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Abstract. We provide extension procedures for nonlinear expectations to the
space of all bounded measurable functions. We first discuss a maximal extension
for convex expectations which have a representation in terms of finitely additive
measures. One of the main results of this article is an extension procedure for
convex expectations which are continuous from above and therefore admit a
representation in terms of countably additive measures. This can be seen as a
nonlinear version of the Daniell–Stone theorem. From this, we deduce a robust
Kolmogorov extension theorem which is then used to extend nonlinear kernels
to an infinite-dimensional path space. We then apply this theorem to construct
nonlinear Markov processes with a given family of nonlinear transition kernels.

1. Introduction

Given a set M of bounded measurable functions X : Ω → R which contains
the constants, a nonlinear expectation is a functional E : M → R which satisfies
E(X) ≤ E(Y ) whenever X(ω) ≤ Y (ω) for all ω ∈ Ω, and E(α1Ω) = α for all
α ∈ R. If a nonlinear expectation E is in addition sublinear, then ρ(X) := E(−X),
X ∈ M , is a coherent monetary risk measure as introduced by Artzner et al. [1]
and Delbaen [12], [13] (see also Föllmer and Schied [24] for an overview of convex
monetary risk measures). Other prominent examples of nonlinear expectations
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include the g-expectation of Coquet et al. [11] and the G-expectation introduced
by Peng [27], [28] (see also Dolinsky, Nutz, and Soner [18] or Denis, Hu, and Peng
[17]). We also refer to Cheridito et al. [9] and Soner, Touzi, and Zhang [29], [30]
for the connection of the latter to fully nonlinear partial differential equations
and second-order backward stochastic differential equations (2BSDE).

The first part of this article deals with the extension of a nonlinear expecta-
tion from a subspace M to the space L∞ consisting of all bounded measurable
functions X : Ω → R. In line with Cerreia-Vioglio et al. [5], we first show the
existence of a maximal extension. In the case that E is convex on M , the maxi-

mal extension Ê is also convex and has a dual representation in terms of finitely
additive probability measures. We then focus on extensions which satisfy some
additional continuity properties. If E is convex and continuous from above on a
Riesz subspace M , we construct an extension Ē , which is continuous from below
on L∞ and has a dual representation in terms of σ-additive probability measures
(see Theorem 3.10). With the help of Choquet’s capacitability theorem (see [10,
Théorème 1]), we obtain the uniqueness of such an extension in a certain class of
expectations. Thus, our extension result can be viewed as a generalization of the
Daniell–Stone extension theorem, which states that a linear expectation E which
is continuous from above on a Riesz subspace M has a unique linear extension Ē
to L∞ over the σ-algebra σ(M) generated byM . While for linear expectations the
extension is still continuous from above, the same does not hold for convex expec-
tations. Note that the continuity from above of a convex expectation E on L∞ is
a very strong condition which, in particular, implies that E(X) = E(Y ) whenever
X = Y µ-almost surely for some probability measure µ, and that the representing
probability measures in the dual representation of E are dominated by µ as well.
However, nonlinear expectations are continuous from above on certain subspaces
of L∞ (see, e.g., Cheridito, Kupper, and Tangpi [7] and the references therein).
Hence, nonlinear expectations can be constructed by defining them on a subspace
M and extending them to L∞, the space of bounded σ(M)-measurable functions.

In the second part of the article, we illustrate this extension procedure in a
Kolmogorov-type setting. That is, for an arbitrary index set I we construct non-
linear expectations on L∞(SI), where SI is the Ith product of a Polish space S.
To that end, we first consider a family of expectations EJ on linear subsets MJ of
L∞(SJ), indexed by the set H of all finite subsets of I. In line with Peng [26],
under the natural consistency condition EK(f) = EJ(f ◦ prJK) for every f ∈ MK

and all J,K ∈ H with K ⊂ J , where prJK denotes the projection from MJ to
MK , the family (EJ) can be extended to the space M := {f ◦ prJ : f ∈ MJ , J ∈
H }. Moreover, if each EJ is convex and continuous from above on MJ , the same
also holds for the extension on M . Hence, by the general extension result, The-
orem 3.10, from the first part, there exists a convex expectation Ē on L∞ which
is continuous from below such that Ē(f ◦ prJ) = EJ(f) for all f ∈ MJ and
J ⊂ I finite (see Theorem 4.6). The corresponding dual version in the sublinear
case leads to Theorem 4.7, which is a robust version of Kolmogorov’s extension
theorem. (We refer to Delbaen [14], Delbaen, Peng, and Rosazza Gianin [15],
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Cheridito, Delbaen, and Kupper [6], Föllmer and Penner [23], or Bartl [2] for a
discussion on time consistency for dynamic monetary risk measures.)

Finally, we construct consistent families (EJ) of nonlinear expectations by
means of nonlinear kernels, which are closely related to monetary risk kernels,
as introduced by Föllmer and Klüppelberg [22]. For two subsets M and N of
L∞, which contain the constants, a nonlinear kernel from M to N is a map-
ping E : S × M → R such that E(x, ·) is a nonlinear expectation for all x ∈ S
and E(·, f) ∈ N for all f ∈ M . We then focus on nonlinear kernels, which map
bounded continuous functions to bounded continuous functions, to deal with sto-
chastic optimal control problems (see, e.g., Yong and Zhou [32] or Fleming and
Soner [21]).

Notation. Let (Ω,F) be a measurable space, and denote by L∞(Ω,F) the space
of all bounded F -B(R)-measurable random variables X : Ω → R. Let ba(Ω,F) be
the space of all finitely additive signed measures of bounded variation on (Ω,F)
containing the subset ca(Ω,F) of all σ-additive signed measures. We denote by
ba+(Ω,F) the set of all positive elements in ba(Ω,F), and we denote by ba1+(Ω,F)
the set of those µ ∈ ba+(Ω,F) with µ(Ω) = 1. Analogously, we define ca+(Ω,F)
and ca1+(Ω,F).

Using the identification ba(Ω,F) = (L∞(Ω,F))′ (see [19, p. 258]), where (. . .)′

indicates the topological dual space, we write µX :=
∫
Ω
X dµ for µ ∈ ba(Ω,F)

and X ∈ L∞(Ω,F). The space L∞(Ω,F) and subspaces M ⊂ L∞(Ω,F) will
always be endowed with the supremum norm ‖·‖∞, and their dual spaces ba(Ω,F)
and M ′ will be endowed with the weak*-topology. On subsets of these spaces we
take the trace topology. On L∞(Ω,F) we consider the partial order X ≥ Y
whenever X(ω) ≥ Y (ω) for all ω ∈ Ω. For M ⊂ L∞(Ω,F), we write α ∈ M
and R ⊂ M if α1Ω ∈ M and {α1Ω : α ∈ R} ⊂ M , respectively, where 1A is the
indicator function of A ∈ F .

Structure of the article. In Section 2 we study general extension results for
nonlinear expectations and state their dual representations. The main extension
results for convex expectations, which are continuous from above, are provided in
Section 3. In Section 4 we discuss nonlinear versions of Kolmogorov’s extension
theorem which are finally applied to nonlinear kernels in Section 5.

2. General representation and extension results

In this section, we introduce the basic definitions and state a maximal extension
result for nonlinear expectations and their dual representations. Throughout, let
M ⊂ L∞(Ω,F) with R ⊂ M . The following definition of a nonlinear expectation
is due to Peng [26].

Definition 2.1 ([26, Definition 2.4]). A (nonlinear) pre-expectation E on M is a
functional E : M → R which satisfies the following properties.

(i) Monotonicity: E(X) ≤ E(Y ) for all X,Y ∈ M with X ≤ Y .
(ii) Constant-preserving: E(α) = α for all α ∈ R.

A pre-expectation E on L∞(Ω,F) is called an expectation.
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Note that a pre-expectation E : M → R satisfies |E(X)| ≤ ‖X‖∞ for allX ∈ M .
The extension procedure of positive linear functionals by Kantorovich (see [31,
p. 277]) indicates the following extension of a pre-expectation E : M → R to an

expectation Ê : L∞(Ω,F) → R. (For related extension results on niveloids, we
refer to Cerreia-Vioglio et al. [5].)

Proposition 2.2. For a pre-expectation E : M → R, define

Ê(X) := inf
{
E(X0) : X0 ∈ M,X0 ≥ X

}
for all X ∈ L∞(Ω,F).

(a) Ê : L∞(Ω,F) → R is the maximal expectation with Ê |M = E; that is,

Ê(X) = E(X) for all X ∈ M and for every expectation Ẽ : L∞(Ω,F) → R
with Ẽ |M = E, we have that Ẽ(X) ≤ Ê(X) for all X ∈ L∞(Ω,F).

(b) If M is convex and E is convex, then Ê is convex.

(c) If M is a convex cone and E is sublinear, then Ê is sublinear.

