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ABSTRACT. In this article, we study the Hausdorff operator, defined via a gen-
eral linear mapping A, on weighted Herz spaces in the setting of the Heisenberg
group. Under some assumptions on the mapping A, we establish its sharp
boundedness on power-weighted Herz spaces and power-weighted Lebesgue
spaces in the Heisenberg group. Our proof is heavily based on the block decom-
position of the Herz space, which is quite different from any other function
spaces. Our results extend and improve some existing theorems.

1. INTRODUCTION

Let n > 2, and let R™ be the Euclidean space of dimension n. For a fixed
integrable function ®, Lerner and Liflyand in [16] studied the Hausdorff operator

HoalDle) = [ W) ¢ (e Aw)) dy.

n ylm

where A(y) is an n X n matrix satisfying det A(y) # 0 almost everywhere in the
support of ®. If choosing

A(y) = diag[1/[y|. 1/]yl, ..., 1/|yl],
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then one defines Hg 4 in this special case by

Heo(N@) = [ (L) ay

re Y] 7 Nyl

In the definition of Hg 4(f), for simplicity, one may assume that f is initially in
the Schwartz space S. When we establish the boundedness of Hg 4(f) for f € S
on a normed (or quasinormed) space X, a standard dense argument together with
the Hahn-Banach theorem easily yields the boundedness of Hg 4 on the whole
space X. The two most important function spaces are the Lebesgue space L
(p > 1) and the Hardy space H', so that the boundedness of Hg (even Hg 4)
on LP and H' is well established (see [3], [6], [17], [18], [21], [22], [29], [31], [34]).
However, the boundedness of Hg on other function spaces was also studied by
many authors (see, e.g., [13], [20], [28], [32], and the references therein). We also
point to two recent survey papers, by Chen, Fan, and Wang [5] and by Liflyand
[19], as good sources for understanding the background and the historical devel-
opment of this research topic. It is particularly notable that many well-known
operators in analysis can be derived from the Hausdorff operator if we choose
suitable generating functions ® (see [7]).

In this article, we will study the boundedness of Hg 4 on power-weighted
(homogeneous) Herz spaces K;“q with the Heisenberg group as underlying space.
The motivation for our research is multifold. In the following, we briefly describe
the significance of this subject.

First, from the definition of weighted Herz spaces Kg“q(R", w) (see the next

section for the definition), we easily see that when w = 1, the space K o1 coincides

with the power-weighted Lebesgue space LI(R™, |x|*?). Hence, Kg,q is a natural
extension of the weighted Lebesgue space. But this is not all, since the Herz space
is not merely a simple upgrade from the Lebesgue space, it is also an important
function space uncovered by research in harmonic analysis and its related topics.
In 1964, Beurling [2] introduced some fundamental forms of Herz spaces to study
certain convolution algebras. About four years later, Herz [9] introduced new
versions of the space defined in a slightly different but more convenient setting.
Since then, the theory of Herz spaces has been significantly developed, and these
spaces have turned out to be quite fundamental in analysis. For instance, they
were used by Baernstein and Sawyer [1] to characterize the multipliers on the
standard Hardy spaces, and by Lu and Yang [27] in the study of certain partial
differential equations. (Readers interested in learning more about these spaces
are referred to the papers [15], [25], [26].)

Another reason motivating our study of the Hausdorff operator on the Herz
space is that Kg’q has a nice central block decomposition which quite fits the
structure of the Hausdorff operator. Recall that the operator Hg(f) is defined
via the dilation structure of the Euclidean space, while a dilation acting on a
central block b again outputs a central block (up to a constant multiple). With
this advantage, we are able to give a better estimate to the Hausdorff operator on
Kg"q using the method of block decomposition. Such a method is powerful, and
it is quite different from that used for Lebesgue spaces in the existing literature.
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Also, the method of block decomposition is not freely adaptable when one studies
the Hausdorff operator on Hardy spaces HP?, although it is well known that H?
has a nice atomic characterization (an atom must be a block). We recall that an
HP? atom is not necessarily centered at the origin. When the origin does not lie
in the support of an atom a (particularly if the center of an atom a is far away
from the origin and support of a is in a small interval), it is very hard to control
the estimate after a dilation acting on a. This is the main difficulty encountered
when studying the Hausdorff operator on H? for 0 < p < 1 (see [4]).

Second, in harmonic analysis one wishes to extend the underlying space R" to
a more general setting. The Heisenberg group H" is a noncommutative nilpotent
Lie group, with underlying manifold R** x R and group law

Ty = <$1 + Y1, T2+ Y2, - Ton + Yo, Tong1 + Yonpr + 2 Z(ijn-i-j - Cﬂjynﬂ‘)),
j=1

where © = (z1,29,...,%Zon11), ¥ = (Y1,Y2, - -, Yont1). Although the geometric
motions on the Heisenberg group H" are quite different from those on R™ due to
the loss of interchangeability, we find that H" inherits some basic structures of
R"™ that are good enough for us to study the Hausdorff operator on H". Also, it
is known that the Heisenberg group plays significant roles in many branches of
mathematics such as representation theory, complex analysis in several variables,
harmonic analysis, partial differential equations, and quantum mechanics (see
[10], [33] for more details). Thus, an extension of the Hausdorff operator to the
Heisenberg group seems quite encouraging.

