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Abstract. In this article, for the unimodular multipliers eiµ(D), we establish
two Hörmander-type multiplier theorems by assuming conditions on their phase
functions µ. As applications, we obtain two multiplier theorems particularly
fitting for the modulation spaces, thus allowing us to extend and improve some
known results.

1. Introduction

Let Tm be a linear operator defined initially on the Schwartz space S(Rn) via
the Fourier transform

T̂mf(ξ) = m(ξ)f̂(ξ), f ∈ S(Rn).

The operator Tm is called the Fourier multiplier with symbol m. An interesting
problem to investigate when studying Tm is its boundedness on certain function or
distribution spaces. Among the many boundedness criteria found in the literature,
two of the most famous are the Mikhlin multiplier theorem and the Hörmander
multiplier theorem. The Mikhlin multiplier theorem says that if the symbol m
satisfies the smoothness-decay condition∣∣∂αm(ξ)

∣∣ ≤ Aα|ξ|−|α|
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for any ξ 6= 0 and all multi-indices α with |α| ≤ [n/2] + 1, then the operator
Tm is bounded on Lp(Rn) for 1 < p < ∞. The Hörmander multiplier theorem,
while its condition looks a little complicated, is a more general criterion. Let
Ψ ∈ S(Rn) satisfy suppΨ ⊂ {ξ ∈ Rn : 1 < |ξ| ≤ 4} and let

∑
j∈ZΨ(ξ/2j) = 1 for

all ξ ∈ Rn\{0}. For a fixed s ∈ R, let (I − ∆)s/2 be the Fourier multiplier with
symbol (1+ |ξ|2)s/2. We denote Hs as the Hilbert space that consists of all f ∈ S ′

such that

‖f‖Hs =
∥∥(I −∆)s/2f

∥∥
L2 <∞.

The Hörmander multiplier theorem (see [14, p. 104]) then states that the operator
Tm is bounded on Lp(Rn) for 1 < p <∞, provided that m ∈ L∞(Rn) satisfies

sup
j∈Z

∥∥m(2j·)Ψ
∥∥
Hs <∞

for a fixed s > n/2.
Let B` be the ball centered at the origin with radius `. With this notation,

clearly the above condition can be replaced by

sup
j∈Z

∥∥m(2j·)
∥∥
Hs(B4\B1)

<∞.

In this article, our attention will be primarily focused on the unimodular Fourier
multipliers eiµ(D) defined via the Fourier transform by

êiµ(D)f(ξ) = eiµ(ξ)f̂(ξ).

The family of unimodular Fourier multipliers is one of the most notable classes of
Fourier multipliers. It arises naturally when studying various physical phenomena
and Cauchy problems related to certain partial differential equations (PDEs). For

instance, ei|D| is the fundamental operator of the wave equation, and ei|D|2 is the
fundamental operator of the Schrödinger equation. However, it is known that, for
any α > 0, the unimodular Fourier multiplier ei|D|α is bounded neither on the
Lebesgue spaces Lp(Rn) nor on the Besov spaces Bs

p,q for p 6= 2, unless α = 1
and n = 1. On the other hand, in recent years, people have discovered that the
operator ei|D|α is bounded on the modulation spaces M s

p,q for all 1 ≤ p, q ≤ ∞,
and s ∈ R when 0 < α ≤ 2. This newly found result makes spaces M s

p,q very
attractive, since we might naturally expect them to play quite a different role
from that of Lebesgue spaces and Besov spaces in solving some PDE problems.

Modulation spacesM s
p,q were initially introduced by Feichtinger [11] in 1983 by

the short-time Fourier transform (see also [10]). His initial motivation was to use a
space different from that of the Lp space to measure the smoothness of a function.
Nowadays, these spaces play a significant role in the study of harmonic analysis,
PDEs, and time-frequency analysis. In the following, we list a few of these results,
among numerous papers. (For the continuity of some operators on modulation
spaces, we refer the reader to [1], [6], [9], [16], and [21]–[24] and the references
therein. For applications to PDEs in the framework of modulation spaces, see
[2], [3], [5], [7], [13], [15], [17], [19], [20], and [26] and the references therein.)
Similar to Besov spaces, which are defined based on the dyadic decomposition
on the frequency domain (see [25]), the modulation spaces are defined via the
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decomposition on the frequency domain based on unit squares. To define the
modulation spaces, we may use several methods. Below we briefly review a discrete
version of the definition.

Take a Schwartz function ϕ supported in the cube [−2
3
, 2
3
]n satisfying∑

k∈Zn

ϕk(ξ) = 1, ∀ξ ∈ Rn,

where we denote

ϕk(ξ) = ϕ(ξ − k) for k ∈ Zn.

For each k ∈ Zn, denote a local square projection �k on the frequency space via
the Fourier transform by

�̂kf(ξ) = ϕk(ξ)f̂(ξ).

For a triplet (p, q, s) ∈ [1,∞] × (0,∞] × R, the modulation space M s
p,q(Rn) is

defined by

M s
p,q(Rn) =

{
f ∈ S ′(Rn) : ‖f‖Ms

p,q(Rn) =
(∑
k∈Zn

〈k〉sq‖�kf‖qp
) 1

q
<∞

}
,

where 〈k〉 = (1+|k|2) 1
2 (see [26] for details). We also denoteMp,q(Rn) =M0

p,q(Rn).
We next recall some known results in the following theorems.

Theorem A ([1, Theorem 1]). Let 1 ≤ p, q ≤ ∞, and s ∈ R. The Fourier
multiplier ei|D|αis bounded from M s

p,q(Rn) to M s
p,q(Rn), provided 0 < α ≤ 2.

Theorem B ([16, Theorem 1.1]). Let α > 2, and let µ be a real-valued function
of class C [n/2]+3 on Rn\{0}. Assume that µ satisfies that, for some ε > 0,∣∣∂γµ(ξ)∣∣ ≤ Aγ|ξ|ε−|γ|, |γ| ≤ [n/2] + 1, when 0 < |ξ| ≤ 1,

and that ∣∣∂γµ(ξ)∣∣ ≤ Aγ|ξ|α−2, 2 ≤ |γ| ≤ [n/2] + 3, for |ξ| > 1.

Suppose that 1 ≤ p, q ≤ ∞ and s ≥ (α − 2)n|1/p − 1/2|. Then the Fourier
multiplier eiµ(D) is bounded from M s

p,q(Rn) to Mp,q(Rn).