Proof. (a) Let X ∈ L∞(Ω,F). Note that Ê(X) > −∞ since, for each X0 ∈ M
with X0 ≥ X, one has E(X0) ≥ E(−‖X‖∞) = −‖X‖∞. On the other hand,

‖X‖∞ ∈ M implies that Ê(X) ≤ E(‖X‖∞) = ‖X‖∞. So Ê(X) is finite.
If X ∈ M , then we have E(X) ≤ E(X0) for all X0 ∈ M with X0 ≥ X; that is,

Ê(X) = E(X). Since R ⊂ M , we thus obtain Ê(α) = α for all α ∈ R. Now let
X,Y ∈ L∞(Ω,F) with X ≤ Y . Then Y0 ≥ X for all Y0 ∈ M with Y0 ≥ Y , and

therefore Ê(X) ≤ Ê(Y ).
If Ẽ : L∞(Ω,F) → R is another expectation with Ẽ |M = E and X ∈ L∞(Ω,F),

then

Ẽ(X) ≤ Ẽ(X0) = E(X0)

for all X0 ∈ M with X0 ≥ X. Hence, Ẽ(X) ≤ Ê(X).

The statements (b) and (c) follow directly from the definition of Ê . �

Remark 2.3. For a pre-expectation E : M → R, let Ě(X) := sup{E(X0) : X0 ∈
M,X0 ≤ X} for allX ∈ L∞(Ω,F). Then, one readily verifies that Ě : L∞(Ω,F) →
R is the smallest expectation which extends E . However, convexity of E usually
does not carry over to Ě .

Throughout the remainder of this section, let M ⊂ L∞(Ω,F) be a linear sub-

space with 1 ∈ M . In this case, we can give an explicit description of Ê by using
tools from convex analysis and duality theory. For a convex function E : M → R,
let E∗ be its conjugate function

E∗(µ) := sup
X∈M

(
µX − E(X)

)
,

where µ : M → R is a linear functional. We start with the well-known represen-
tation of convex pre-expectations on M . For the sake of completeness, we give a
proof in the Appendix.
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Lemma 2.4. Let E : M → R be a convex pre-expectation. Then, every linear
functional µ : M → R with E∗(µ) < ∞ is a linear pre-expectation. Furthermore,
one has

E(X) = max
µ∈M ′

(
µX − E∗(µ)

)
for all X ∈ M, (2.1)

where the maximum is attained on the convex compact set {µ ∈ M ′ : E∗(µ) ≤ α}
for every α ≥ ‖X‖∞ − E(X). If E is sublinear, then E∗(µ) < ∞ implies that
E∗(µ) = 0 for all µ ∈ M ′, and we obtain that

E(X) = max
{
µX : µ ∈ M ′, E∗(µ) = 0

}
.

The preceding lemma shows that a convex pre-expectation has the translation
property ; that is, E(X + α) = E(X) + α for all X ∈ M and α ∈ R. In particular,
E is 1-Lipschitz continuous, and ρ(X) := E(−X) defines a convex risk measure
on M . (For a discussion of risk measures, we refer to Föllmer and Schied [24] and
the references therein.)

Remark 2.5. We apply Lemma 2.4 to the linear case. Let µ ∈ M ′ be a linear
pre-expectation. Then,

µ̂(X) = max
{
νX : ν ∈ ba1+(Ω,F), ν|M = µ

}
for all X ∈ L∞(Ω,F). (2.2)

In fact, by Proposition 2.2(c), µ̂ is a sublinear expectation, and an application of
Lemma 2.4 with M = L∞(Ω,F) yields

µ̂(X) = max
{
νX : ν ∈ ba(Ω,F), µ̂∗(ν) = 0

}
.

For each ν ∈ ba(Ω,F) with µ̂∗(ν) = 0, another application of Lemma 2.4 implies
that ν ∈ ba1+(Ω,F), and from µ̂(X) ≥ νX for all X ∈ L∞(Ω,F), we see that
νX0 ≤ µ̂(X0) = µ(X0) for all X0 ∈ M . As M is a linear subspace, it follows
that ν|M = µ. This implies ≤ in (2.2). On the other hand, each ν ∈ ba1+(Ω,F)
with ν|M = µ is an expectation extending µ, and therefore µ̂(X) ≥ νX by the
maximality of µ̂.

Theorem 2.6. Let E : M → R be a convex pre-expectation on M . Then, the

maximal extension Ê has the representation

Ê(X) = max
µ∈M ′

E∗(µ)<∞

(
µ̂(X)− E∗(µ)

)
= max

ν∈ba1+(Ω,F)

(
νX − E∗(ν|M)

)
(2.3)

for all X ∈ L∞(Ω,F). Moreover, Ê∗(ν) = E∗(ν|M) for all ν ∈ ba1+(Ω,F).

Proof. By Lemma 2.4, we have that every µ ∈ M ′ with E∗(µ) < ∞ is a linear
pre-expectation on M , and therefore, µ̂ is well defined. Let X ∈ L∞(Ω,F). By

the maximality of Ê , we have that

sup
µ∈M ′

E∗(µ)<∞

(
µ̂(X)− E∗(µ)

)
≤ Ê(X) and sup

ν∈ba1+(Ω,F)

(
νX − E∗(ν|M)

)
≤ Ê(X)

as the left-hand sides are expectations extending E . By Lemma 2.4 applied to Ê
andM = L∞(Ω,F), there exists a linear expectation ν ∈ ba1+(Ω,F) with Ê∗(ν) <
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∞ and Ê(X) = νX − Ê∗(ν). Then, µ := ν|M ∈ M ′ is a linear pre-expectation

with E∗(µ) ≤ Ê∗(ν) < ∞. By Remark 2.5, we get that

Ê(X) = νX − Ê∗(ν) ≤ µ̂(X)− E∗(µ) ≤ Ê(X).

It remains to show that Ê∗(ν) = E∗(ν|M) for all ν ∈ ba1+(Ω,F). Clearly, E∗(ν|M) ≤
Ê∗(ν). To show the inverse inequality, let ν ∈ ba1+(Ω,F) with E∗(ν|M) < ∞,
X ∈ L∞(Ω,F) and ε > 0. Then, there exists some X0 ∈ M with X0 ≥ X and

E(X0) ≤ Ê(X) + ε. Hence, we get that

νX − Ê(X) ≤ νX − Ê(X0) + ε ≤ νX0 − Ê(X0) + ε ≤ E∗(ν|M) + ε.

Letting ε ↘ 0, we obtain that νX − Ê(X) ≤ E∗(ν|M) and the proof is complete.
�

3. Continuous extensions of nonlinear expectations

Although the maximal extension Ê is rather straightforward, its representation
(2.3) is in terms of finitely additive measures in ba1+(Ω,F). In this section, we
focus on an alternative extension admitting a representation with probability
measures in ca1+(Ω,F). Throughout this section, let M ⊂ L∞(Ω,F) be a linear
subspace with 1 ∈ M .

Definition 3.1. Let E : M → R be a pre-expectation on M .

(a) We say that E is continuous from above if E(Xn) ↘ E(X) for all (Xn)n∈N ∈
MN and X ∈ M with Xn ↘ X as n → ∞.

(b) We say that E is continuous from below if E(Xn) ↗ E(X) for all (Xn)n∈N ∈
MN and X ∈ M with Xn ↗ X as n → ∞.

In Fan [20], a function f : E × F → R defined on arbitrary sets E and F is
said to be convex on F if, for all y1, y2 ∈ F and λ ∈ [0, 1], there exists an element
y0 ∈ F such that

f(x, y0) ≤ λf(x, y1) + (1− λ)f(x, y2) for all x ∈ E.

Analogously, concavity on E is defined. By Fan’s minimax theorem (see [20,
Theorem 2]), one has

max
x∈E

inf
y∈F

f(x, y) = inf
y∈F

max
x∈E

f(x, y)

if E is a compact Hausdorff space, f(·, y) is upper-semicontinuous on E for each
y ∈ F , and f is convex on F and concave on E.

Lemma 3.2. Let E : M → R be a convex pre-expectation. Then, E is continuous
from above if and only if every µ ∈ M ′ with E∗(µ) < ∞ is continuous from above.

Proof. Recall that by Lemma 2.4, one has E(Y ) = maxµ∈M ′(µY − E∗(µ)) for all
Y ∈ M , and let (Xn)n∈N ∈ MN such that Xn ↘ X for some X ∈ M .
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If E is continuous from above, then for every µ ∈ M ′ with E∗(µ) < ∞ and all
λ > 0, one has

0 ≤ µXn − µX = µ(Xn −X) = λ−1µ
(
λ(Xn −X)

)
≤ λ−1E

(
λ(Xn −X)

)
+ λ−1E∗(µ) ↘ λ−1E∗(µ) as n → ∞.

Letting λ → ∞, we thus obtain that infn∈N µXn = µX.
Conversely, if every µ ∈ M ′ with E∗(µ) < ∞ is continuous from above, we

apply Fan’s minimax theorem with E := {µ ∈ M ′ : E∗(µ) ≤ ‖X1‖∞ − E(X)},
F := N, and f : E × F → R, (µ, n) 7→ µXn − E∗(µ), and we obtain

E(X) = max
µ∈E

(
µX − E∗(µ)

)
= max

µ∈E
inf
n∈N

(
µXn − E∗(µ)

)
= inf

n∈N
max
µ∈E

(
µXn − E∗(µ)

)
= inf

n∈N
E(Xn),

so that E is continuous from above. �

Remark 3.3. Let E : L∞(Ω,F) → R be a convex expectation which is continuous
from above. Then, Lemmas 2.4 and 3.2 imply that

Pn :=
{
µ ∈ ca1+(Ω,F) : E∗(µ) ≤ n

}
is a compact subset of ba(Ω,F) for all n ∈ N. Hence, for all n ∈ N there exists
a probability measure νn ∈ ca1+(Ω,F) such that all µ ∈ Pn are νn-continuous

and the family { dµ
dνn

: µ ∈ Pn} is uniformly integrable (see [4, p. 291]). Therefore,

every µ ∈ ca1+(Ω,F) with E∗(µ) < ∞ is absolutely continuous with respect to the
probability measure ν :=

∑∞
n=1 2

−nνn. By Lemmas 2.4 and 3.2, we have that

E(X) = E(Y )

for all X,Y ∈ L∞(Ω,F) with X = Y ν-almost surely.