By definition, the identity element on H" is 0 € R?"*!, while the inverse element
of x is —x. The corresponding Lie algebra is generated by the left-invariant vector
fields

0
Xi=— 420, —, j=1,...,n,
! axj +jax2n+1 J
0 0
Xppi=———20,——, 1 =1,...,n,
+] 31’n+j ]a$2n+1 J
0
Xopt1 = i
2n+1 8x2n+1

The only nontrivial commutator relations are
X)) Xnpi] = —4Xons1, j=1,....,n.
The Heisenberg group H" is a homogeneous group (see [7]) with dilations
6p(21, o, . .., Top, Tong1) = (1T, 720, ..., "X, T Topt1), 7T > 0.

The Haar measure on H" coincides with the usual Lebesgue measure on R*® x R.
We denote the measure of any measurable set £ C H" by |E|. Then it is easy to
check that

6,(E)| =r®|E|,  d(6,2) =% dz,

where () = 2n + 2 is called the homogeneous dimension of H".
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The Heisenberg distance derived from the norm

2n

2 1
|x’h = [(Zx12> + x%n+1:| 47

=1

where = = (1, %9, ..., Top, Tant1), IS given by

d(p,q) = d(q "'p,0) = |¢ "l

This distance d is left-invariant in the sense that d(p, ¢) remains unchanged when
p and ¢ are both left-translated by some fixed vector on H". Furthermore, d
satisfies the triangular inequality (see p. 320 in [14])

d(p,q) <d(p,x) +d(z,q), p,v,qecH"

For r > 0 and x € H", the ball and sphere with center x and radius » on H"
are given by
B(z,r) ={y e H" : d(z,y) <1}
and
S(z,r)={y e H" : d(z,y) =r},
respectively. We know that
‘B(w,r)‘ = |B(O,7‘)‘ = QQTQ,
where
2+ aT (2
Op=——" (2)n+1 (1.1)
is the volume of the unit ball B(0,1) on H". The area of S(0,1) on H" is wg =
Q. (For more details about the Heisenberg group, see [7].)

Now we provide the following definition of Hausdorff operators on the Heisen-
berg group.

Definition 1.1. Let ® be a locally integrable function on H". The Hausdorff
operators on H" are defined by

Ty f(x) = /Hn Ty(—‘%)f(éwglx) dy,
Tuat(@) = [ s (Awe) iy

where A(y) is a matrix-valued function, and we assume that det A(y) # 0 almost
everywhere in the support of ®.

In the above definition, we note that Ty 4 = T if we choose a special matrix A.
Here and throughout this article, we use the notation A < B to denote that
there is a constant C' > 0 independent of all essential values and variables such
that A < CB. We use the notation A ~ B if there exists a positive con-
stant C' independent of all essential values and variables such that C~'B <
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A < CB. Also, the class A, denotes the set of all A, weights whose defini-
tion can be found in the next section. For a matrix M, we will use the norm

[M]| = sup,cpm wr0 |M (/|2
Now we are in a position to state our results.

Theorem 1.2. Let 1 < q,q2 < 00,0 < g, 9 < 00, and let 1/q1 + oy /Q =
1/q2 + a2/Q. Suppose that w € Ay with the critical index r,, for the reverse
Hélder condition and that ¢ > qary /(1w — 1).

(1) If 1 < p < 00, then we have, for any 1 < § < ry,

HT<I>,AfHK5‘22’p(H";w) = Cl“f”f'(gll*p(Hn;w)a

where

c, :/ |D( |‘d t A1 |1/q1HA Ha1 dy
Az lyl?

+/ |(I> ”d t AL ’1/Q1HA )Hal—(Q/q1+a1)/5 dy.
A<t |yl

(17) If 0 < p < 1, then we have, for any 1 < § < r, and any o > (1 —p)/p,

1T F oy = CollFll s oy

where
€y - PN ot 471 () [/ [ 47 ()| (1 + oo | A~ ) ) dy
Atz |yl
+/ | |‘d t A1 ‘1/£11HA H a1—(Q/q1ta1)/s
“1(y)<1 !y\h
< (1= lom]| A7) )"

Theorem 1.3. Let 1 <p < oo, 1 < q,q2 < 00, —0 < a; < 0,0 € R, and let

1/gr +a1/Q = 1/q2 + a2/Q. Suppose that w € A,,1 <y < oo, with the critical

index 1, for the reverse Holder condition, and suppose that ¢y > qayTw/(Tw — 1).
(1) If 1/q1 + a1 /Q > 0, then for any 1 < 6 < 1y,

HTCD,AfHK;’;Q’p(H";w) = C3||f||K§11*p(Hn;w)a

where

—Q) —Yyx
Cg:/ | (?é”}detAfl(y)‘V/’hHA(y)” ~ 1dy
1A@)lI<1 \y!h
+/ —3a |d t AL )|V/‘11HA(y)HQw/qr(Q/qlml)(afl)/a dy.
1A@) =1 yl

(1) If 1/q1 + an/Q < 0, then for any 1 < 6 < ry,

"T¢7Af‘|K(?22’p(H";w) = C4||f”Kgll’p(H”;w)7
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where

4 :/ ’ ‘}d t AL )‘w/qlHA(y)||Qv/rhf(CQ/qlJrozl)(¢5*1)/fS dy
A<t Iylh

+/ d tA )’Y/‘h A(y) —yol dy
JAW) 121 IyIQ| W AWl

When the weight is reduced to the power function, we have the following
enhanced results.