By checking the proof of Theorem A, it is not difficult to see that the conclusion
of the theorem can extend to symbols of the form m(ξ) = eiµ(ξ), where the µ’s
are positively homogeneous functions of degree α ∈ [0, 2], smooth away from
the origin. More precisely, the conclusions of Theorem A and Theorem B are
essentially applicable to a class of unimodular multipliers eiµ(D) whose phase
functions are µ(ξ) = |ξ|αΩ( ξ

|ξ|), where the functions Ω are defined on the unit

sphere and satisfy some smoothness conditions.
The aim of this article is twofold. We will establish a Hörmander multiplier

theorem on Lp(Rn) for the unimodular multipliers eiµ(D) by assuming the con-
dition merely on the phase functions µ; and we will establish a Hörmander-type
multiplier theorem for eiµ(D) specifically working to the modulation spaces. In the
following, we give a more detailed description of our plan.
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We first study the Lp boundedness of eiµ(D) by using only the assumption on
‖µ(2−j·)‖HL (see (1.1)). It will be more convenient if one can establish some
boundedness criteria for eiµ(D) based directly on the smoothness and decay rate
of the phase functions µ. This observation motivates us to formulate the following
two theorems, by virtue of the special structure of unimodular multipliers.

Theorem 1. Given L > n/2, assume that µ satisfies

sup
j∈Z

‖µj‖HL(B4\B1) <∞, (1.1)

where µj(ξ) = µ(2−jξ). Then eiµ(D) is bounded on Lp(Rn) for 1 < p <∞, and

‖eiµ(D)f‖Lp(Rn) � sup
j∈Z

(
1 + ‖µj‖L+1

HL(B4\B1)

)
‖f‖Lp(Rn).

On the other hand, if µ satisfies the stronger condition∑
j∈Z

‖µj‖HL(B4\B1) <∞, (1.2)

then eiµ(D) is bounded on Lp(Rn) for 1 ≤ p ≤ ∞, and

‖eiµ(D)f‖Lp(Rn) ≤ C
(
1 +

∑
j∈Z

‖µj‖HL(B4\B1)

)L+1

‖f‖Lp(Rn).

Theorem 2. For some L > n/2, if µ is supported on B1 and satisfies

‖∇2µ‖HL−2(B1) <∞, (1.3)

then eiµ(D) is bounded on Lp(Rn) for 1 ≤ p ≤ ∞. More precisely, we have

‖eiµ(D)f‖Lp ≤ C
(
1 +

∥∥∇2µ‖HL−2(B1)

)L+1‖f
∥∥
Lp .

We will use the Hörmander multiplier theorem to prove Theorem 1 in the case
1 < p < ∞. When p = 1, the Hörmander multiplier theorem is not applicable.
The L1 boundedness of an operator Tm is equivalent to m ∈ FB (the inverse
Fourier transform of m is a bounded Borel measure). However, we will invoke
Young’s inequality to achieve the target. Thus, to obtain the L1 boundedness of
eiµ(D), essentially we try to control the FL1-norm of eiµ − 1. Note that FL1 is
a Banach algebra. It is possible to take another approach (see [12]). In fact, we
may prove that for all p ≥ 1,

‖eiµ(D)f‖Lp ≤
(
‖eiµ − 1‖FL1 + 1

)
‖f‖Lp ≤ ec‖µ‖FL1‖f‖Lp

for some c > 0. Thus the condition ‖eiµ−1‖FL1 <∞ is weaker than the condition
(1+

∑
j∈Z ‖µj‖HL(B4\B1))

L+1 <∞ in Theorem 1. But our aim, for the convenience

of application, is to establish sufficient conditions for eiµ(D) to verify their bound-
edness on Lp by merely checking the regularity conditions of µ. Also, a bright
point appears in Theorem 2. When µ is a compact supported function, we find
that we can use the weaker condition ‖∇2µ‖HL−2 <∞ instead of ‖µ‖HL <∞ to
obtain the Lp boundedness of eiµ(D), where L > n/2 is optimal in the Hörmander
multiplier theorem.
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On the other hand, Theorem A and Theorem B are Mikhlin-type multiplier
theorems on the modulation spaces. We observe that the phase functions in the
theorems are essentially the function µ(ξ) = |ξ|βΩ( ξ

|ξ|), where Ω satisfies certain

smoothness conditions on the unit sphere. Therefore, it will be more interesting
and handy if we establish some Hörmander-type theorems for unimodular Fourier
multipliers on the modulation spaces to fit the special structure ofM s

p,q(Rn). This
observation inspires us to establish the following two Hörmander-type theorems
on M s

p,q(Rn).

Theorem 3. Fix any L > n/2. If the phase function µ satisfies

(1) supj≥−n ‖µj‖HL(B4\B1) ≤ A, and
(2) sup|y|>n ‖∇2µ‖HL−2(B(y,2

√
n)) ≤ A,

then eiµ(D) is bounded on M s
p,q(Rn) for all (p, q, s) ∈ (1,∞)× (0,∞)× R, and

‖eiµ(D)f‖Ms
p,q(Rn) ≤ C(1 + A)L+1‖f‖Ms

p,q(Rn). (1.4)

Additionally, if condition (1) is replaced by∑
j≥−n

‖µj‖HL(B4\B1) < A,

then (1.4) holds for all 1 ≤ p ≤ ∞, 0 < q <∞, and s ∈ R.

Theorem 4. Let N0 = [n/2] + 1. If

(1) supj≥−n ‖µj‖HN0 (B4\B1) ≤ C, and

(2) ‖∇2µ‖HN0−2(B(y,2
√
n)) ≤ C|y|δ for any |y| > n, where δ > 0,

then eiµ(D) is bounded from M
s+δn| 1

p
− 1

2
|

p,q (Rn) to M s
p,q(Rn) when 1 < p < ∞, 0 <

q <∞, and s ∈ R. Precisely, we have

‖eiµ(D)f‖Ms
p,q(Rn) ≤ C‖f‖

M
s+δn| 1p− 1

2 |
p,q (Rn)

for all (p, q, s) ∈ (1,∞)× (0,∞)× R.
Furthermore, if condition (1) is replaced by∑

j≥−n

‖µj‖HN0 (B4\B1) ≤ C,

then, in the conclusion, the range of p can be enlarged to 1 ≤ p ≤ ∞.