Since the continuity from above on L∞(Ω,F) of a convex expectation E already
implies that E is dominated by some reference measure, this assumption is too
strong in many applications. This motivates the following.

Definition 3.4. Let E : L∞(Ω,F) → R be a convex expectation. Then, we say
that (Ω,F , E) is a convex expectation space if there exists a set of probability
measures P ⊂ ca1+(Ω,F) such that

E(X) = sup
µ∈P

(
µX − E∗(µ)

)
for all X ∈ L∞(Ω,F). If in addition E is sublinear, then (Ω,F , E) is called a
sublinear expectation space.

The following proposition is a standard result which shows that in a topological
space Ω tightness is sufficient to at least obtain continuity from above on Cb(Ω).
For the reader’s convenience, we provide a proof of this statement.

Proposition 3.5. Let Ω be a topological space with Borel σ-algebra F on Ω, and
let E : Cb(Ω) → R be given by

E(X) := sup
µ∈P

µX for all X ∈ Cb(Ω),
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where P ⊂ ca1+(Ω,F) is tight. Then, the sublinear pre-expectation E is continuous
from above.

Proof. Let (Xn)n∈N be a sequence in Cb(Ω) with Xn ↘ 0 and ε > 0. We may
assume without loss of generality that X1 6= 0. As P is tight, there exists a
compact set K ⊂ Ω such that

sup
µ∈P

µ(Ω \K) ≤ ε‖X1‖−1
∞ .

By Dini’s lemma, we have that ‖Xn1K‖∞ → 0. Hence,

E(Xn) ≤ sup
µ∈P

µ(Xn1K) + sup
µ∈P

µ
(
Xn(1− 1K)

)
≤ ‖Xn1K‖∞ + ‖X1‖∞ sup

µ∈P
µ(Ω \K)

≤ ‖Xn1K‖∞ + ε → ε as n → ∞.

Letting ε ↘ 0, we obtain that limn→∞ E(Xn) = 0, and therefore, E is continuous
from above at 0. Since E is sublinear, it is continuous from above. �

The following lemma is a variant of Extensions du théorème 1(a) in Cho-
quet [10].

Lemma 3.6. Let F ⊂ 2Ω be a σ-algebra, and let E : L∞(Ω,F) → R be continuous

from below. Then, Ê : L∞(Ω, 2Ω) → R is continuous from below as well.

Proof. Let X ∈ L∞(Ω, 2Ω), and let (Xn)n∈N be a sequence in L∞(Ω, 2Ω) with
Xn ↗ X. Fix ε > 0. Then, for every n ∈ N, there exists an Xn

0 ∈ L∞(Ω,F) with
Xn ≤ Xn

0 ≤ ‖X‖∞ and

E(Xn
0 ) ≤ Ê(Xn) + ε

for all n ∈ N. Define Yn := infk≥nX
k
0 . Then, Yn ∈ L∞(Ω,F) with Xn ≤ Yn ≤

Yn+1 ≤ ‖X‖∞ and

E(Yn) ≤ E(Xn
0 ) ≤ Ê(Xn) + ε

for all n ∈ N. As Xn ≤ Yn ≤ ‖X‖∞ for all n ∈ N, we get that Y := supn∈N Yn ∈
L∞(Ω,F) with X = supn∈NXn ≤ supn∈N Yn = Y and Yn ↗ Y . Since E is
continuous from below, we obtain that

Ê(X) ≤ E(Y ) = lim
n→∞

E(Yn) ≤ lim
n→∞

Ê(Xn) + ε.

Letting ε ↘ 0, we obtain that Ê(X) ≤ limn→∞ Ê(Xn), and therefore, Ê(X) =

limn→∞ Ê(Xn). �

Let F ⊂ 2Ω be a σ-algebra. For a convex expectation E : L∞(Ω,F) → R
which is continuous from below, the following example shows that, in general,
there exists not even one µ ∈ ca1+(Ω,F) with E∗(µ) < ∞. However, if E is
dominated by some reference measure ν ∈ ca1+(Ω,F), that is, E(X) = E(Y ) for
all X,Y ∈ L∞(Ω,F) with X = Y ν-almost surely, then E can even be represented
by probability measures which are absolutely continuous with respect to ν (see
[24, Theorem 4.33]).
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Example 3.7. Let Ω be a set of cardinality |Ω| = ℵ1. Let

A :=
{
A ∈ 2Ω : |A| = ℵ0 or |Ω \ A| = ℵ0

}
and

λ(A) :=

{
0, |A| = ℵ0,

1, |Ω \ A| = ℵ0

for all A ∈ A. Then (Ω,A, λ) is a probability space and by Proposition 2.2 and

Lemma 3.6, λ̂ : L∞(Ω, 2Ω) → R is a sublinear expectation which is continuous
from below and extends λ. However, by a result due to Bierlein [3, Satz 1C],
there exists no µ ∈ ca1+(Ω, 2

Ω) with µ|A = λ. Hence, by Theorem 2.6, there exists

no µ ∈ ca1+(Ω, 2
Ω) with λ̂∗(µ) < ∞. Assuming the continuum hypothesis, we may

choose Ω = [0, 1] and λ : A → R as the restriction of Lebesgue measure to A.

For X,Y ∈ L∞(Ω,F), let (X ∧Y )(ω) := min{X(ω), Y (ω)} and (X ∨Y )(ω) :=
max{X(ω), Y (ω)} for all ω ∈ Ω. For the remainder of this section, we assume
that the linear subspace M of L∞(Ω,F) is a Riesz subspace, that is, M ∧M = M
or, equivalently, M ∨M = M . Here, M ∧M and M ∨M are the sets of all X ∧Y
and X ∨Y with X,Y ∈ M , respectively. Typical examples for Riesz subspaces of
L∞(Ω,F) are

(i) the space span{1A : A ∈ A} of all A-step functions, where A ⊂ F is an
algebra;

(ii) the space Cb(Ω) of all continuous bounded functions Ω → R, if Ω is a
topological space and F is the Borel σ-algebra on Ω.

Denote by Mσ and Mδ the set of all X ∈ L∞(Ω, 2Ω) for which there exists a
sequence (Xn)n∈N ∈ MN with Xn ↗ X and Xn ↘ X, respectively. Later in this
article, we will use the following version of Choquet’s capacitability theorem (see
[10, Théorème 1]). Let E : L∞(Ω, 2Ω) → R be an expectation, and let M be a
Riesz subspace with 1 ∈ M . If E is continuous from below and E|Mδ

is continuous
from above, then for all X ∈ L∞(Ω, σ(M)), one has

E(X) = sup
{
E(X0) : X0 ∈ Mδ, X0 ≤ X

}
.

This follows from [10, Extensions du Théorème 1, 2)] and the monotone class
theorem (see [16, Chapter I, (22.3)]).

By the Daniell–Stone theorem, for every linear pre-expectation µ : M → R
which is continuous from above, there exists a unique expectation ν ∈ ca1+(Ω,
σ(M)) which is continuous from above and extends µ, that is, µX =

∫
X dν for

all X ∈ M . However, in the sublinear case, a similar statement does not hold, as
illustrated by the following example. (For a convex version of the Daniell–Stone
theorem and the respective representation results, we refer to Cheridito, Kupper,
and Tangpi [7] and the references therein.)

Example 3.8. Let Ω := [0, 1] and E(X) := maxω∈Ω X(ω) for all X ∈ M :=
C(Ω). By Dini’s lemma, E : M → R is continuous from above, and thus has the
representation

E(X) = max
µ∈ca1+([0,1],F)

µX for all X ∈ M,
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where F denotes the Borel σ-algebra on [0, 1]. Notice that ca1+(Ω,F) is compact
in ca(Ω,F) = C(Ω)′ or, equivalently, tight by Prokhorov’s theorem, however it is
not compact in ba(Ω,F) = L∞(Ω,F)′. Suppose that there existed an expectation
Ẽ : L∞(Ω,F) → R which extends E and is continuous from above. Approximating
the upper-semicontinuous indicator function 1{ω} with continuous functions from

above implies that Ẽ(1{ω}) ≥ 1 for all ω ∈ Ω. Hence, for every sequence (An)n∈N ⊂
F with An 6= ∅ and 1An ↘ 0, one has Ẽ(1An) ≥ 1 for all n ∈ N and Ẽ(0) = 0.

The main theorem of this section, Theorem 3.10, states that, for every con-
vex pre-expectation E : M → R which is continuous from above, there exists
exactly one expectation Ē : L∞(Ω, σ(M)) → R which is continuous from below
on L∞(Ω, σ(M)) and continuous from above on Mδ. Moreover, Ē is convex and
admits a representation in terms of probability measures on (Ω, σ(M)).

We start by extending a pre-expectation E : M → R which is continuous from
above to a pre-expectation E : Mδ → R which is continuous from above. (For
related results in the context of robust pricing and hedging in financial markets
we refer to Cheridito, Kupper, and Tangpi [8].)