Theorem 1.4. Let 1 < g < 0.
(1) If 1 <p < oo and 0 < B < oo, then we have

||T¢,Af||Kg»P(Hn;|.|§) = C5||f“kgvP(Hn;|.|§)7

where C'5 18

Jue Ty w (A1 ()]|1%] det AL () )Y/ 1{1 + logy (A @) 1| A(W)|)} dy, a =0,
Ja w (LA () 1P det A~ (y)]) V9| A () |*@ /2 dy, >0,

S B AT @) det A7 ()) V9] A(y)[|*@ /2 dy. a <0.
(i) If 1 <p < 00 and —Q < B <0, then we have
1To Al zgor@nygpy = Coll Fll gor o)

where Cg is

Jion 5 |Q [P det A~ () )1 + loga (A (W) AW )} dy, =0,

Jrgn 'T,%)' 1A()[| =8| det A= (y)|)/9]| A= (3)) | *(@+)/2 dy, o0,
h
Jin T (1A 77| det A7 (y) ) V2] A(y) | @79 dy, @ < 0.

(13) If 0 < p < 1 and —Q < f < 0 < a < oo, then we have, for any
> (1=p)/p,
||T¢,Af||Kg*P(Hn;|.|§) = C7||f||ngP(Hn;|.|§)7
where C7 is
O (y o _ o
[ 200 e 4 ) 7 40 s
h

In particular, if ||A7!(y)|| and ||A(y)||~' are comparable, we can obtain the
following sharp result.

Theorem 1.5. Let 1 < p,g < 00,—Q < B < oo, € R, and let ® be a non-

negative function. Suppose that there is a constant C independent of y such
that |A~ (y)|| < C||A(y)||7* for all y € supp(®). Then Ty 4 is bounded on
K&P(H™ | - %) if and only z'f

/ |y| ||A )H(QJrB)(l/q+a/Q) dy < .
h
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In the preceding theorem, letting p = ¢ and 8 = 0, we have the following sharp
boundedness for Hausdorff operators on Lebesgue spaces.

Corollary 1.6. Let 1 < g < 0o, € R, and let ® be a nonnegative function. Sup-
pose that there is a constant C independent of y such that || A7 (y)|| < C||A(y)||~*
for all y € supp(®). Then Tp 4 is bounded on LI(H"; |- |¥) if and only if

P(y a
/ i 2 1) dy < oo,
h

Finally in this section, we make the following remarks about our main theorems.
Remark 1.7. Suppose that A(y) = diag[1/A(y), ..., 1/ Aen(y), 1/ Aans1(y)] with
Xi(y) #0, fori=1,...,2n + 1. Denote

1/2
M(y) = max{|[\(y)], -, [Don(y) )"},

(v)], ()|}

If there is a constant C' > 1 independent of y such that M(y) < Cm(y), then it
is easy to check that A(y) satisfies the assumptions of Theorem 1.5 and Corol-
lary 1.6.

m(y) = min{ |\ (y)

Remark 1.8. Rechecking the proof of necessity of Theorem 1.5, we find that the
necessary condition is also true for all 0 < p, ¢ < oo. Therefore, comparing with
Theorem 1.4(iii) and Theorem 1.5, we raise an open question: Is the assumption
in Theorem 1.4 sharp in the case 0 < p < 17

In Section 2, we will introduce some necessary notation and definitions, as well
as some known results to be used later in the article. We will prove the main
theorems in Section 3.

2. NOTATION AND DEFINITIONS

We start this section by recalling some standard definitions and notation.
The theory of A, weight was first introduced by Muckenhoupt [30] in a study
of weighted LP boundedness of Hardy-Littlewood maximal functions. (For A,
weights on the Heisenberg group, readers are referred to [8] and [11].) A weight
is a nonnegative, locally integrable function on H".

Definition 2.1. Let 1 < p < co. We say that a weight w € A,(H") if there exists
a constant C' such that for all balls B,

p—1
dw / —1/=1) gy < (C.
IBI/ IBI )

We say that a weight w € A;(H") if there exists a constant C' such that for all
balls B,

<
|B|/ x)dx C’ess%fw( ).

U A

1<p<oo

We define
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By the standard proofs of Propositions 1.4.1 and 1.4.2 in [24] together with the
reverse Holder inequality on the Heisenberg group in [11], we have the following
results.

Proposition 2.2. (i) We have A,(H") C A,(H"), for 1 <p < q < o0.
(1) If w e A,(H"), 1 < p < oo, then there is an € > 0 such that p—e > 1 and
we A, (H").