Before proceeding, we offer the following comments as a way to clarify the
comparison of our theorems to some known results.

As mentioned before, a Hörmander-type multiplier theorem is “better” than
a Mikhlin-type multiplier theorem since a symbol satisfying the condition in the
latter must satisfy the condition in the former, but it is not always true vice versa.
Hence, Theorems 3 and 4 encompass a wider scope than that of Theorems A
and B. Actually, if n = 2, 3 and β > 3

2
, then one can use Theorem 3 to check that

the unimodular multiplier eiµ(D), with µ(ξ) = | sin |ξ||β, is bounded on M s
p,q(Rn)

for all 1 ≤ p ≤ ∞, 1 < q <∞, and s ∈ R. But this conclusion cannot be derived
from Theorem A or B.



90 Q. HUANG ET AL.

Regarding the special case µ(ξ) = |ξ|βΩ( ξ
|ξ|), the boundedness of eiµ(D) on the

spaces M s
p,q(Rn) when 0 < β ≤ 2 and 1 < p < ∞ needs a smoothness condition

Ω ∈ C [n
2
]+3(Sn−1) in Theorems A and B. But in Theorem 3 we assume a weaker

regularity condition Ω ∈ CL(Sn−1), (L > n/2), to achieve the same conclusion.
We also observe that Theorem 4 represents a substantial improvement over the
main theorem in [16]. For the special case µ(ξ) = |ξ|βΩ( ξ

|ξ|), where the Hessian

determinant of µ is nonzero at some point ξ0, the index δn|1
p
− 1

2
| is optimal.

Additionally, we compare our results to a recent paper by Zhao, Chen, Fan, and
Guo [27], in which the authors also studied the boundedness of unimodular Fourier
multipliers on the modulation spaces. However, to obtain the main results (see,
e.g., [27, Theorems 4.8, 4.9, 4.10]), their proofs are based on obtaining estimates of
lower and upper bounds for the operator norms of eiµ(D). To this end, additional
conditions, such as homogeneity or nondegeneracy, are assumed on the phase
functions µ. These assumptions, however, are not needed in Theorems 3 and 4.
Also, we assume less regularity on µ in our results.

Similar to the characterization of multipliers in Lebesgue spaces, the M1,1

boundedness of Tm is equivalent tom ∈M1,∞. We may directly consider the mod-
ulation space norm corresponding to eiµ(D) (e.g., ‖F−1(eiµ−1)‖M1,∞) to establish

the M1,1 boundedness of eiµ(D). However, we will not pursue this approach for
various technical reasons. More importantly, as we emphasized before, the aim of
this article is to establish some sufficient boundedness criteria that can be easily
verified by checking the regularity conditions merely on µ.

This article is organized as follows. In Section 2, we will prove some necessary
lemmas. The proof of Theorem 1, in which we use the Hörmander multiplier the-
orem to obtain the criterion of Lp boundedness of eiµ(D) for 1 < p < ∞, will
be presented in Section 3. The computation is rather technical when L is a non-
integer in the process of executing the proof. When p = 1, we will decompose
the multiplier into two multipliers so that Young’s inequality can be applied. In
Section 4, we will prove Theorem 2. Again, since the Hörmander multiplier theo-
rem does not work on the L1 boundedness, we will not only apply the Hörmander
multiplier theorem but also invoke Young’s inequality. In order to obtain a weaker
regularity condition in Theorem 2, we will construct an auxiliary phase function
µ ~A,b(ξ) and use the elliptic estimate for the Neumann problem. Theorems 3 and 4
are deduced from Theorems 1 and 2. Their proofs will be presented in Section 5
and Section 6, respectively. Recently, there have been many investigations in the
inverse direction (see, e.g., [8], [18]), where sharp continuity estimates in Lp are
deduced from results in modulation spaces.

In this article, C always denotes a positive constant that is independent of
all essential variables. We use the notation A ' B to mean that there are two
positive constants c1 and c2 independent of all essential variables such that c1A ≤
B ≤ c2A.
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2. Some lemmas

For the Besov spaces Bs
p,q, it is well known that Hs = Bs

2,2. For any (p, q, s) ∈
(1,∞) × [1,∞) × (0, 1), we may use the following equivalent norm (see [26, pp.
17–18]) of Bs

p,q:

‖f‖Λs
p,q

≈ ‖f‖Bs
p,q
,

where

‖f‖Λs
p,q

= ‖f‖Lp +
(∫

Rn

|h|−sq
(∫

Rn

∣∣f(x+ h)− f(x)
∣∣p dx) q

p dh

|h|n
) 1

q
.

The following lemma will play a pivotal role in the proof of our main theorems.

Lemma 5. Let µ ∈ HL be supported in the unit ball B1. For any L ∈ (n/2,
n/2 + 1), there exists a constant C , which depends on the choice of L, such that

‖eiµ − 1‖HL ≤ C
(
‖µ‖HL + ‖µ‖L+1

HL

)
.

Proof. For a multi-index α with |α| > 0, a direct computation involving an induc-
tion argument yields that ∇α(eiµ − 1) can be represented as

∇α(eiµ − 1) =
∑

∑n
i=1 ki|αi|=|α|

C(k1, α1, . . . , kn, αn)
n∏

i=1

(∂αiµ

∂xαi

)ki
eiµ = fαe

iµ. (2.1)

�

Here in the expression

fα =
∑

∑n
i=1 ki|αi|=|α|

C(k1, α1, . . . , kn, αn)
n∏

i=1

(∂αiµ

∂xαi

)ki
,

each αi (i = 1, . . . , n) is a multi-index which may be equal to zero, and C(k1, α1,
. . . , kn, αn) are constants depending on α1, . . . , αn and k1, . . . , kn. We formulate
the required estimate for fα as a separate lemma in the following.

Lemma 6. Let L be a positive number, and let k be the integer satisfying L−1 <
k ≤ L. For any α with |α| ≤ k ≤ n/2, there exists a constant C depending on
α1, . . . , αn and k1, . . . , kn such that

‖fα‖HL−k ≤ C‖µ‖HL

(
‖µ‖k−1

HL + 1
)
.