Lemma 3.9. Let E : M → R be a pre-expectation which is continuous from above.
Then, there exists a unique pre-expectation Eδ : Mδ → R which is continuous from

above and extends E. Moreover, Eδ = Ê |Mδ
, that is, Eδ is the largest pre-expectation

Ẽ : Mδ → R with Ẽ |M = E.

Proof. Let X ∈ Mδ and (Xn)n∈N ∈ MN with Xn ↘ X. Then, E(Xn) ≥ −‖X‖∞
for all n ∈ N. Define

Eδ(X) := lim
n→∞

E(Xn) > −∞.

First, we show that Eδ(X) is independent of the sequence (Xn)n∈N ∈ MN. Let
(Yn)n∈N ∈ MN with Yn ↘ X. Then, Zk

n := Xn ∨ Yk ∈ M for all k, n ∈ N and
Zk

n ↘ Yk as n → ∞ for all k ∈ N. Hence, as E is continuous from above, we get
that

E(Yk) = lim
n→∞

E(Zk
n) ≥ lim

n→∞
E(Xn)

for all k ∈ N. Thus, limn→∞ E(Yn) ≥ limn→∞ E(Xn), and therefore
limn→∞ E(Yn) = limn→∞ E(Xn) by symmetry, which shows that Eδ is well defined.
Clearly, Eδ defines a pre-expectation on Mδ with Eδ|M = E .

Now, let X ∈ Mδ and (Xn)n∈N ∈ MN
δ with Xn ↘ X. For all n ∈ N, let

(Xk
n)k∈N ∈ MN with Xk

n ↘ Xn as k → ∞. Define Yn := Xn
1 ∧ · · · ∧ Xn

n for all
n ∈ N. Then, as M is directed downward, we have that Yn ∈ M with Yn ≥ Yn+1

for all n ∈ N. Moreover, Yn ≥ Xn for all n ∈ N, and Xk
n ≥ Yn for all k, n ∈ N

with k ≤ n. Hence,

Xm = lim
k→∞

Xk
m ≥ lim

n→∞
Yn ≥ lim

n→∞
Xn = X

for all m ∈ N. Altogether, Yn ↘ X with Yn ≥ Xn for all n ∈ N and therefore

Eδ(X) = lim
n→∞

E(Yn) ≥ lim
n→∞

Eδ(Xn).

As Eδ(Xn) ≥ Eδ(X) for all n ∈ N, we obtain that Eδ(X) = limn→∞ Eδ(Xn).
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We have that Ê(X) ≥ Eδ(X) for all X ∈ Mδ, as Ê is the largest expectation

which extends E . Let (Xn)n∈N ∈ MN with Xn ↘ X, so that Ê(X) ≥ Eδ(X) =

limn→∞ E(Xn) = limn→∞ Ê(Xn) ≥ Ê(X). �

Theorem 3.10. Suppose that F = σ(M). For a convex expectation E : M → R
which is continuous from above, define

Ē(X) := sup
{
inf
n∈N

E(Xn) : (Xn)n∈N ∈ MN, Xn ≥ Xn+1(n ∈ N), X ≥ inf
n∈N

Xn

}
for all X ∈ L∞(Ω,F). Then, Ē is the only expectation which is continuous from
below on L∞(Ω,F), continuous from above on Mδ, and extends E. Moreover, Ē is
convex with the dual representation

Ē(X) = sup
µ∈M ′

E∗(µ)<∞

(
µ̄(X)− E∗(µ)

)
= sup

ν∈ca1+(Ω,F)

(
νX − E∗(ν|M)

)
for all X ∈ L∞(Ω,F). In particular, (Ω,F , Ē) is a convex expectation space.

Proof. Let Ẽ : L∞(Ω,F) → R be given by

Ẽ(X) := sup
ν∈ca1+(Ω,F)

(
νX − E∗(ν|M)

)
for all X ∈ L∞(Ω,F).

By the theorem of Daniell–Stone, it follows that Ẽ is a convex expectation which
is continuous from below and extends E . Moreover, Ẽ is continuous from above
on Mδ. Indeed, let (Xn)n∈N ∈ M with Xn ↘ X for some X ∈ Mδ. Define the
convex compact set Q := {µ ∈ M ′ : E∗(µ) ≤ ‖X1‖∞ + ‖X‖∞} and the mapping

f : Q× N → R, (µ, n) 7→ µXn − E∗(µ),

which is concave on Q and convex on N in the sense of [20]. Moreover, f(·, n) is
upper-semicontinuous for all n ∈ N. By Lemma 2.4, Fan’s minimax theorem, and
the Daniell–Stone theorem, we obtain that

inf
n∈N

Ẽ(Xn) = inf
n∈N

max
µ∈Q

(
µXn − E∗(µ)

)
= max

µ∈Q
inf
n∈N

(
µXn − E∗(µ)

)
≤ max

ν∈ca1+(Ω,F)
inf
n∈N

(
νXn − E∗(ν|M)

)
= max

ν∈ca1+(Ω,F)

(
νX − E∗(ν|M)

)
= Ẽ(X).

Hence Ẽ(X) = infn∈N Ẽ(Xn), so that Ẽ is continuous from above on Mδ by
Lemma 3.9. The claim then follows from Theorem 2.6, Lemma 3.9, and Cho-
quet’s capacitability theorem. �

Although Ē is the only expectation which is continuous from below on L∞(Ω,
F), continuous from above on Mδ, and extends E , there may exist infinitely many
expectations which extend E and are continuous from below, as the following
example shows.
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Example 3.11. Let Ω := [0, 1], let F be the Borel σ-algebra on [0, 1], and let

E(X) := max
ω∈Ω

X(ω) = max
µ∈ca1+(Ω,F)

µX = max
ω∈Ω

δωX

for all X ∈ M := C([0, 1]), where δω ∈ ca1+(Ω,F) is the Dirac measure δω(A) :=
1A(ω) for ω ∈ Ω and A ∈ F . Then, Ē : L∞(Ω,F) → R is given by

Ē(X) = sup
µ∈ca1+(Ω,F)

µX = sup
ω∈Ω

δωX = sup
ω∈Ω

X(ω) for all X ∈ L∞(Ω,F).

On the other hand, for every ω0 ∈ [0, 1], we have that E0 : L∞(Ω,F) → R, given
by

E0(X) := sup
ω∈Ω\{ω0}

X(ω) = sup
ω∈Ω\{ω0}

δωX,

is an expectation which extends E and is continuous from below.

Corollary 3.12. For a convex pre-expectation E : M → R which is continuous
from above, let Ẽ : L∞(Ω, σ(M)) → R be an expectation which is continuous from
below and extends E. Then,

(i) Ẽ(X) ≤ Ē(X) for all X ∈ L∞(Ω, σ(M)),
(ii) Ẽ = Ē if and only if Ẽ∗(ν) = E∗(ν|M) for all ν ∈ ca1+(Ω, σ(M)).

Proof. (i) We have that Ẽ ∨ Ē is an expectation which is continuous from below.

Moreover, as Ē |Mδ
= Ê |Mδ

by Lemma 3.9, we get that (Ẽ ∨ Ē)|Mδ
= Ē |Mδ

is

continuous from above. Hence, by Theorem 3.10, we get that Ẽ ∨ Ē = Ē .
(ii) First, we show that Ē∗(ν) = E∗(ν|M) for all ν ∈ ca1+(Ω, σ(M)). Clearly,

E∗(ν|M) ≤ (Ē)∗(ν) for all ν ∈ ca1+(Ω, σ(M)). To show the converse inequality, let
ν ∈ ca1+(Ω,F) with E∗(ν|M) < ∞, X ∈ L∞(Ω,F), and ε > 0. By Theorem 3.10,

it follows that ν = (ν|M). Hence, there exists a sequence (Xn)n∈N ∈ MN with
Xn ≥ Xn+1 for all n ∈ N, X ≥ infn∈NXn and νX ≤ infn∈N νXn+ε. Furthermore,
there exists an n0 ∈ N such that E(Xn0) − ε ≤ infn∈N E(Xn). Thus, we obtain
that

νX − Ē(X) ≤ inf
n∈N

νXn + ε− inf
n∈N

Ē(Xn) ≤ νXn0 − E(Xn0) + 2ε

≤ E∗(ν|M) + 2ε.

Letting ε ↘ 0, we get that νX − Ē(X) ≤ E∗(ν|M) for all X ∈ L∞(Ω,F). Hence,
if Ẽ = Ē , we get that Ẽ∗(ν) = Ē∗(ν) = E∗(ν|M) for all ν ∈ ca1+(Ω, σ(M)).

Now, assume that Ẽ∗(µ) = E∗(µ|M) for all µ ∈ ca1+(Ω, σ(M)). By (i) we have
that

Ẽ(X) ≤ Ē(X) = sup
µ∈ca1+(Ω,σ(M))

(
µX − Ẽ∗(µ)

)
≤ Ẽ(X)

for all X ∈ L∞(Ω, σ(M)), which shows that Ẽ = Ē . �
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4. A robust version of Kolmogorov’s extension theorem

In this section, we apply the previous results to a Kolmogorov-type setting.
That is, given a family of finite-dimensional marginal expectations, we want to
find an expectation with these marginals. Again, we will distinguish between the
finitely additive case and the countably additive case. Finally, we will state a
robust version of Kolmogorov’s extension theorem.