A close relation to Ay (H") is the reverse Holder condition. If there exist r > 1
and a fixed constant C' such that

s ror ) s
I
\B! = T3]

for all balls B C H", then we say that w satisfies the reverse Holder condition of
order r and we write w € RH, (H"). According to Theorem 19 and Corollary 21 in
[12], w € Ao (H") if and only if there exists some r > 1 such that w € RH,(H").
Moreover, if w € RH,.(H"),r > 1, then w € RH, . (H") for some € > 0. We thus
write r,, = sup{r > 1 : w € RH,(H")} to denote the critical index of w for the
reverse Holder condition.

An important example of A,(H") weight is the power function |z|?. By proofs
similar to those of Propositions 1.4.3 and 1.4.4 in [24], we obtain the following
properties of power weights.

Proposition 2.3. Let x € H". Then
(1) x|y € Ay(H) if and only if —Q < a <0;
(i) x|y € Ap(H"), 1 <p < o0, if and only if —Q < a < Q(p — 1).

We will denote by q,, the critical index for w, that is, the infimum of all the ¢’s
such that w satisfies the condition A,. From Proposition 2.2, we see that unless
¢w = 1, wis never an A, weight. Also by Propositions 2.2 and 2.3, we can obtain
that if 0 < a < 0o, then

elie () A (2.1)

Qta
o <p<oo

where (@ + «)/Q is the critical index of |z|.
For any w € A (H") and any Lebesgue measurable set E, write w(E) =
[ w(z) dz. We have the following standard characterization of A weights.

Proposition 2.4. If w € A,(H"), 1 < p < oo, then for any f € L, (H") and
any ball B C H",

%'/Bu(x)\dxg C(ﬁ/}gﬁ(m)‘pw(as) ar) "
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Proof. When p = 1, by definition of A,(H"), we have
ot L@l (g [ e@a)([lrw]a)
< Cessinf u(x) /B 7 ()] )
<C [ |f@)futz) dz

%/B’f(xﬂdxg%/B’f(xﬂw(x)dx

When 1 < p < oo, by the Holder inequality,

é /B‘f(x)‘ = <’_23| /B|f<x>‘pw(f’3) dx) l/p(é/jgw(:c)lp’ d:c)l_l/p
C(%/B‘f(xﬂpw(x) d:c) /p<ﬁ/3w($) d:p)f /p
—O(ﬁ/BU(x)\pw(x) dg;>1/p

The proposition is proved. O

Therefore,

IN

A

Proposition 2.5. Let w € A, N RH,, with p > 1 and r > 1. Then there exist
constants C1,Cy > 0 such that

o(iz) < e < lim)

for any measurable subset E of a ball B. Especially, for any A > 1,
w(B(z9, AR)) < CA%Pw(B(z0, R)).

Proof. The first inequality can be easily deduced by taking f(z) = xg(x) in
Proposition 2.4.
For the second one, since w € A, N RH,, using Holder’s inequality, we have

/Ew(:z:) dr < (/ w(z)"d >1/T|E|11/7"
|B‘/ |B|1/r|E|1 1/r
< C(%) - 1)/T/Bw(x) dx.

This proves the proposition. O

Given a weight function w on H", for any measurable set £ C H", as usual we
denote by LP(E;w) the weighted Lebesgue space of all functions satistying

e = ([ 1) oy de) ™ < o
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We denote L®(H";w) = L®(H") and || f{| Lo @nw) = || f]| Lo ny for p = oo.
Let B, = {.T e H"™ . |£E’h < Qk}, D, = By, \ B4 for k € Z.

Definition 2.6 ([23], Definition 1.1). Suppose that & € R,0 < p,q < oo. Let w

be a weight on H". The homogeneous weighted Herz space K coP(H™; w) is defined
by

Kap {f S Lloc(Hn \ {O}vw) : ||f||K;’p(H";w) < OO},
where
S ap/Q 1/p
| ligrmy = { 2 wBIPN uipnn}
k=—00

In general, the spaces K ~P(H"; w) are quasi-Banach spaces. When 1 < p, ¢ <
00, then K WP (H"; w) are Banach spaces. If w = 1, we denote the Herz spaces by
K&P(H™). Obviously, KyP(H") = LP(H"; |- |,") for all @ € R. Therefore, Herz
spaces are a natural generalization of Lebesgue spaces with power weights.

Definition 2.7. Let 0 < o < 00 and 1 < ¢ < co. A function b(z) on H" is said
to be a central («, q;w)-block if it satisfies

supp(b) € B(0,7)  and  ||bl| pagaansuy < w(B(0,1)) <.

The following decomposition theorem shows that the central blocks are the
“building blocks” of Herz spaces.