Proof. By the definition of fα, a direct computation gives that∣∣fα(x)− fα(y)
∣∣

=
∣∣∣ ∑
∑n

i=1 ki|αi|=|α|

Ck1,α1,...,kn,αn

( n∏
i=1

(∂αiµ

∂xαi

)ki
(x)−

n∏
i=1

(∂αiµ

∂xαi

)ki
(y)

)∣∣∣
≤ C

∑
∑n

i=1 ki|αi|=|α|

∣∣∣ n∏
i=1

(∂αiµ

∂xαi

)ki
(x)−

n∏
i=1

(∂αiµ

∂xαi

)ki
(y)

∣∣∣
≤ C

∑
∑n

i=1 ki|αi|=|α|

∑
j,kj>0

∣∣∣(∂αjµ

∂xαj

)kj
(x)−

(∂αjµ

∂xαj

)kj
(y)

∣∣∣
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×
n∏

i 6=j

(∣∣∣∂αiµ

∂xαi
(x)

∣∣∣ki + ∣∣∣∂αiµ

∂xαi
(y)

∣∣∣ki)
≤ C

∑
∑

ki|αi|=|α|

∑
j,kj>0

∣∣∣∂αjµ

∂xαj
(x)− ∂αjµ

∂xαj
(y)

∣∣∣(∣∣∣∂αjµ

∂xαj
(x)

∣∣∣+ ∣∣∣∂αjµ

∂xαj
(y)

∣∣∣)kj−1

×
n∏

i 6=j

(∣∣∣∂αiµ

∂xαi
(x)

∣∣∣+ ∣∣∣∂αiµ

∂xαi
(y)

∣∣∣)ki

≤ C
∑

∑n
i=1 ki|αi|=|α|

∑
j,kj>0

∣∣∇αjµ(x)−∇αjµ(y)
∣∣

×
n∏

i=1

(∣∣∇αiµ(x)
∣∣+ ∣∣∇αiµ(y)

∣∣)ki−δij .

Take p̃j, pi such that

1

p̃j
= max

{
0,

2

n

(
|αj|+

n

2
− L

)}
,

1

pi
=

{
0, ki ≤ δji or |αi|+ n

2
≤ L,

2(ki−δji )

n
(|αj|+ n

2
− L), ki > δji and |αi|+ n

2
> L.

In the above notation, δji = 1 if i = j and δji = 0 if i 6= j. It is easy to check that,
when kj > 0 and

∑n
i=1 ki|αi| = |α|, we have

1

p̃j
+

n∑
i=1

1

pi
= max

{
0,

2

n

(
|αj|+

n

2
− L

)}
+

2

n

∑
ki>δji ,|αi|+n

2
>L

(ki − δji )
(
|αi|+

n

2
− L

)
=

2

n

∑
ki>δji ,|αi|+n

2
>L

ki

(
|αi|+

n

2
− L

)

≤ 2

n

n∑
i=1

ki|αi| −
(2L
n

− 1
) ∑

ki>δji ,|αi|+n
2
>L

ki

≤ 2

n
|α| ≤ 1.

For any h ∈ Rn, using the support condition supp µ ⊂ B1 and Hölder’s inequality,
we obtain∫

Rn

∣∣fα(x+ h)− fα(x)
∣∣2 dx

≤ C

∫
Rn

∑
∑n

i=1 ki|αi|=|α|

∑
kj>0

∣∣∇αjµ(x+ h)−∇αjµ(x)
∣∣2
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×
n∏

i=1

(∣∣∇αiµ(x+ h)
∣∣+ ∣∣∇αiµ(x)

∣∣)2(ki−δij) dx

≤ C

∫
Rn

∑
∑n

i=1 ki|αi|=|α|

∑
kj>0

∣∣∇αjµ(x± h)−∇αjµ(x)
∣∣2 n∏

i=1

∣∣∇αiµ(x)
∣∣2(ki−δij) dx

≤ C
∑

∑n
i=1 ki|αi|=|α|

∑
kj>0

∥∥∣∣∇αjµ(· ± h)−∇αjµ(·)
∣∣2∥∥

p̃j

n∏
i=1

∥∥∣∣∇αiµ(·)
∣∣2(ki−δij)

∥∥
pi

= C
∑

∑n
i=1 ki|αi|=|α|

∑
kj>0

∥∥∇αjµ(· ± h)−∇αjµ(·)
∥∥2

2p̃j

n∏
i=1

‖∇αiµ‖2(ki−δij)

2(ki−δij)pi
. (2.2)

By the Sobolev embedding theorem and the selection of pi, we know that
‖∇αiµ‖2(ki−δij)pi

≤ C‖µ‖HL . So, by using an equivalent norm ‖ · ‖Λs
p,q

of the Besov

space HL−k and the fact L− k < 1, we get

‖fα‖HL−k

'
(∫

Rn

∫
Rn

∣∣fα(x+ h)− fα(x)
∣∣2|h|n+2(L−k) dx dh

) 1
2

≤ C
(∫

Rn

∑
∑n

i=1 ki|αi|=|α|

∑
kj>0

∥∥∇αjµ(· ± h)−∇αjµ(·)
∥∥2

2p̃j

×
n∏

i=1

‖∇αiµ‖2(ki−δij)

2(ki−δij)pi
dx|h|n+2(L−k) dh

) 1
2

≤ C
(∫

Rn

∑
∑n

i=1 ki|αi|=|α|

∑
kj>0

∥∥∇αjµ(· ± h)−∇αjµ(·)
∥∥2

2p̃j

× ‖µ‖2
∑n

i=1 ki−2
Hs dx|h|n+2(L−k) dh

) 1
2

' C
∑

∑n
i=1 ki|αi|=|α|

∑
kj>0

‖∇αjµ‖Bs−k
2p̃j ,2

‖µ‖
∑n

i=1 ki−1
Hs . (2.3)

By the choice of p̃j, the embedding theorem between Besov spaces here gives

HL = BL
2,2 ⊂ B

L−k+αj

2p̃j ,2
. Hence (2.3) means that

‖fα‖HL−k

≤ C
∑

∑n
i=1 ki|αi|=|α|

∑
kj>0

‖∇αjµ‖BL−k
2p̃j ,2

‖µ‖
∑n

i=1 ki−1

HL

≤ C
∑

∑n
i=1 ki|αi|=|α|

∑
kj>0

‖µ‖
B

L−k+αj
2p̃j ,2

(
‖µ‖|α|−1

HL + 1
)

≤ C‖µ‖HL

(
‖µ‖k−1

HL + 1
)
.