Throughout, let I 6= ∅ be an index set, let H := {J ⊂ I : #J ∈ N} be the
set of all finite nonempty subsets of I, and let S be a Polish space with the
Borel σ-algebra B. For each J ∈ H , let MJ ⊂ L∞(SJ ,BJ) be a linear subspace
with 1 ∈ MJ , where BJ is the product σ-algebra on SJ . As before, MJ is always
endowed with the ‖ · ‖∞-norm, and on (MJ)

′ we consider the weak∗-topology.
Throughout this section, we assume that

MK ◦ prJK := {f ◦ prJK : f ∈ MK} ⊂ MJ

for all J,K ∈ H with K ⊂ J , where prJK : SJ → SK , (xi)i∈J 7→ (xi)i∈K and
prJ := prIJ . For µJ ∈ (MJ)

′, we define

(µJ ◦ pr−1
JK)f := µJ(f ◦ prJK) for all f ∈ MK

so that

(MJ)
′ ◦ pr−1

JK :=
{
µJ ◦ pr−1

JK : µJ ∈ (MJ)
′} ⊂ (MK)

′.

Note that the linear mapping (MJ)
′ → (MK)

′, µJ 7→ µJ ◦ pr−1
JK is continuous.

Remark 4.1. Typical examples for the family (MJ)J∈H are

(i) the space L∞(SJ) := L∞(SJ ,BJ) of all bounded BJ -B(R)-measurable
functions, where BJ denotes the product σ-algebra on SJ ;

(ii) the space MJ := Cb(S
J) of all continuous bounded functions SJ → R,

where SJ is endowed with the product topology.

Peng [26] defines a consistency condition for nonlinear expectations and proves
an extension to the subspace

M :=
{
f ◦ prJ : J ∈ H , f ∈ L∞(SJ ,BJ)

}
of L∞(SI ,BI). We will use the same notion of consistency as Peng and apply the
extension results from the previous sections to obtain an extension to L∞(SI ,BI).

Definition 4.2. For all J ∈ H , let EJ : MJ → R be a pre-expectation. Then the
family (EJ)J∈H is consistent if for all J,K ∈ H with K ⊂ J

EK(f) = EJ(f ◦ prJK) for all f ∈ MK .

A family (QJ)J∈H of subsets QJ ⊂ (MJ)
′ is consistent, if for all J,K ∈ H with

K ⊂ J ,

QJ ◦ pr−1
JK = QK .

Lemma 4.3. For every J ∈ H , let EJ : MJ → R be a sublinear pre-expectation,
and let

QJ :=
{
µJ ∈ (MJ)

′ : µJf ≤ EJ(f) for all f ∈ MJ

}
.
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Then, the family (EJ)J∈H is consistent if and only if the family (QJ)J∈H is
consistent.

Proof. Suppose that (EJ)J∈H is consistent. Then, by Lemma A.1, we obtain that
the family (QJ)J∈H is consistent as well.

Now suppose that the family (QJ)J∈H is consistent, and let J,K ∈ H with
K ⊂ J . Then, by Lemma 2.4, we get that

EK(f) = max
µK∈QK

µKf = max
µK∈QJ◦pr−1

JK

µKf

= max
µJ∈QJ

µJ(f ◦ prJK) = EJ(f ◦ prJK)

for all f ∈ MK . �

In the following, we denote by BI the product σ-algebra, which is generated by
the sets of the form pr−1

J (B), where J ∈ H and B ∈ BJ .

Proposition 4.4. Let (EJ)J∈H be a consistent family of pre-expectations EJ :

MJ → R. Then, there exists an expectation Ê : L∞(SI ,BI) → R such that

Ê(f ◦ prJ) = EJ(f) for all J ∈ H and all f ∈ MJ .

If the pre-expectations EJ are convex or sublinear for all J ∈ H , then Ê is convex
or sublinear, respectively.

Proof. Let M := {f ◦ prJ : f ∈ MJ , J ∈ H }. Then M is a linear subspace of
L∞(SI ,BI) with 1 ∈ M . For every J ∈ H and f ∈ MJ , let E(f ◦ prJ) := EJ(f).
Since the family (EJ)J∈H is consistent, the functional E : M → R is well defined.
Moreover, E : M → R is a pre-expectation on M . The assertion then follows from
Proposition 2.2. �

Note that Proposition 4.4 still holds without the assumption that S is a Polish
space. In fact, S could be an arbitrary state space. If EJ is linear for all J ∈ H ,
by Remark 2.5, we obtain that

Ê(f) = sup
ν∈P

νf,

where P := {ν ∈ ba1+(S
I ,BI) : ν ◦ prJ = EJ for all J ∈ H }. For all J ∈ H , let

[(MJ)
′]1+ denote the set of all linear pre-expectations µJ : MJ → R.

Corollary 4.5. Suppose that QJ ⊂ [(MJ)
′]1+ is convex and compact for all J ∈

H and that the family (QJ)J∈H is consistent. Then, there exists a convex and
compact set Q ⊂ ba1+(S

I ,BI) such that Q ◦ pr−1
J = QJ for all J ∈ H , where

(µ ◦ pr−1
J )f := µ(f ◦ prJ) for all µ ∈ ba(SI ,BI) and f ∈ MJ .

Proof. For each J ∈ H , define the sublinear pre-expectation

EJ(f) := max
µJ∈QJ

µJf for all f ∈ MJ .

Since QJ ⊂ [(MJ)
′]1+ is convex and compact, the Hahn–Banach separation theo-

rem implies that

QJ =
{
µJ ∈ M ′

J : µJf ≤ EJ(f) for all f ∈ MJ

}
. (4.1)
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Hence, by Lemma 4.3, the family (EJ)J∈H is consistent, and by Theorem 4.4

there exists a sublinear expectation Ê : L∞(SI ,BI) → R such that

Ê(f ◦ prJ) = EJ(f) for all J ∈ H and all f ∈ MJ . (4.2)

By Lemma 2.4, Ê(f) = maxµ∈Q µf for all f ∈ L∞(SI ,BI), where

Q :=
{
µ ∈ ba1+(S

I ,BI) : µf ≤ Ê(f) for all f ∈ L∞(SI ,BI)
}
.

By Lemma A.1, we thus obtain that Q ◦ pr−1
J = QJ for all J ∈ H . �

Theorem 4.6. For every J ∈ H , let MJ be a Riesz subspace of L∞(SJ ,BJ) with
σ(MJ) = BJ , and let EJ : MJ → R be a convex pre-expectation which is continuous
from above. Assume that the family (EJ)J∈H is consistent. Then, there exists
exactly one expectation Ē : L∞(SI ,BI) → R which is continuous from below on
L∞(SI ,BI) and continuous from above on Mδ, where M := {f ◦prJ : f ∈ MJ , J ∈
H }, such that

EJ(f) = Ē(f ◦ prJ) = sup
ν∈ca1+(SI ,BI)

(
ν(f ◦ prJ)− Ē∗(ν)

)
for all J ∈ H and all f ∈ MJ . Moreover, Ē is convex and if the pre-expectations
EJ are sublinear or linear for all J ∈ H , then Ē is sublinear or linear, respectively.

Proof. Define E(f ◦prJ) := EJ(f) for all f ∈ MJ and all J ∈ H . Since the family
(EJ)J∈H is consistent, E : M → R defines a convex pre-expectation on M . Let
µ ∈ M ′ with E∗(µ) < ∞. We will first show that µ : M → R is continuous from
above. Let µJ := µ ◦ pr−1

J ∈ M ′
J for all J ∈ H . Then, (EJ)∗(µJ) ≤ E∗(µ) < ∞,

and by Lemma 3.2, µJ : MJ → R is continuous from above. By the theorem of
Daniell–Stone, there exists a unique νJ ∈ ca1+(S

J ,BJ) with νJ |MJ
= µJ for all

J ∈ H . As

µK = µJ ◦ pr−1
JK = (νJ ◦ pr−1

JK)|MK
,

we thus obtain that νK = νJ ◦ pr−1
JK for all J,K ∈ H with K ⊂ J . By

Kolmogorov’s extension theorem, there exists a unique ν ∈ ca1+(S
I ,BI) with

ν(f ◦ prJ) = νJf for all f ∈ L∞(SJ) and J ∈ H . Hence, we get that ν|M = µ,
and therefore µ : M → R is continuous from above as well. By Lemma 3.2, we
thus obtain that E : M → R is continuous from above.

Next, we will show that BI ⊂ σ(M). Let J ∈ H and BJ ∈ BJ . Then, BJ ∈
σ(MJ) and therefore pr−1

J (BJ) ∈ σ(MJ ◦ prJ) ⊂ σ(M).
Finally, sinceM is a Riesz subspace of L∞(SI ,BI) with 1 ∈ M and BI ⊂ σ(M),

the assertion follows from Theorem 3.10. �

Theorem 4.7. For every J ∈ H , let MJ be a Riesz subspace of L∞(SJ ,BJ) with
σ(MJ) = BJ , and let QJ ⊂ [(MJ)

′]1+ be convex and compact. Assume that, for all
J ∈ H , every µJ ∈ QJ is continuous from above and that the family (QJ)J∈H is
consistent. Then, there exists a set Q ⊂ ca1+(S

I ,BI) with

QJ = Q ◦ pr−1
J for all J ∈ H .
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Proof. Let

Q :=
{
µ ∈ ca1+(S

I ,BI) : (µ ◦ pr−1
J )|MJ

∈ QJ for all J ∈ H
}
.

