∗∗

1 ), . . . , π̂(x∗∗
n )

)
= lim

d1
· · · lim

dn
A(P )

(
π(xd1), . . . , π(xdn)

)
= lim

d1
· · · lim

dn
A(m0)(xd1 , . . . , xdn)

= lim
d1

· · · lim
dn

B
(
πm0(xd1), . . . , πm0(xdn)

)
= BId(x

∗∗
1 , . . . , x∗∗

n ) = 1.

Since Id /∈ P , A(P )Id is not norm-attaining, and this is a contradiction. There-
fore, BId is not norm-attaining. Since S is an infinite-dimensional Banach space,
this concludes the proof. �

4. Polynomials

To finish, we want to show a generalization of Theorem 2.6 and Corollary 2.7.
For this, we will use the definition of the transpose of a polynomial introduced
by Aron and Schottenloher in [8].

Given a polynomial P of degree n between the Banach spaces X and Y , P ∈
P(nX;Y ), the transpose of the polynomial is defined by

P ∗ : Y ∗ −→ P(nX),

y∗  P ∗(y∗) : X −→ K,

x  y∗
(
P (x)

)
.

Then

‖P ∗‖ = sup
y∗∈BY ∗

∥∥P ∗(y∗)
∥∥ = sup

y∗∈BY ∗
sup
x∈BX

∣∣y∗(P (x)
)∣∣ = ‖P‖.
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Theorem 4.1. If X and Y are Banach spaces and n is a natural number, then
the transpose of every compact n-homogeneous polynomial from X to Y is norm-
attaining.

Proof. Given a compact polynomial P ∈ P(nX;Y ), since P is compact, there

exists a point y0 ∈ P (BX) such that ‖y0‖ = ‖P‖. Then, as a consequence of the
Hahn–Banach theorem, there exists a linear and continuous functional y∗0 ∈ Y ∗

of norm 1 with |y∗0(y0)| = ‖y0‖. Then
‖P ∗‖ = ‖P‖ = ‖y0‖

=
∣∣y∗0(y0)∣∣

≤ sup
y∈P (BX)

∣∣y∗0(y)∣∣
= sup

y∈P (BX)

∣∣y∗0(y)∣∣
= sup

x∈BX

∣∣y∗0(P (x)
)∣∣

=
∥∥P ∗(y∗0)

∥∥
≤ sup

y∗∈BY ∗

∥∥(P ∗(y∗)
)∥∥ = ‖P ∗‖.

Therefore, ‖P ∗‖ = ‖P ∗(y∗0)‖. Hence P ∗ is norm-attaining. �

As a consequence of this result and by using the fact that the class of compact
polynomials of degree n between two infinite-dimensional Banach spaces is a
closed infinite-dimensional vector space, we obtain the following result.

Corollary 4.2. Given two infinite-dimensional Banach spaces X and Y , the set
of all n-homogeneous continuous polynomials from X to Y whose transpose is
norm-attaining is spaceable.
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