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On Polynomial-Time Relation Reducibility

Su Gao and Caleb Ziegler

Abstract We study the notion of polynomial-time relation reducibility among
computable equivalence relations. We identify some benchmark equivalence
relations and show that the reducibility hierarchy has a rich structure. Specifi-
cally, we embed the partial order of all polynomial-time computable sets into the
polynomial-time relation reducibility hierarchy between two benchmark equiv-
alence relations E� and id. In addition, we consider equivalence relations with
finitely many nontrivial equivalence classes and those whose equivalence classes
are all finite.

1 Introduction

It is well known that the relative complexity of binary relations can be studied by
two different notions of reducibility. First, a binary relation R with domain X is a
subset ofX �X . Thus, reducibility between relations is a special case of reducibility
between sets on product spaces. In this sense, if R is a binary relation on X and S is
a binary relation on Y , then a reduction function f from R to S is a function from
X �X to Y � Y such that, for all x1; x2 2 X ,

hx1; x2i 2 R ” f .x1; x2/ 2 S:

A stronger notion of reducibility can also be defined. For the above-mentioned R
and S , a strong reduction function f is a function from X to Y such that, for all
x1; x2 2 X ,

hx1; x2i 2 R ”
˝
f .x1/; f .x2/

˛
2 S:

To distinguish between the two notions of reducibility, we call the latter notion rela-
tion reducibility, since it only applies to relations.

Relation reducibility has been studied intensively in at least two different contexts.
The best known example is the Borel reducibility between analytic quasiorders and
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analytic equivalence relations on Polish spaces. Another instance is the computable
reducibility between computably enumerable equivalence relations on natural num-
bers. In this article, we study relation reducibility for equivalence relations, where
the domains are subsets of †�, which is the set of all finite sequences over a certain
finite alphabet †, and the strong reduction function is polynomial-time computable.
We denote this reducibility notion by �R.

The study of equivalence relations in the context of descriptive complexity theory
originated in Blass and Gurevich [1], [2]. The earlier research concentrated on issues
such as transversals and selection functions. The notion of relation reducibility has
only recently been studied by various authors. The literature has not been extensive.

This reducibility was defined by Fortnow and Grochow [5] and was called kernel
reduction. The more recent preprint by Finkelstein and Hescott [4] adopted this ter-
minology and studied NP-equivalence relations and the issue of completeness. The
same notion was called strong equivalence reduction by Buss, Chen, Flum, Fried-
man, and Müller [3], who considered this reducibility primarily restricted to classes
of finite structures under the isomorphism relation (which they called strong iso-
morphism reduction). Furthermore, [3] was the first paper that contained structural
results on the hierarchy of relation reducibility. It was shown in [3] that the partial
order �R, particularly restricted to isomorphism relations that are polynomial-time
computable, has a rich structure. Specifically, they showed that the partial order on
the countable atomless Boolean algebra is embeddable into the partial order �R on
isomorphism relations that are in P.

In this article, we obtain some more structural results for �R. We also focus on
computable equivalence relations, even P-equivalence relations and NP-equivalence
relations, although some of our results are general. Among P-equivalence relations,
we consider some natural benchmark equivalence relations id, E�, and E� (defined in
Section 2). It turns out that the embeddability result from [3] is about isomorphism
relations below E�. We show in this article that the partial order �R between id and
E� also has a rich structure. Our main embeddability result is the following.

Theorem 1.1 There is an assignment X 7! EX from the collection of all subsets
of natural numbers X 2 P to equivalence relations between E� and id such that, for
any subsets of natural numbers X; Y 2 P,

X � Y ” EX �R EY :

Some reducibility or nonreducibility results can be obtained under assumptions on
the relationships among complexity classes. We will identify several other interesting
equivalence relations and investigate their mutual reducibility with assumptions such
as P D NP or P ¤ NP. We also consider equivalence relations with finitely many
nontrivial equivalence classes and those whose equivalence classes are all finite.

Some of our stated results are easy to prove and can be found in the literature
(especially [3], [4]), but we include them for the completeness and coherence of our
exposition.