This proves Lemma 6. �
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We return to the proof of Lemma 5. By Lemma 6 and (2.2), we have that

‖eiµ − 1‖HL ' ‖eiµ − 1‖2 +
∑

0<|α|≤k

∥∥∇α(eiµ − 1)
∥∥
HL−k

≤ C‖µ‖2 +
∑

0<|α|≤k

‖fαeiµ‖HL−k .

Here, without loss of generality, we always consider the case n > 1 since the case
n = 1 is easier. It gives p = n

2(L−k)
> n/2 ≥ 1. As L − k < 1, by an equivalent

norm of the space HL−k (see [25]) and using Hölder’s inequality, we know that

‖fαeiµ‖HL−k

'
(∫

Rn

∫
Rn

∣∣fα(x+ h)eiµ(x+h) − fα(x)e
iµ(x)

∣∣2|h|−n−2(L−k) dx dh
) 1

2

≤ C
(∫

Rn

∫
Rn

(∣∣(fα(x+ h)− f(x)
)
eiµ(x+h)

∣∣2
+
∣∣fα(x)(eiµ(x+h) − eiµ(x))

∣∣2)|h|−n−2(L−k) dx dh
) 1

2

≤ C
(∫

Rn

∫
Rn

(∣∣fα(x+ h)− f(x)
∣∣2

+
∣∣fα(x)∣∣∣∣µ(x+ h)− µ(x)

∣∣2) dx|h|−n−2(L−k) dh
) 1

2

≤ C
(
‖fα‖HL−k

+
(∫

Rn

‖fα‖22p′
(∫

Rn

∣∣µ(x+ h)− µ(x)
∣∣2p) dx) 1

p |h|−n−2(L−k) dh
) 1

2

' C
(
‖fα‖HL−k + ‖fα‖2p′‖µ‖BL−k

2p,2

)
. (2.4)

Since L − k − n/2 ≥ − n
2p′

and L − n/2 ≥ L − k − n
p
, the embedding theorem

between Besov spaces yields that

‖fα‖2p′ ≤ C‖fα‖HL−k ; ‖µ‖BL−k
2p,2

≤ ‖µ‖HL .

Thus, (2.4) and Lemma 6 imply that

‖fαeiµ‖HL−k ≤ C
(
‖fα‖HL−k + ‖fα‖2p′‖µ‖BL−k

2p,2

)
≤ C

(
‖fα‖HL−k + ‖fα‖HL−k‖µ‖HL

)
≤ C

(
‖µ‖HL + ‖µ‖kHL

)(
1 + ‖µ‖HL

)
≤ C

(
‖µ‖HL + ‖µ‖k+1

HL

)
.

Lemma 5 now is derived from (2.1) and (2.4). Precisely,

‖eiµ − 1‖HL ≤ ‖µ‖2 +
∑

0<|α|≤k

‖fαeiµ‖HL−k

≤ C
(
‖µ‖HL + ‖µ‖k+1

HL

)
≤ C

(
‖µ‖HL + ‖µ‖L+1

HL

)
.
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Remark. If L = [n/2] + 1, then by Lemma 6, one can obtain

‖eiµ − 1‖HL ≤ C
(
‖µ‖HL + ‖µ‖LHL

)
.

But when L is a noninteger, we are not able to prove the same estimate. In the
proof of (2.4), if we use the inequality |eiµ(x+h) − eiµ(x)|2 ≤ C|µ(x+ h)− µ(x)|2q,
where L− k < q ≤ 1, then we have

‖eiµ − 1‖HL ≤ Cq

(
‖µ‖HL + ‖µ‖k+q

HL

)
,

which is an improvement of Lemma 5.

Lemma 7 ([26, p. 37]). Let L > n/2 and f ∈ HL(Rn). We have

‖f̂‖L1(Rn) ≤ C‖f‖HL(Rn).

This lemma is a direct consequence of the Plancherel equality and the definition
of HL. In fact, by the Plancherel equality, Hölder’s inequality, and the fact L >
n/2, one knows that

‖f̂‖L1(Rn) =

∫
Rn

(
1 + |ξ|2

)−L
2
(
1 + |ξ|2

)L
2
∣∣f̂(ξ)∣∣ dξ

≤
(∫

Rn

(
1 + |ξ|2

)−L
dξ
) 1

2
(∫

Rn

(
1 + |ξ|2

)L∣∣f̂(ξ)∣∣2 dξ) 1
2

= C‖f‖HL(Rn).

3. Proof of Theorem 1

The first part of Theorem 1 is a direct corollary of the Hörmander multiplier
theorem and Lemma 5. For any L > n/2, take l < L such that n/2 < l < n/2+1.
By the Hörmander multiplier theorem, for 1 < p <∞, we have that

‖eiµ(D)‖Lp−Lp ≤ C sup
j∈Z

‖eiµj‖Hl(B4\B1).

On the other hand, for any j ∈ Z, we can extend µj from B4 \ B1 to B6 in the
sense that µ̃j is supported in B6 and µ̃j(ξ) = µj(ξ) for ξ ∈ B4 \B1. Additionally,
we may choose µ̃j such that

‖µ̃j‖Hl(B6) ≤ C‖µj‖Hl(B4\B1).

Hence, from Lemma 5, we see that

‖eiµ(D)‖Lp−Lp ≤ C sup
j∈Z

‖eiµ̃j‖Hl(B6) ≤ C
(
1 + sup

j∈Z
‖eiµ̃j − 1‖Hl

)
≤ C

(
1 + sup

j∈Z

(
‖µ̃j‖Hl + ‖µ̃j‖l+1

Hl

))
≤ C sup

j∈Z

(
1 + ‖µj‖Hl(B4\B1)

)l+1

≤ C sup
j∈Z

(
1 + ‖µj‖Hl(B4\B1)

)l+1 ≤ C sup
j∈Z

(
1 + ‖µj‖HL(B4\B1)

)L+1
.

We thus complete the proof of the first part of Theorem 1.
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To prove the second part of Theorem 1, we take a function Φ ∈ C∞
0 (B2)

satisfying Φ(x) = 1 for x ∈ B1, and set ψj(x) = Φ(2j−1x) − Φ(2jx). By the
definition, we have that supp(ψ0) ⊂ B4 \B1, ψj(x) = ψ0(2

jx), and∑
j∈Z

ψj(x) ≡ 1 for all x 6= 0.