Proposition 2.8. Let 0 < a <00, 0 <p <o00,1< g <00, and let w € Ay (H).
Then f € K3P(H"™ w) if and only if

+00
F=> Mbi,

k=—oc0

where Zk__oo |Ak|P < oo, and each by, is a central (o, q;w)-block with the support
m Bi. Moreover,

[F[Fer mf{( Z )}

where the infimum is taken over all decompositions of f as above.
We omit the proof here as the procedure is the same as that of Theorem 1.1
in [25].
3. PROOF OF THE MAIN THEOREMS

3.1. Proof of Theorem 1.2. According to Proposition 2.8, any f €
K21P(H™; w) has a block decomposition

F=> Mbi,

k=—00
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where (3°50__ [Me[P)VP < HfHK?ll,p(Hn;w), and each by, is a central (o, ¢1; w)-block
with the support in Bj.
By definition,

| T, f () \)\k’/ Q”bk )z)| dy.

k=—o00 h

Denote

To prove the theorem, it suffices to show that
be) = > tisbej,
j=—00
where each by; is a central (aq, ¢2; w)-block with the support in By ;, and
> 1/p
< Z | 11517 ) =C
Jj=—00

uniformly for k € Z.
We rewrite

Abo@ =3 [ 2O, (A dy = 3 @) 31

= Jgiagi< IR Pl

Now we will check that each gi;(x) is a central (aw, ¢2; w)-block multiplied by
a factor. First, we claim that

supp gx; = supp by (A(y)x) C B(O, QkHA_l(y)H) C By (3.2)
In fact, if [z|, > 2%||A~(y)]|, then

A (W) A)z|n\ |A™ (y) 2]\ 2
A0l = (e, ) ez () e

= |A" )|l > 2"

Since supp by C By, we have bg(A(y)z) = 0. Therefore,
supp gr; C B(O,QkHA_l(y)H) C By

By the Minkowski inequality, we have

[@(y)]
||9k‘1||L‘I2(H sw) /2J LA ) <29 |y|Q H ’f( ))HW(H w) WY

Since q; > @ory/(rw — 1), there exists r satisfying 1 < r < r, such that
¢ = qor/(r — 1). By (3.2), the reverse Holder condition, and Proposition 2.4, we
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obtain

ku (A y)) ||L‘12(H";w)

: (/Al(y on(Alw)z) " dx) 1/‘11 (/Al(y)Bk w(x)" dx) o

/ 1/(rq2)
< |det A7Y( I/ql / |bi(2)|" dz ql(/ w(:c)rd:c> "
B(0,2%|A~ ()

; /(a2
< |det A7 (y) [ | By Yo (B (0,28 A7 H))l/qafB (0,25 A~ () D]/

0, 2¥[| A= (y)[|)[/=
X (ﬁ/ |bk(z)‘q1w(z) dz)l/q1

|detA 1 Bk+] )i/
( A ||Q ) U 155 2o )
|detA Vauw( Bk+ )i/a
( |A—1 ||Q ) w(By) w(Bg
_ <|detA ( )|>1/QI< (Bk+j)>1/‘11+a1/Q
A (y)||2 w(By)

where the last equality is due to 1/g1 + a1/Q = 1/g2 + 2/ Q.
When j > 1, since 2771 < ||[A7(y)|| < 27, by Proposition 2.5, we have

)*al/Q

w(Byy ;) 9, (3.3)

det A1 /q
166 (AW ) || gy = 2001/ (W) w(Byy;) 2@

‘detA ‘l/quA )Hmw(BkH)faQ/Q_
When j = 0, we have

| det A~ (y)|\ Vo /Q
ku(A(y)')Hqu(Hn;w) = ( |A-1(y)||@ ) w(By) =",
When j < —1, by (3.3) and Proposition 2.5, for 1 < ¢ < r,,, we obtain
ku (A(y)) Hqu (H";w)
(\ det A‘l(y)|>1/(n <|Bj+k\)>(1/q1+a1/Q)((51)/5)
A ()| | Bi|

‘detA ‘l/quA )"al_(Q/ql+a1)/6w(Bk+J‘)70[2/Q_

w(Byyy) 29

To sum up, we have
1191 || Loz sy = ptiew(Brey) ™9,
where
f2j71§”A 1(y)”<23 |y|Q‘ | detA (y)|1/q1 ||A71(y)||a1 dy j > 07

Joir<pamigy< |y|Q‘|detA Hy)[ V| A (y) || @aten/o gy 5 < 0.
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Let
gk (x) = pirbe; ().
It is clear that each by; is a central (a2, go; w)-block with the support in By ;.
Next we will show that > 72 [u;[P is uniformly bounded on k € Z. To this

end, we will consider two different cases p > 1 and 0 < p < 1.
In the case 1 < p < oo, we have that

S lugl < ( S il )

J=—0o0 j=—00
<(f et ay
Atz |yl
+/ |(I> ”d tA ’1/‘11HA )Hal_(Q/QH_al)/édCy)p.
i<t |yl

(3.4)

This proves Theorem 1.2(i).
On the other hand, when 0 < p < 1, we have that

Z g |” = Z g P + Z ks |P + |pwol” := I + Iy + [pgol” (3.5)

j=—00 7j=1 Jj=—00

For Iy, by Hélder’s inequality and the fact that o > (1 — p)/p, we have

oo . p s . - 1—p
I < (Z]”IM@I) (Z] P/ p))
j=1 j=1

<> 0ot 47102 471 )
2i-1<||A=1(y)||<27 |?J|h

j=1
< (1 +logg |47 )] d
d(y o
-/ = ’!th DY A G (1 + gl A W] dy
Atz lyly
Similarly,
-1 —1 -
o< (30 1lml) (Y2 )
j=—00 j=—o0
@ 1 a1 — 1Ta1 — e
<[ e A A ) [ oy 4 )|y
la-rwi<d 1yl
Consequently,
Sohmat= [ Bl a4
Pl iz [yl

x (14 log,|[A™( y)H)Udy
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+/ |2 (y |‘d t A1 ll/quA H a1—(Q/q1+a1)/é
A1 (y)l<1 !y\h

(1= log | A7 )"y
Theorem 1.2 is proved. U

Next we will use a different but more direct method to prove Theorems 1.3 and
1.4. To start this process, we first prove the following result.