Then, Q ◦ pr−1
J ⊂ QJ for all J ∈ H . To show the other implication, let J0 ∈ H

and µJ0 ∈ QJ0 be fixed. By Corollary 4.5, there exists a µ ∈ ba+(S
I ,BI) with

µ ◦ pr−1
J0

= µJ0 and µ ◦ pr−1
J ∈ QJ for all J ∈ H . Let µJ := µ ◦ pr−1

J ∈ QJ for all
J ∈ H \{J0}. Then, the family (µJ)J∈H is consistent and µJ ∈ QJ is continuous
from above for all J ∈ H . By the theorem of Daniell–Stone, there exists a unique
νJ ∈ ca1+(S

J ,BJ) with νJ |MJ
= µJ for all J ∈ H . Since

µK = µJ ◦ pr−1
JK = (νJ ◦ pr−1

JK)|MK
,

we obtain that νK = νJ ◦ pr−1
JK for all J,K ∈ H with K ⊂ J . Hence, by

Kolmogorov’s extension theorem, there exists a unique ν ∈ ca1+(S
I ,BI) with

ν ◦ pr−1
J = νJ for all J ∈ H . Hence, ν ∈ Q and satisfies (ν ◦ pr−1

J0
)|MJ0

= µJ0 . �

Example 4.8. Let S := {0, 1} be endowed with the topology 2S. Then, S is a
Polish space with Borel σ-algebra 2S. Let H := {J ⊂ N : #J ∈ N} be the set of
all finite nonempty subsets of N. Then, for all J ∈ H , we have that #SJ < ∞,
and therefore the product σ-algebra BJ is the power set 2S

J
, and L∞(SJ ,BJ)

consists of all functions SJ → R. Let M := {f ◦ prJ : J ∈ H , f : SJ → R}. For
y ∈ SN, let δy ∈ ca1+(S

N,BN) denote the Dirac measure given by δy(B) = 1B(y)
for B ∈ BN.

(a) For n ∈ N, let Sn := S{1,...,n} and prn := pr{1,...,n}. Let y ∈ SN, and let

E : M → R be given by E(g) := δyg for g ∈ M . Let f := 1SN\{y} ∈ L∞(SN,BN).
For n ∈ N, let

Bn := pr−1
n

({
(y1, . . . , yn)

})
=

{
x ∈ SN : xi = yi for all i ∈ {1, . . . , n}

}
∈ BN

and gn := 1SN\Bn
= 1 − 1Bn ∈ M . Then, we have that gn ↗ f as n → ∞; that

is, f ∈ Mσ. In fact, by definition we have that gn(y) = 0 = f(y) for all n ∈ N.
Let x ∈ SN \ {y}. Then there exists some i ∈ N with xi 6= yi and therefore

gn(x) ↗ 1 = f(x) as n → ∞. As y ∈ Bn, we have that Ê(gn) = E(gn) = δygn = 0
for all n ∈ N. Let g ∈ M with g ≥ f . Then we have that g(x) ≥ f(x) = 1 for all
x ∈ SN \ {y}. On the other hand, there exists some J ∈ H and some h : SJ → R
such that g = h ◦ prJ . As #S = 2 > 1, there exists some x ∈ SN \ {y} with
prJ(x) = prJ(y), and therefore

g(y) = h
(
prJ(y)

)
= h

(
prJ(x)

)
= g(x) ≥ 1.

This shows that g(x) ≥ 1 for all x ∈ SN. As 1 ≥ f and 1 ∈ M , we obtain that

Ê(f) = 1 6= 0 = lim
n→∞

Ê(gn).

This shows that, in general, Ê is not continuous from below, not even on Mσ.
(b) In general, we may not expect the set Q ⊂ ca1+(S

I ,BI) from Theorem 4.7 to
be compact, not even if QJ is convex for all J ∈ H . In fact, let Q := ca1+(S

N,BN).
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Then, Q is convex and σ(ca1+(S
N,BN),L∞(SN,BN))-closed. But, Q is not a com-

pact subset of ba1+(S
N,BN) as ca1+(S

N,BN) 6= ba1+(S
N,BN). On the other hand,

we have that Q ◦ pr−1
J = ba1+(S

J ,BJ) is convex and compact for all J ∈ H .
(c) Let Q := ca1+(S

N,BN) and P := {ν ∈ ca1+(S
N,BN) : ν({y}) = 0} for some

y ∈ SN. Then, we have that P and Q are both convex and σ(ca1+(S
N,BN),L∞(SN,

BN))-closed. Let J ∈ H . Since #S = 2 > 1, there exists some xJ ∈ SN \{y} with
prJ(xJ) = prJ(y), and therefore

P ◦ pr−1
J = ba1+(S

J ,BJ) = Q ◦ pr−1
J

is compact. On the other hand, we have that P 6= Q. This shows that in Theo-
rem 4.7 no uniqueness can be obtained. A similar example shows that uniqueness
also cannot be obtained in Theorem 4.5.

Example 4.9. Let 0 < σ ≤ σ, µ ≤ µ, and T > 0. Let n ∈ N, σ ∈ [σ, σ]n,
µ ∈ [µ, µ]n, and 0 ≤ t1 < · · · < tn ≤ T . For J := {t1, . . . , tn} and f ∈ Cb(Rn), let

Eµ,σ
J (f) :=

∫
Rn

f(x1, x1 + x2, . . . , x1 + · · ·+ xn) dN
µ,σ
J (x1, . . . , xn)

for the product of normal distributions

Nµ,σ
J :=

n⊗
k=1

N
(
µk(tk − tk−1), σ

2
k(tk − tk−1)

)
with t0 := 0 and N(0, 0) := δ0. Moreover, let

EJ(f) := sup
µ∈[µ,µ]n,σ∈[σ,σ]n

Eµ,σ
J (f)

for all f ∈ Cb(Rn). We equip ca1+(Rn,B(R)n) with the Cb(Rn)-weak topology.
Then, the mapping

Rn × [0,∞)n → ca1+
(
Rn,B(R)n

)
, (µ, σ) 7→ Nµ,σ

J

is continuous by Lévy’s continuity theorem or by direct computation. (Note that
it suffices to verify sequential continuity as Rn × [0,∞)n is a metric space.) Let
s : Rn → Rn be given by

s(x1, . . . , xn) := (x1, x1 + x2, . . . , x1 + · · ·+ xn) for all x1, . . . , xn ∈ R.

As s : Rn → Rn is continuous, the mapping

ca1+
(
Rn,B(Rn)

)
→ ca1+

(
Rn,B(Rn)

)
, ν 7→ ν ◦ s−1

is continuous, and therefore the mapping

Rn × [0,∞)n → ca1+
(
Rn,B(R)n

)
, (µ, σ) 7→ Eµ,σ

J

is continuous. As [µ, µ]n × [σ, σ]n ⊂ Rn × [0,∞)n is compact, we thus obtain that
the family

QJ :=
{
Eµ,σ

J : µ ∈ [µ, µ]n, σ ∈ [σ, σ]n
}
⊂ Cb(Rn)′
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is compact. Since QJ is convex and compact, we get that EJ is continuous from
above with

QJ =
{
µJ ∈ Cb(Rn)′ : µJf ≤ EJ(f) for all f ∈ Cb(Rn)

}
for each J ∈ H . As the family (QJ)J∈H is consistent, we thus get that the
family (EJ)J∈H is consistent by Lemma 4.3. Hence, we may apply Theorems 4.6
and 4.7 and obtain an expectation Ē : L∞(R[0,T ],B(R)[0,T ]) → R and a set Q ⊂
ca1+(R[0,T ],B(R)[0,T ]) with E ◦ pr−1

J = EJ and Q ◦ pr−1
J = QJ for all J ∈ H .

However, this is not the G-expectation introduced by Peng [27], [28] (see also
Example 5.7).

5. Application to nonlinear kernels

Let (S,B) be a measurable space. We will apply the nonlinear Kolmogorov
theorem to nonlinear kernels. We follow the definition of a monetary risk kernel
by Föllmer and Klüppelberg [22], and we define nonlinear kernels in an analogous
way. We will use the results from the preceding section to extend these nonlinear
kernels. Throughout this section, let M,N ⊂ L∞(S,B) with R ⊂ M and R ⊂ N .

Definition 5.1. A (nonlinear) prekernel from M to N is a function E : S×M → R
such that

(i) for each x ∈ S, the function M → R, f 7→ E(x, f) is a (nonlinear) pre-
expectation,

(ii) for every f ∈ M , the function E(·, f) ∈ N .

We say that a prekernel E from M to N is convex, sublinear, continuous from
above, or continuous from below if, for every x ∈ S, the function E(x, ·) is convex,
sublinear, continuous from above, or continuous from below, respectively.

For two prekernels E0, E1 from M to M , we write

(E0E1)(x, f) := E0
(
x, E1(·, f)

)
for all x ∈ S and all f ∈ M . Then, one easily checks that E0E1 is again a prekernel.

Definition 5.2. We say that a family (Es,t)0≤s<t<∞ of prekernels from M to M
fulfills the Chapman–Kolmogorov equations if Es,u = Es,tEt,u for all 0 ≤ s < t <
u < ∞.