For 1 ≤ p ≤ ∞, first we have

‖eiµ(D)f‖Lp =
∥∥(eiµf̂)∨∥∥

Lp ≤
∥∥((eiµ − 1)f̂

)∨∥∥
Lp + ‖f‖Lp

≤
∥∥(eiµ − 1)∨ ∗ f

∥∥
Lp + ‖f‖Lp ,

where g∨ denotes the inverse Fourier transform of a function g. Thus, Young’s
inequality yields that

‖eiµ(D)f‖Lp ≤
(∥∥(eiµ − 1)∨

∥∥
L1 + 1

)
‖f‖Lp

≤
(∑
j∈Z

∥∥[ψj(e
iµ − 1)

]∨∥∥
L1 + 1

)
‖f‖Lp .

Next, an easy scaling argument gives that

‖eiµ(D)f‖Lp ≤
(∑
j∈Z

∥∥[ψ0(e
iµj − 1)

]∨∥∥
L1 + 1

)
‖f‖Lp .

Similar to the proof for the first part, for any j ∈ Z, extend µjχB4\B1 to µ̃j such
that µ̃j is supported in B6 and

‖µ̃j‖HL ≤ C‖µj‖HL(B4\B1).

Since ψ0 is supported in B4 \B1, by Lemmas 7 and 5, we have that∥∥[ψ0(e
iµj − 1)

]∨∥∥
L1 = ‖ψ̌0‖L1

∥∥(eiµ̃j − 1)∨
∥∥
L1

≤ C‖eiµ̃j − 1‖HL

≤ C
(
‖µ̃j‖HL + ‖µ̃j‖L+1

HL

)
≤ C

(
‖µj‖HL(B4\B1) + ‖µj‖L+1

HL(B4\B1)

)
.

This completes the proof of Theorem 1. �

4. Proof of Theorem 2

We begin the proof by introducing an auxiliary phase function

µ ~A,b(ξ) = µ(ξ)− ~Aξ − b = µ(ξ)−
n∑

i=1

aiξi − b,

where b is a real number and ~A = (a1, a2, . . . , an) is a vector in Rn, and they are
to be chosen. Take a function ϕ ∈ C∞

0 (B2) satisfying ϕ(x) = 1 for x ∈ B1. As µ
is supported in B1, checking the Fourier transform we have that

(eiµ(D)f)(x) =
[
(eiµ − 1)f̂

]∨
(x) + f(x)

=
[
(eiµ − 1)ϕf̂

]∨
(x) + f(x).
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Thus, with the definition of µ ~A,b, we obtain that

(eiµ(D)f)(x) = (eiµϕf̂)∨(x) + f(x)− ϕ̌ ∗ f(x)
= eib(eiµ ~A,bϕf̂)∨(x+ ~A) + f(x)− ϕ̌ ∗ f(x).

For any ~A, b and 1 ≤ p ≤ ∞, Young’s inequality yields that

‖eiµ(D)f‖Lp ≤
{∥∥(eiµ ~A,bϕ)∨

∥∥
L1 + C

}
‖f‖Lp

≤
{∥∥((eiµ ~A,b − 1)ϕ

)∨∥∥
1
+ C

}
‖f‖Lp .

Again, we may construct a function µ̃ ~A,b supported in B4 that satisfies µ̃ ~A,b(ξ) =

µ ~A,b(ξ) for ξ ∈ B2 and

‖µ̃ ~A,b‖HL ≤ C‖µ ~A,b‖HL(B2). (4.1)

Now, Lemma 5 implies that, for any f satisfying ‖f‖Lp = 1,

‖eiµ(D)f‖Lp ≤
∥∥(eiµ̃ ~A,b − 1)∨ ∗ ϕ̌

∥∥
1
+ C

≤ C
(
1 +

∥∥(eiµ̃ ~A,b − 1)∨
∥∥
1

)
≤ C

(
1 + ‖eiµ̃ ~A,b − 1‖HL

)
≤ C

(
1 + ‖µ̃ ~A,b‖HL

)L+1 ≤ C
(
1 + ‖µ ~A,b‖HL(B2)

)L+1
.

To complete the proof of the theorem, it remains to check that

inf
~A,b

‖µ ~A,b‖HL(B2) ≤ C‖∇2µ‖HL−2(B2). (4.2)

Choose ~A, b such that∫
B2

µ ~A,b dx =

∫
B2

∂jµ ~A,b dx = 0, j = 1, 2, . . . , n.

We note that (4.2) is a direct consequence of Poincare’s inequality when L ≥ 2. To
prove (4.2) for a general L ∈ R, we need to invoke the following elliptic estimate
for the Neumann problem.

Lemma 8 ([25, p. 233]). Let u be the solution of the Neumann problem{
4u = g, x ∈ B1,
∂u
∂n

= 0, x ∈ ∂B1.

If ∫
B1

g = 0,

then for any L ∈ R one has

‖∇u‖HL−1(B1) ≤ C‖u‖HL(B1) ≤ C‖g‖HL−2(B1).

This lemma is a special case of a result in [25, p. 233]. Clearly, in the lemma
one can replace B1 by B2. By an argument of duality, there exists a function
g ∈ C∞ with ‖g‖H−L = 1 such that

‖µ ~A,b‖HL(B2) ≤ 2‖µ ~A,bg‖L1 .
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Set

a =
1

|B2|

∫
B2

g and g̃ = g − a.

Then

‖g̃‖H−L ≤ C.

Let u be the solution of the Neumann problem{
4u = g̃, x ∈ B2,
∂u
∂n

= 0, x ∈ ∂B2.

By the above lemma, one obtains

‖u‖H2−L(B2) ≤ C‖g̃‖H−L(B2) ≤ C.

Recall that
∫
B2
µ ~A,b dx = 0. Using the duality, we now have

‖µ ~A,b‖HL(B2) = 2
∣∣∣∫

B2

µ ~A,bg̃ dx
∣∣∣ = 2

∣∣∣∫
B2

µ ~A,b4u dx
∣∣∣

= 2
∣∣∣∫

B2

∇µ ~A,b∇u dx
∣∣∣.

Hölder’s inequality thus gives

‖µ ~A,b‖HL(B2) ≤ C‖∇µ ~A,b‖HL−1(B2)‖∇u‖H−L+1(B2)

≤ C‖∇µ ~A,b‖HL−1(B2)‖g̃‖H−L(B2) ≤ C‖∇µ ~A,b‖HL−1(B2).