Lemma 3.1. Suppose that the (2n+ 1) x (2n + 1) matriz B is invertible. Then
1B < |det B < | B7']%, (3.6)

where

BZL‘h
1Bl = swp 157
xeH™ x#0 |x|h

Proof. By definition, it is clear that |Bx|, < ||B|||z|; for any = € H". Therefore,
1B aln < |B~ aln < 1B~ |||z
It yields that
‘{x cH": ||B|| z|n < 1}‘ > Hx cH": |B 2|, < 1}‘
> [{a e H': By <

which implies that
Q| BIIY = Qg det B| > Qq| B~ 7.
Consequently, (3.6) holds. O

3.2. Proof of Theorem 1.3. By definition and the Minkowski inequality,
HTq) Af” "‘2 P Hn

w)

— a2p/QH/ f )
-

k*—oo

s}jwwmw%/ MJW( D) o) - G

Since ¢1 > Yqory /(1w —1), thereis 1 < r < r,, such that ¢, /vy = go1’ = gor/(r—1).
In view of the Holder inequality and the reverse Holder condition, we obtain

1 (A | o2 (0

< (f )" ([ ey )’
=< |det A_l(y)P/‘“ </A(y)Dk‘f(m)‘ql/v da:)wa </Bk () dx)l/(m)

< [det A7 ()| [Bul 7 w(By) Y / @) de) "
A(y) Dy,

La2 (Dk w)
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Proposition 2.4 and Lemma 3.1 show that

(/A(y)Dk’f(m”qlM dx)v/th

— 1 1 Va
<[BO2 A )™

Qv/m /& 1 / a Va
< || AGy B.I/4 flo)|" w(x)dr ,
[l 1Bl <w(B(0,2k||A(y)||)) B(O,QkA(y))‘ (@) w() >
which implies that

1 (AW ] s (9, 0
_ /a1 /a w(B )1/(12
< Jdet A7) AW Spm 2 AT
X [ fllLar (Bo,25 1 A@) )sw) - 3

Therefore, we infer from (3.7) and (3.8) that

1 Toaf || o2 @m )

< { i (/Hn [P (y ||d ¢ A1 )}'Y/(hHA(y)”Q'Y/fh

k=—o00

(Bk)l/%Jraz/Q 1/p
( (0 2’“||A( )”))1/q1 “f”qu(B(O 2k|| A(y)]);w) dy> }
1 Qv/a1
j/ ‘| | |‘th )"y/q ”A(y)H v/4
h

Bk 1/g2+a2/Q

. { Z < B(0 2k|yA( sy 1 e o iawny ))p}l/pdy

|}d t A1 )P/quA(y)”QW(h
— o o)A <2 \y!h

o0

Bk 1/q2+a2/Q py1/p
{Z( s LC) B B

‘|d t A! )lv/quA(y)HQv/ql

X

27-1< || A(y)||<27 Iylh

{Z Gy ™™
x Z( > Ve (Bk+l)a1/QHfHLﬂ(DkH;w)]p}l/pdy, (3.9)

where the second inequality is obtained by the Minkowski inequality and the last
equality holds for 1/q; + a1/Q = 1/¢2 + a2/ Q.
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Since a; < 0 and [ < j, by Proposition 2.5 again, we have

(w(3k+j)>a1/cz . <|Bk+j|>a1<a_1>/<<s@> _ (-5 (3.10)
w(By) | Biot|
for any 1 < < 7.
When 1/¢; + a;/Q > 0, Proposition 2.5 shows that, if j <0,
( w(By) >1/q1+a1/62 = ( | By| >v(1/q1+al/Q) _ 9—i@1(1/m+01/Q) (3.11)
w(Bij) | B+ ’ '
and if j > 0,

(—w<B’“) )WM/Q = ( B >(1/q1+a1/Q)(5_1)/5 _ 9-iQ/n e /QG-1/8 (3 19)
(Br)

w( B | Bry4]

forany 1 < 6§ < ry.
When 1/¢; + a1 /Q < 0, Proposition 2.5 yields that, if j <0,

( w(Bk) >1/f11+a1/Q - < ‘Bkl >(1/Q1+a1/Q)(51)/5
(Br+j) | Bit]
for any 1 <0 < r,, and if j > 0,
( ’LU(Bk) >1/Q1+oz1/Q - ( |Bk| >’Y(1/Q1+a1/Q) _ 2*jQ7(1/q1+a1/Q)‘ (3'14)
w(Bg+) | Bry4]

Therefore, if 1 < p < oo and 1/¢; + a1 /Q > 0, we infer from (3.9)—(3.12) that,
for any 1 < § < ry,