Example 5.3. Let S be a finite state space, and let B := 2S so that L∞(S,B) = RS.
Let

P : L∞(S,B) → L∞(S,B) and µ0 : L∞(S,B) → R

be convex and therefore continuous, constant-preserving, that is, P(α) = α and
µ0(α) = α for all α ∈ R, and monotone, that is, P(f) ≤ P(g) and µ0(f) ≤ µ0(g)
for all f, g ∈ L∞(S,B) with f ≤ g. For every k, l ∈ N0 with k < l, we define

Ek,l(·, f) := P l−k(f) for all f ∈ L∞(S,B).
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Then, Ek,l : S×L∞(S,B) → R defines a convex kernel from L∞(S,B) to L∞(S,B)
for all k, l ∈ N0 with k < l. Let H := {J ⊂ N0 : #J ∈ N} be the set of all finite
nonempty subsets of N0. For k ∈ N0, we define

E{k}(f) := µ0

(
Pk(f)

)
for all f ∈ L∞(S,B),

where P0 is the identity. For n ∈ N, k1, . . . , kn+1 ∈ N0 with k1 < · · · < kn+1, and
f ∈ L∞(Sn+1,Bn+1) we now define recursively

E{k1,...,kn+1}(f) := E{k1,...,kn}(g),

where g(x1, . . . , xn) := Ekn,kn+1(xn, f(x1, . . . , xn, ·)) for all x1, . . . , xn ∈ S. Then,
EJ : L∞(SJ ,BJ) → R is a convex expectation which is continuous from above for
all J ∈ H . Since the family (Ek,l)0≤k<l fulfills the Chapman–Kolmogorov equa-
tions, we obtain that the family (EJ)J∈H is consistent. Hence, by Theorem 4.6,
there exists an expectation E : L∞(SN0 ,BN0) → R which is continuous from below
and satisfies

E
(
(f ◦ prk)(g ◦ prl)

)
= µ0

(
Pk

(
fP l−k(g)

))
for all f, g ∈ L∞(S,B) and k, l ∈ N0 with k < l. Hence, (prk)k∈N0 can be viewed
as a convex Markov chain on (SN0 ,BN0 , E). If P is sublinear, then the set{

µ ∈ RS×S : µf ≤ P(f) for all f ∈ RS
}

induces a Markov set-chain (see Hartfiel [25]).

In the following, let S be a Polish space with metric d and Borel σ-algebra
B. We denote by BUC(S) the space of all bounded and uniformly continuous
functions with respect to the metric d. On general state spaces, the measurability
of g in the above example is nontrivial. In the following, we will therefore consider
prekernels from Cb(S) to Cb(S).

Remark 5.4. (a) We have that BUC(S)σ = LSCb(S), where LSCb(S) denotes
the space of all bounded lower semicontinuous functions S → R. In fact, the
implication BUC(S)σ ⊂ LSCb(S) is obvious. To show the inverse implication,
let f ∈ LSCb(S), where without loss of generality we may assume that f ≥ 0
(otherwise consider f + ‖f‖∞). For k, n ∈ N0 let Un

k := {x ∈ S : f(x) > k2−n}.
As Uk

n is open, we have that k2−n1Un
k
∈ BUC(S)σ for all k, n ∈ N0. Note that

n(d(x, U c)∧ 1
n
) ↗ 1U(x) as n → ∞ for all x ∈ S and any open set U ⊂ S. Finally,

for all n ∈ N0, let

fn := sup
k∈N0

k2−n1Un
k
.

Then, we have that fn ∈ BUC(S)σ with fn ≤ fn+1 ≤ f and ‖f − fn‖∞ ≤ 2−n

for all n ∈ N0. In particular, fn ↗ f as n → ∞, and therefore f ∈ BUC(S)σ.
As BUC(S) is a vector space, we thus obtain that BUC(S)δ = USCb(S), where
USCb(S) denotes the space of all bounded upper-semicontinuous functions S →
R.

(b) Let M be a dense subspace of BUC(S) with 1 ∈ M , and let E be a convex
prekernel from M to M . Then, as E is 1-Lipschitz, there exists exactly one convex

prekernel Ê from BUC(S) to BUC(S) with Ê |M = E .
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(c) Let E be a convex prekernel from BUC(S) to Cb(S), which is continuous

from above. Then, there exists exactly one convex prekernel Ê from Cb(S) to

Cb(S), which is continuous from above and satisfies Ê |BUC(S) = E . Indeed, by
part (a) and Lemma 3.9, there exists a convex kernel Ê from Cb(S) to L∞(S),
which is continuous from above and extends E . Since Cb(S) is a vector space,

it follows that Ê is continuous from below as well. By part (a), for f ∈ Cb(S)
there exist sequences (fn)n∈N and (gn)n∈N in BUC(S) with fn ↘ f and gn ↗ f
as n → ∞. Therefore,

inf
n∈N

E(fn) = Ê(f) = sup
n∈N

E(gn),

which shows that Ê(f) ∈ Cb(S).
(d) Let (Es,t)0≤s<t<∞ be a family of convex prekernels from Cb(S) to Cb(S),

which are continuous from above. Moreover, letM ⊂ BUC(S) be a dense subspace
of BUC(S) with 1 ∈ M . Then, by the uniqueness obtained in parts (b) and (c),
the following statements are equivalent:

(i) (Es,t)0≤s<t<∞ satisfies the Chapman–Kolmogorov equations,
(ii) Es,u(f) = Es,t(Et,u(f)) for all f ∈ BUC(S) and 0 ≤ s < t < u < ∞,
(iii) Es,u(f) = Es,t(Et,u(f)) for all f ∈ M and 0 ≤ s < t < u < ∞.

Therefore, the extension of convex kernels from BUC(S) to BUC(S) or from M to
M , which are continuous from above, are included in the extension of prekernels
from Cb(S) to Cb(S), which are continuous from above.

Proposition 5.5. Let E be a convex prekernel from Cb(S) to Cb(S), which is
continuous from above. Then, for every Polish space T , the parameter-dependent
version

ET : (S × T )× Cb(S × T ) → R,
(
(x, y), f

)
7→ E

(
x, f(·, y)

)
is a convex prekernel from Cb(S × T ) to Cb(S × T ), which is continuous from
above.

Proof. First note that for all (x, y) ∈ S × T , the function

Cb(S × T ) → R, f 7→ ET
(
(x, y), f

)
is a convex pre-expectation on Cb(S × T ), which is continuous from above. Let
f ∈ Cb(S × T ) be uniformly continuous with respect to the metric d(x, x′) +
dT (y, y

′) for (x, y), (x′, y′) ∈ S × T , where dT is a metric on T . Fix ε > 0, and let
(x0, y0) ∈ S × T . Then, there exists a δ > 0 such that∣∣f(x, y0)− f(x, y)

∣∣ ≤ ε

2

for all (x, y) ∈ S × T with dT (y, y0) < δ, and∣∣E(x0, fy0)− E(x, fy0)
∣∣ ≤ ε

2
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for all x ∈ S with d(x, x0) ≤ δ. Here, fy : S → R is defined as x 7→ f(x, y) for all
y ∈ T . Then, ‖fy − fy0‖∞ ≤ ε

2
for all y ∈ T with dT (y, y0) ≤ δ. Therefore,∣∣ET ((x0, y0), f

)
− ET

(
(x, y), f

)∣∣
=

∣∣E(x0, fy0)− E(x, fy)
∣∣

≤
∣∣E(x0, fy0)− E(x, fy0)

∣∣+ ∣∣E(x, fy0)− E(x, fy)
∣∣

≤
∣∣E(x0, fy0)− E(x, fy0)

∣∣+ ‖fy0 − fy‖∞

<
ε

2
+

ε

2
= ε

for all (x, y) ∈ S with d(x, x0) ≤ δ and dT (y, y0) ≤ δ. By Remark 5.4(c), we
obtain the assertion. �

The following result allows us to generalize the construction from Example 5.3
to general Markov processes.

Theorem 5.6. Let (Es,t)0≤s<t<∞ be a family of convex kernels from Cb(S) to
Cb(S), which fulfills the Chapman–Kolmogorov equations, and let E0 : Cb(S) → R
be a convex pre-expectation. Furthermore, assume that E0 is continuous from above
and that Es,t is continuous from above for all 0 ≤ s < t ≤ T . Then, there exists a
nonlinear expectation space (Ω,F , E) and a stochastic process (Xt)t≥0 of random
variables Ω → S which satisfies

(i) E(f(X0)) = E0(f) for all f ∈ Cb(S);
(ii) for all 0 ≤ s < t, n ∈ N, 0 ≤ t1 < · · · < tn ≤ s, and f ∈ Cb(S

n+1), we
have that

E
(
f(Xt1 , . . . , Xtn , Xt)

)
= E

(
Es,t

(
Xs, f(Xt1 , . . . , Xtn , ·)

))
.

Proof. Let E0,0(·, f) := f for all f ∈ Cb(S), and let H := {J ⊂ [0,∞) : #J ∈ N}
be the set of all finite nonempty subsets of [0,∞). For t ≥ 0, we define

E{t}(f) := E0
(
E0,t(·, f)

)
for all f ∈ Cb(S).