A similar argument gives

‖∇µ ~A,b‖HL−1(B2) ≤ C‖∇2µ ~A,b‖HL−2(B2) = C‖∇2µ‖HL−2(B2).

Combining all estimates, we finally obtain

‖µ ~A,b‖HL(B2) ≤ C‖∇µ ~A,b‖HL−1(B2) ≤ C‖∇2µ‖HL−2(B2),

where C is a constant independent of ~A and b. This completes the proof of
Theorem 2. �

5. Proof of Theorem 3

Theorem 3 is a direct corollary of Theorems 1 and 2. The definition of the
modulation spaces gives

‖eiµ(D)f‖Ms
p,q(R

n) =
(∑
k∈Zn

〈k〉sq‖�ke
iµ(D)f‖qLp

) 1
q
,

where

�ke
iµ(D)f = ϕk ∗ eiµ(D)f.

First, by using the definition of the local projections �k and checking the Fourier
transform, it is easy to see that

�k =
∑
|j|≤1

�k+j�k
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and that ∑
k∈Zn

�k = Iid,

where Iid is the identity operator.
With these identities, if k = 0, we have

�0e
iµ(D)f = �0e

iµ(D)
∑
|j|≤1

�j(f).

Now we show that �0e
iµ(D) is an Lp multiplier. In fact, following the proof for (1)

in Theorem 1, to prove that �0e
iµ(D) is an Lp multiplier, we need to check that,

for L > n/2,

sup
j∈Z

∥∥µ(2−j·)ϕ(2−j·)
∥∥
HL(B4\B1)

<∞.

Note that ϕ(2−j·) is supported on B√
n2j . Since

√
n2j < 1 when j < − log2(

√
n+

2), we have ∥∥µ(2−j·)ϕ(2−j·)
∥∥
HL(B4\B1)

= 0

whenever j < −1
2
log2 n. For j ≥ −1

2
log2 n, it is easy to check that∥∥µ(2−j·)ϕ(2−j·)

∥∥
HL(B4\B1)

�
∥∥µ(2−j·)

∥∥
HL(B4\B1)

.

Thus by Theorem 1, Theorem 3(1) yields that, for 1 < p <∞,

‖�0e
iµ(D)f‖Lp �

∑
|j|≤1

∥∥�j(f)
∥∥
Lp .

Similarly, we can show that for, 1 < p <∞,

‖�ke
iµ(D)f‖Lp �

∑
|j|≤1

∥∥�j+k(f)
∥∥
Lp ,

when |k| = 1, 2, . . . , n.
We continue to investigate the terms �ke

iµ(D)f , for |k| > n. For any k ∈ Zn

with |k| > n, again we have

�ke
iµ(D)f = �ke

iµ(D)
∑
|j|≤1

�k+j(f).

Recalling the support condition of �k in the frequency domain, following the
proof of Theorem 2, we may assume that µ is supported on the ball B2

√
n + k.

Thus, following the same proof as in Theorem 2, we know that, for L > n/2,
Theorem 3(2) implies that for |k| > n and 1 ≤ p ≤ ∞,

‖�ke
iµ(D)f‖Lp �

∑
|j|≤1

∥∥�j+k(f)
∥∥
Lp .
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Combining the estimates of ‖�ke
iµ(D)f‖Lp for all k, we have that, for 1 < p <∞,(∑

k∈Zn

〈k〉sq‖�ke
iµ(D)f‖qLp

) 1
q �

(∑
k∈Zn

〈k〉sq
∑
|j|≤1

∥∥�k+j(f)
∥∥q

Lp

) 1
q

�
(∑
k∈Zn

〈k〉sq
∥∥�k+j(f)

∥∥q

Lp

) 1
q
.

Furthermore, if Theorem 3(1) is replaced by∑
j≥−n

‖µj‖HL(B4\B1) < A,

then by Theorem 1, we have that, for all k ∈ Zn and 1 ≤ p ≤ ∞,

‖�ke
iµ(D)f‖Lp �

∑
|j|≤|k|+1

∥∥�j(f)
∥∥
Lp .

This inequality clearly yields

‖eiµ(D)f‖Ms
p,q

≤ C‖f‖Ms
p,q

for 1 ≤ p ≤ ∞. This completes the proof of Theorem 3. �

6. Proof of Theorem 4

As we see in the proof of Theorem 3, Theorem 4(1) and Theorem 1 together
yield that, for all 1 < p <∞,

‖�0e
iµ(D)f‖p � ‖�0f‖p.

On the other hand, for any term �ke
iµ(D)f , where |k| ≥ 1, choose

φ̃k ∈ C∞
0 (B(k, 2)) satisfying φ̃k = 1 on the support of ϕ̂k. Also, let µ̃k be an

extension of µχB(k,1)
as we did before. A direct computation yields that for all

1 ≤ p ≤ ∞,

‖�ke
iµ(D)f‖p =

∥∥�k(e
iµφ̃kf̂)

∨∥∥
p

≤
∥∥(eiµφ̃k)

∨ ∗ (�kf)
∥∥
p

≤
∥∥(eiµφ̃k)

∨∥∥
1
‖�kf‖p

≤ C
(
1 +

∥∥[φ̃k(e
iµ − 1)

]∨∥∥
1

)
‖�kf‖p

= C
(
1 +

∥∥φ̃k

(
|k|−δ·

)∨ ∗ (eiµ̃k(|k|−δ·) − 1)∨
∥∥
1

)
‖�kf‖p

= C
(
1 +

∥∥(eiµ̃k(|k|−δ·) − 1)∨
∥∥
1

)
‖�kf‖p

= C
(
1 + ‖eiµ̃k(|k|−δ·) − 1‖HN0

)
‖�kf‖p.

From Lemma 5, we know that

‖eiµ̃k(|k|−δ·) − 1‖HN0 =
∑

|α|≤N0

∥∥∇α(eiµ̃k(|k|−δ·) − 1)
∥∥
2
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=
∑

|α|≤N0

|k|−δ(|α|−n
2
)
∥∥∇α(eiµ̃k − 1)

∥∥
2

≤
∑

|α|≤N0

|k|−δ(|α|−n
2
)
(
1 + ‖µ̃k‖HN0

)|α|
≤

∑
|α|≤N0

|k|−δ(|α|−n
2
)
(
1 + ‖µ‖HN0 (B(k,1))

)|α|
≤

∑
|α|≤N0

|k|−δ(|α|−n
2
)|k|δ|α|

= C|k|
nδ
2 .