= 27 IQW/ater/@QO-1/5 (3 13)
w( By

”T‘I’,AfHK?;’p(H”;w)
0

12| o o
= / det A~ (y) Ay)
j;oo V<A <27 |y|h ‘ ‘ H H

00 J ‘ py1/p
{3720 20O BB F o]

k=—00 l=—0

+ /2 | ”d t A1 )P/qlHA(y)H—Q(l/q1+a1/Q)(5—1)/5+Qv/q1

= Jacami<o |yl

= d i py1/p
x { S [Z 2(]*l)a1(671)/5w(BkH)al/QHf|’Lq1(Dk+“w)] } oy

k=—o00 l=—0

: ’d AN A -y
<Y [ e A ) Aw)]

j=—o00 yh
L hea(sn)s 01p/Q p
x {3 20 (Z (B 1 ) Y
l=—00 k=—o0
> — « d—1)/6
+ / | ”d t A1 )P/quA(y)H Q(1/q14a1/Q)(6—1)/6+Qv/q1
= Jarciawi<y yl7
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1/p
{Xﬁomﬂ”%E:(mowﬁmmmww)}@

l=—00 k=—o00
O (y —ya
= Hf”f(;"llvP(Hn;w) (/ | |‘d tA )‘V/(hHA(y)H you dy
lawi<t |yl
+/ ’ ||d t AL )|v/q1HA(y)HfQ(l/qual/Q)(5*1)/5+Q'Y/q1 dy).
izt [yl7

This proves Theorem 1.3(i).
When 1 <p < oo and 1/¢; + a1 /Q < 0, by virtue of (3.9), (3.13), (3.14), and
a similar argument as above, we complete the proof of Theorem 1.3. O
From this point forward, for the sake of convenience, we will sometimes use

w(-) for |- |§

3.3. Proof of Theorem 1.4. Similar to the proof of the preceding theorem,
noting that for any k € Z,

w(By) :/ ||} da ~ 2F(@+D) (3.15)
|x| <2k

we have

= { i (/ |(I)<Q)|2ka(Q+5)/QHf( ).)“Lq(Dk;Hg) dy>p}1/p. (3.16)

oo YH? |y|h
On the other hand, it follows from Lemma 3.1 that

Hf(A<y)) ||L‘1(Dk;\'|§)
o[ e o)

<¥Mm*WWAWHWWMm oy 650
(’ det A_l(y)‘HA(y)H 6)1/(1HfHLq(A(y)Dk;|.\h) g <0.

Next we estimate Hf|’Lq(A(y)Dk;\-|§)' By the definition of D) and Lemma 3.1, it is

(3.17)

clear that
Aly) Dy, € {o+ [|[A7 ()] 712470 <l < [|Aw)]|2°)-
For any y € supp(®), there is jy € Z such that
200 < [|AY(y)|| 7" < 270+, (3.18)

Since ||[A7!(y)||7' < ||A(y)]], there must exist a nonnegative integer mq satisfying

20tmo <[ A(y)|| < 270Fmott, (3.19)
The inequalities (3.18) and (3.19) imply that

o, A IAI/2) <m0 < o247 W4 )
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and
A(y)Dy. C {:E . Qloth—l < ||, < 2jo+mo+k+1}.
Therefore,
Jo+mo+1
Il aampiig) 2 lZ 1A L s (3.20)
=Jo

When 5 > 0, it follows from (3.16), (3.17), and (3.20) that

1T aF gy

<{ % ([ Sl aerafam)y

k=—o00
Jo+mo+1 PP
% 2ka(Q+5)/Q Z HfHLq(DkJrHHQ) dy) }
l=jo
d(y
< [ Bl jaecan )y
Hn» ‘y’h

00 Jo+mo+1

A (X 2O iy ) }”pdy

k=—oco  I=jo

< [ Sl (ae a4

Yl h
Jo+mo+1 1/p
loa(Q+8)/Q (k+D)e(Q+8)p/Q
x ) (Z 2 ”fHLq(ka)) ay
=30 k=—o0
= HfHanvP(Hnﬂ.\ﬁ)
|(I) Jo+mo+1
< ([ Bl (aecarlanw)) Y zeaa).
|y|h l=jo
(3.21)
Noting that, for a = 0,
Jo+mo+1
> 2 @R —my 2 2 1+ logy ([ AT W[ AW)]). (3:22)
=30
and for a # 0,
Jjo+mo+1 —a B)(mo—+2
S grle@/e _ o-iva(Qs)/Q L = 27D/
1 — 2—Q+B)/Q
I=jo
-1 a(Q+8)/Q
[A@)[|m@79a <0,
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we complete the proof of part (i) of the theorem from (3.21)—(3.23). By a similar
argument as above, we also conclude the proof of part (ii).