For n ∈ N, 0 ≤ t1 < · · · < tn+1 ≤ T and f ∈ Cb(S
n+1), we define recursively

E{t1,...,tn+1}(f) := E{t1,...,tn}(g),

where g(x1, . . . , xn) := Etn,tn+1(xn, f(x1, . . . , xn, ·)) for all x1, . . . , xn ∈ S. Note
that g ∈ Cb(S

n) by Proposition 5.5. Then EJ : Cb(S
J) → R is a pre-expectation

which is continuous from above for all J ∈ H . By the Chapman–Kolmogorov
equations, we obtain that the family (EJ)J∈H is consistent. Therefore, by The-
orem 4.6, there exists a nonlinear expectation E on the path space (Ω,F) :=
(S[0,∞),B[0,∞)) such that (Ω,F , E) is a convex expectation space, and the canon-
ical process Xt(ω) = ωt, t ∈ [0,∞), satisfies (i) and (ii). �

Example 5.7. Let U be a Polish space. Let b : [0, T ]×Rn×U → Rn and σ : [0, T ]×
Rn × U → Rn×m be uniformly continuous, and assume that there is a constant
L > 0 such that, for ϕ ∈ {b, σ}, one has

• |ϕ(t, x1, u) − ϕ(t, x2, u)| ≤ L|x1 − x2| for all t ∈ [0, T ], x1, x2 ∈ Rn, and
u ∈ U ,



536 R. DENK, M. KUPPER, and M. NENDEL

• |ϕ(t, 0, u)| ≤ L for all t ∈ [0, T ] and u ∈ U .

Following [32, Chapter 4, Section 3], we denote by Uω([s, t]) the set of all 5-tuples
uω = (Ω,F ,P,W, u) satisfying the following:

(i) (Ω,F ,P) is a complete probability space;
(ii) (Wr)r∈[s,t] is an m-dimensional standard Brownian motion defined on (Ω,

F ,P) over [s, t] with Ws = 0 P-almost surely; moreover, let F s,t
r = σ(Wτ :

s ≤ τ ≤ r) augmented by all the P-null sets in F for all s ≤ r ≤ t;
(iii) u : [s, t]× Ω → U is (F s,t

r )s≤r≤t-progressively measurable.

For all y ∈ Rn and uω = (Ω,F ,P,W, u) ∈ Uω([s, t]), let (xr(s, y, u
ω))r∈[s,t] be the

solution of the stochastic differential equation

dxr = b(t, xr, ur) dr + σ(t, xr, ur) dWr, r ∈ (s, t], xs = y.

We denote by Cθ
b (Rn) the space of all Hölder continuous functions with Hölder

exponent θ ∈ (0, 1), and we denote the corresponding Hölder norm by ‖ · ‖θ. For
f ∈ Cθ

b (Rn), y ∈ Rn and uω = (Ω,F ,P,W, u) ∈ Uω([s, t]), we define

µuω

s,t (y, f) := EP
(
f
(
xt(s, y, u

ω)
))
.

Then, by Hölder’s inequality with p = 1
θ
and Theorem 6.16 in [32, Chapter 1,

p. 49], for all f ∈ Cθ
b (Rn) we have that∣∣µuω

s,t (y, f)− µuω

s,t (z, f)
∣∣ ≤ EP

(∣∣f(xt(s, y, u
ω)
)
− f

(
xt(s, z, u

ω)
)∣∣)

≤ ‖f‖θEP
(∣∣xt(s, y, u

ω)− xt(s, z, u
ω)
∣∣θ)

≤ ‖f‖θEP
(∣∣xt(s, y, u

ω)− xt(s, z, u
ω)
∣∣)θ

≤ ‖f‖θLs,t|y − z|θ

for all y, z ∈ Rn, where Ls,t is independent of y, z ∈ Rn, f ∈ Cθ
b (S), and

uω ∈ Uω([s, t]). Hence, µuω

s,t defines a linear prekernel from Cθ
b (Rn) to Cθ

b (Rn).
By Chebyshev’s inequality and Theorem 6.16 in [32, Chapter 1, p. 49], we get
that

P
(∣∣xt(s, y, u

ω)
∣∣ > M

)
≤ EP(|xt(s, y, u

ω)|2)
M2

≤ CT (1 + |y|2)|t− s|
M2

with a constant CT > 0 independent of uω ∈ Uω([s, t]). Hence, the family
{µuω

s,t (y, ·) : uω ∈ Uω([s, t])} is tight. For all f ∈ Cθ
b (Rn), we define

Es,t(y, f) := sup
uω∈Uω([s,t])

µuω

s,t (y, f).

Therefore, Es,t defines a prekernel from Cθ
b (Rn) to Cθ

b (Rn), which is continuous
from above, and the dynamic programming principle (see [32, Chapter 4, The-
orem 3.3, p. 180]) implies that the family (Es,t)0≤s<t≤T satisfies the Chapman–
Kolmogorov equations. Hence, by Theorem 5.6, there exists a nonlinear expecta-
tion space (Ω,F , E) and a stochastic process (Xt)t≥0 of random variables Ω → Rn

which satisfies (i) and (ii) in Theorem 5.6. If U ⊂ Rn×n is a compact nonempty
subset of positive definite matrices, b ≡ 0 and σ(t, x, u) = u the expectation E
coincides with the G-expectation introduced by Peng [27], [28].
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Appendix

In this Appendix, we provide the proof of Lemma 2.4 and state three other
technical lemmas.

Proof of Lemma 2.4. For α ∈ R, let Pα be the set of all linear functions µ : M →
R with E∗(µ) ≤ α. For each µ ∈ Pα and every λ > 0, one has

1− λ−1E∗(µ) = −λ−1
(
E(−λ) + E∗(µ)

)
≤ −λ−1µ(−λ) = µ1 = λ−1µ(λ)

≤ λ−1
(
E(λ) + E∗(µ)

)
= 1 + λ−1E∗(µ),

and therefore, letting λ → ∞, we obtain µ1 = 1. Further, for all X,Y ∈ M with
X ≤ Y , one has

µ(X − Y ) ≤ λ−1
(
E
(
λ(X − Y )

)
+ E∗(µ)

)
≤ λ−1E∗(µ) → 0, λ → ∞.

Hence, µ : M → R is a linear pre-expectation on M and therefore continuous.
Thus,

Pα =
⋂

X∈M

{
µ ∈ M ′ : µX ≤ E(X) + α

}
is convex and a closed subset of the compact unit ball and therefore compact.

We next show (2.1). The inequality ≥ follows by definition of E∗. Fix X ∈ M ,
and let E0(α) := E(αX) for all α ∈ R. Then E0 : R → R is convex. Hence, there
exists m ∈ R such that

E(αX) = E0(α) ≥ E0(1) +m(α− 1) =
(
E(X)−m

)
+mα

for all α ∈ R. By the Hahn–Banach theorem, there exists a linear functional
µ : M → R such that

E(Y ) ≥
(
E(X)−m

)
+ µY

for all Y ∈ M and µ(αX) = mα for all α ∈ R. Hence,

µY − E(Y ) ≤ m− E(X) =: c

for all Y ∈ M , and µX − E(X) = c so that c = E∗(µ). Thus, µ ∈ M ′ by
the first part of the proof and E(X) = µX − E∗(µ). For each µ ∈ M ′ with
E∗(µ) > α := ‖X‖∞ − E(X), we have

µX − E∗(µ) ≤ ‖X‖∞ − E∗(µ) < ‖X‖∞ − α = E(X).

Therefore, the maximum in (2.1) is attained on the set Pα.
Finally, if E is sublinear, let µ ∈ M ′ with E∗(µ) < ∞. For each X ∈ M and

every λ > 0, one has

λ
(
µX − E(X)

)
= µ(λX)− E(λX) ≤ E∗(µ) < ∞

so that µX−E(X) ≤ 0. Since E(0) = 0, we obtain E∗(µ) = supX∈M(µX−E(X)) =
0. �
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Lemma A.1. Let M ⊂ L∞(Ω,F) be a linear subspace with 1 ∈ M , let E : M → R
be a convex pre-expectation, let Ω0 6= ∅, and let T : Ω → Ω0 be an arbitrary
mapping. Further, let M0 ⊂ L∞(Ω0, 2

Ω0) be a linear subspace with 1 ∈ M0 and
M0 ◦ T := {Y ◦ T : Y ∈ M0} ⊂ M . Then,

E ◦ T−1 : M0 → R, Y 7→ E(Y ◦ T )

defines a convex pre-expectation on M0. If E is sublinear, then E◦T−1 is sublinear,
and we have that{

ν ∈ M ′
0 : (E ◦ T−1)∗(ν) = 0

}
=

{
µ ◦ T−1 : µ ∈ M ′, E∗(µ) = 0

}
.

Proof. It is easily verified that E ◦ T−1 defines a convex pre-expectation on M0.
Let µ ∈ M ′ with E∗(µ) < ∞. Then, we have that

(µ ◦ T−1)(Y )− (E ◦ T−1)(Y ) = µ(Y ◦ T )− E(Y ◦ T ) ≤ E∗(µ)

for all Y ∈ M0. Hence, (E ◦ T−1)(µ ◦ T−1) ≤ E∗(µ) = 0. As the mapping M ′ →
M ′

0, µ 7→ µ ◦ T−1 is continuous, we have that{
µ ◦ T−1 : µ ∈ M ′, E∗(µ) = 0

}
is compact. By the Hahn–Banach separation theorem, it follows that{

ν ∈ M ′
0 : (E ◦ T−1)∗(ν) = 0

}
=

{
µ ◦ T−1 : µ ∈ M ′, E∗(µ) = 0

}
. �
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