Thus, for any k ∈ Zn with |k| ≥ 1 and p = 1,∞, we have

‖�ke
iµ(D)f‖Lp ≤ C|k|

nδ
2 ‖�kf‖Lp � C|k|

nδ
2 ‖f‖Lp .

On the other hand, it is easy to see that, with the Plancherel equality, we have

‖�ke
iµ(D)f‖L2 � ‖f‖L2 .

Thus, an interpolation (see [4]) yields that for all 1 ≤ p ≤ ∞ and |k| ≥ 1,

‖�ke
iµ(D)f‖Lp ≤ C|k|nδ|1/p−1/2|‖f‖Lp .

As before, we know that for any |k| ≥ 1,

‖�ke
iµ(D)f‖Lp ≤

∑
|j|≤1

‖�ke
iµ(D)�k+jf‖Lp

� C|k|nδ|1/p−1/2|
∑
|j|≤1

‖�k+jf‖Lp .

Combining the last estimate with the estimate obtained for ‖�0e
iµ(D)f‖Lp , we

have that for 1 < p <∞,

‖eiµ(D)f‖Ms
p,q

=
(∑
k∈Zn

(
1 + |k|

)sq‖�ke
iµ(D)f‖qp

) 1
q

� C
(∑
k∈Zn

(
1 + |k|

)(s+nδ|1/p−1/2|)q‖ϕk ∗ f‖qp
) 1

q

= C‖f‖
M

s+nδ|1/p−1/2|
p,q

.

Finally, if Theorem 4(1) is replaced by∑
j≥−n

‖µj‖HL(B4\B1) < A,

then we also have, for 1 ≤ p ≤ ∞,

‖�0e
iµ(D)f‖Lp �

∑
|j|≤1

‖�jf‖Lp .

This completes the proof of Theorem 4. �
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1. A. Bényi, K. Gröchenig, K. A. Okoudjou, and L. G. Rogers, Unimodular Fourier multi-
pliers for modulation spaces, J. Funct. Anal. 246 (2007), no. 2, 366–384. Zbl 1120.42010.
MR2321047. DOI 10.1016/j.jfa.2006.12.019. 86, 87
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Zbl 0546.46027. MR0781540. DOI 10.1007/978-3-0346-0416-1. 86, 94, 97

26. B. Wang, Z. Huo, C. Hao, and Z. Guo, Harmonic Analysis Method for Nonlinear Evolution
Equations, I, World Scientfic, Hackensack, NJ, 2011. Zbl 1254.35002. MR2848761. DOI
10.1142/9789814360746. 86, 87, 91, 95

27. G. Zhao, J. Chen, D. Fan, and W. Guo, Sharp estimates of unimodular multipliers on
frequency decomposition spaces, Nonlinear Anal. 142 (2016), 26–47. Zbl 1341.42025.
MR3508056. DOI 10.1016/j.na.2016.04.003. 90

1School of Mathematical Sciences, Zhejiang University, 310027, Hangzhou, Peo-
ple’s Republic of China.

E-mail address: huangqiang0704@163.com

2Department of Mathematics, Zhejiang Normal University, 321004, Jinhua, Peo-
ple’s Republic of China.

E-mail address: jcchen@zjnu.edu.cn

3Department of Mathematics, University of Wisconsin–Milwaukee, Milwaukee
53201, USA.

E-mail address: fan@uwm.edu

4Department of Mathematics, Zhejiang Normal University, 321004, Jinhua, Peo-
ple’s Republic of China.

E-mail address: zxr@zjnu.cn

http://www.emis.de/cgi-bin/MATH-item?1296.35225
http://www.ams.org/mathscinet-getitem?mr=3212721
https://doi.org/10.1016/j.jfa.2014.05.007
http://www.emis.de/cgi-bin/MATH-item?1336.81034
http://www.ams.org/mathscinet-getitem?mr=3479567
https://doi.org/10.1016/j.aim.2016.03.003
http://www.emis.de/cgi-bin/MATH-item?1256.42038
http://www.ams.org/mathscinet-getitem?mr=3014810
https://doi.org/10.1007/978-3-0348-0454-7_14
https://doi.org/10.1007/978-3-0348-0454-7_14
http://www.emis.de/cgi-bin/MATH-item?1336.35322
http://www.ams.org/mathscinet-getitem?mr=3427938
https://doi.org/10.1016/j.matpur.2015.09.005
https://doi.org/10.1016/j.matpur.2015.09.005
http://www.emis.de/cgi-bin/MATH-item?1124.42018
http://www.ams.org/mathscinet-getitem?mr=2329683
https://doi.org/10.1016/j.jfa.2007.03.015
http://www.emis.de/cgi-bin/MATH-item?1127.42021
http://www.ams.org/mathscinet-getitem?mr=2213600
https://doi.org/10.1002/mana.200410384
http://www.emis.de/cgi-bin/MATH-item?1181.47052
http://www.ams.org/mathscinet-getitem?mr=2503312
https://doi.org/10.1016/j.acha.2008.10.001
https://doi.org/10.1016/j.acha.2008.10.001
http://www.emis.de/cgi-bin/MATH-item?1217.42027
http://www.ams.org/mathscinet-getitem?mr=2762394
http://www.emis.de/cgi-bin/MATH-item?0546.46027
http://www.ams.org/mathscinet-getitem?mr=0781540
https://doi.org/10.1007/978-3-0346-0416-1
http://www.emis.de/cgi-bin/MATH-item?1254.35002
http://www.ams.org/mathscinet-getitem?mr=2848761
https://doi.org/10.1142/9789814360746
https://doi.org/10.1142/9789814360746
http://www.emis.de/cgi-bin/MATH-item?1341.42025
http://www.ams.org/mathscinet-getitem?mr=3508056
https://doi.org/10.1016/j.na.2016.04.003
mailto:huangqiang0704@163.com
mailto:jcchen@zjnu.edu.cn
mailto:fan@uwm.edu
mailto:zxr@zjnu.cn

	1 Introduction
	2 Some lemmas
	3 Proof of Theorem 1
	4 Proof of Theorem 2
	5 Proof of Theorem 3
	6 Proof of Theorem 4
	Acknowledgments
	References
	Author's addresses