For part (iii), similar to the proof of Theorem 1.2, it suffices to show that for
every central (a, q; | - |’,6;)—block b, with the support in B, we have

bk) = Z ,U/kjbkja

j=—o00

where each by; is a central (a, ¢; w)-block with the support in By, ;, and

uniformly for k& € Z.
Let gx; be as in (3.1). By (3.2), supp gkj C Bk+]~, and

y)l
”bk-]HLq(Hn,Hg) j /2] 1<||A 1(y)‘<2] |y|h H k( ))”LQ(H",Hg) dy

Since 2771 < ||[A~1(y)|| < 27, by (3.15) we have
lax (A(y)-) HLq(Hn;|-|§)

= (14| |det A7 @)) " lar )| oy

(| A@)|| " |det A7 (y)]) V2ot e/

(

_ N —a/Q
(4w et A~ @) YA ) ( [ faliar)

Bt

PN

PN

Therefore,

Hglcj“m(H";I-lﬁ)

12l P 1/q a(1+6/Q)
= A(y)|| 7| det A~ A d
- </2 agpanwi< [yl§ (H I ldee A7 @)= y)

X </13k+j |x|£dm> o/

—a/Q
= fkg (/ Edls diﬂ) :
B j

Let
Grj = Hejbi;-

It is easy to check that each by; is a central (o, ¢; | - |’§)—block with the support in
B+ ;. By a similar discussion as in (3.4) and (3.5), respectively, we have

> = ( [, S e 4 ) )

j=—o00
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if 1 <p<ooand

> gl

j=—00
P — o
< </ | (?CJQ)‘ (HA<y>H ’B‘detA_l(y){)l/q”A_l(y)H (1+8/Q)
H™ |y|h
- P
x (1+ [logsl| A ()])"dy) " (3.24)
if 0 <p<1land (1—p)/p<o. This completes the proof. O

3.4. Proof of Theorem 1.5. If ||[A~!(y)|| =< ||A(y)|| ™!, then Lemma 3.1 yields
that

HA(y)HfQ ~ |det A~ (y)| ~ HA_I(y)HQ. (3.25)

The “if” part of Theorem 1.5 is easily obtained from Theorem 1.4. Next we will
show the “only if” part.
When a > 0, for any € > 0, let

— « 1 —€
fe(l’) _ ’:E‘h(QJrﬁ)( /Q+1/q) /qX{\w|h>1}'

A simple calculation shows that, for any k£ > 1,
2(Q+P)ag/Q+e _ 1

1 ell 2oy = ((Q +3)aq/Q + e
which gives that

© 1/p
~ k(Q+8)
||f6||K?’p(H”;|~|§) - <Z2 (@) p/QHfG”Izq(Dk;\-I%)>
k=1

N ( 2(Q+B)aq/Q+e _ | >1/q <Z 2_kp5/q) 1/p
(Q+B)ag/Q + ¢ —

Q—k((Q+6)QQ/Q+6)) 1/q7 (3.26)

2(Q+B)aq/Q+e _ 1 \ 1/q 1
= ) 3.27
(@ pegrase) @ 6
On the other hand, changing variables and Lemma 3.1 yield that
T@,Afe(x)
®(y) ~(Q+)(e/Q+1/a)—¢/
- / 7 |AW)e], X aweon dy
Hm™ |y|h
q) - « —€ — « —€
o ( / (%)H Ay)|[GPes <l dy)mh(cm)( [Q+1/a)=c/a
lAwI=1/kel [Yl5

which implies that

||T<I>,Afe||K,‘;’P(H";|'|§)

o

1/p
~ KQ+8)ap/Q P
- ( Z 2 HT‘I”AfGHL%Dknwi))

k=—o00
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- { S 2@/ ( / | @@/ Qe+
2

k=1 <a], <2k
q p/ay 1/p
dx) } . (3.28)

k=—00

q’(y —(Q+8)(a/Q+1/q)—¢
" ‘/ Q)”A(y)H @+B)e/QH1/0~c/a g,
lA@)=2—* Y|}

For any € > 0, there is an integer ko such that 27% < e < 27%F1 Then (3.28)
means that

||T<I>,Afe”['(§’p(H";\’|§)

q’(y) —(Q4+8)(a/Q+1/q)—e
t/ )| agy)|| @O/l g,
la@)li=e Y7

X {Z 9k(Q+B)ap/Q (/ |x|;(Q+ﬂ)(a/Q+1/Q)Q—e+B dx>p/q}1/p'

k=ko 2k=1< |z, <2k

(3.29)

By (3.26),

{ 3 2k@+0)er/ ( /

k=ko 2k 1< |z, <2k

~ < 2(Q+B)QQ/Q+€ _ 1 )1/Q(§: 27kp€/q> l/p
(Q+5)QQ/Q+6 =
2(Q+B)OCQ/Q+€ _ 1 1/(] 65/(126/61

B <(Q+5)QQ/Q+6> (26p/q _ 1)1/p'

Therefore, (3.27), (3.29), and (3.30) tell us that the inequality

P - [ —€
c/a9¢/a (/ ( (y)HA(y)H (Q+8)(/Q+1/q)—¢/q dy) <1
A

_ o e p/ay 1/p
|$|h(Q+/3)( /Q+1/a)q +de> }

(3.30)

lize |yl?

holds uniformly on € > 0. Letting ¢ — 0%, we obtain the desired conclusion.
When a < 0, for any € > 0, let

—(Q+8)(/Q+1/q)+€
folx) = |af, @O @HDFL Dy Ly

We finish the proof of Theorem 1.5 by a similar argument as above. 0
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