2 Preliminaries

Throughout the article, we fix a finite alphabet † with at least two elements 0 and 1.
Let †� be the set of all finite sequences over the alphabet †. For x 2 †�, we denote
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by x the length of x. All equivalence relations we consider will have some subsets
of † as their domains.

We use P to denote the class of all subsets of †� that are polynomial-time com-
putable by a deterministic Turing machine, NP to denote the class of all subsets of
†� that are polynomial-time acceptable by a nondeterministic Turing machine, and
PF to denote the class of all polynomial-time computable functions from †� to †�.

In addition, coNP denotes the class of all subsets of †� whose complement is in
NP, and DP denotes the class of all sets of the form L1 \ L2 where L1 2 NP and
L2 2 coNP. Obviously,

P � NP \ coNP � NP [ coNP � DP:
We use N to denote the set of all natural numbers ¹0; 1; 2; : : : º. Via a fixed coding

that we will not specify, we view N as a subset of †�. In particular, we will speak
of polynomial-time computable functions from N to N and subsets of N that are
in various complexity classes. In some cases, we may only specify the action of
a polynomial-time computable function on a limited domain. In this situation, we
impose no conditions on the function acting outside of the specified domain.

We define again the main notion of reducibility under investigation.
Definition 2.1 For binary relations R and S , we say that R is polynomial-time
relation reducible to S , denoted R �R S , if there is a function f W dom.R/ !

dom.S/ such that f 2 PF and, for all x; y 2 dom.R/, hx; yi 2 R ” hf .x/;

f .y/i 2 S .
If R �R S but S —R R, then we denote R <R S and say that R is strictly

polynomial-time relation reducible to S . If R �R S and S �R R, then we write
R �R S and say thatR and S are polynomial-time relation bireducible to each other.
It is easy to see that �R is a quasiorder (i.e., reflexive and transitive) and �R is an
equivalence relation.

We will be primarily concerned with the structure of �R on the class of all com-
putable equivalence relations. We introduce a few canonical examples of computable
equivalence relations, which will serve as benchmarks for the hierarchy under �R.
Definition 2.2

(1) We denote by id the identity relation: for x; y 2 †�,
hx; yi 2 id ” x D y:

(2) We denote by E� the equality of length relation: for x; y 2 †�,
hx; yi 2 E� ” x D y:

(3) For x; y 2 †�, define
hx; yi 2 E� ” if 2k � x < 2kC1 and 2m � y < 2mC1, then k D m.

We will show below that E� <R E� <R id. Before doing this, we prove a gen-
eral lemma that allows us to obtain nonreducibility results from counting. All of
our nonreducibility results that do not require assumptions on relationships between
complexity classes will be proved by the counting method used in the proof of the
lemma. This concept is a restatement of the notion of potential reducibility from [3].
However, because we repeatedly use the result, but do not require the relation for
potential reducibility, we include a proof that does not reference potential reducibil-
ity.
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Lemma 2.3 Let E;F be equivalence relations on †�, and let #E.n/; #F.n/
denote the number of equivalence classes containing elements of length at most n. If,
for any polynomial p, there is n so that #E.n/ < #F.p.n//, then E —R F .

Proof Assume E �R F via a strong reduction function f 2 PF. Let p.n/ be
a polynomial bound for the running time of f ; that is, for any input x 2 †� with
jxj D n, it takes no more than p.n/ steps for the computation of f .x/ to halt.
Assume without loss of generality that p.n/ is monotone increasing. It follows that
if x � n, then jf .x/j � p.n/. Now fix any length n, let #E.n/ D k, and let
x1; : : : ; xk 2 †� be pairwise non-E-equivalent elements of length at most n. Then
f .x1/; : : : ; f .xk/ are pairwise non-F -equivalent since f is a strong reduction func-
tion. We conclude that #F.p.n// � k, or #E.n/ � #F.p.n//.

Proposition 2.4 We have that E� <R E� <R id.

Proof It is easy to see that E� �R id: just define the strong reduction function
f W †� ! †� by f .x/ D 0jxj. To see that E� �R E�, use the strong reduc-
tion function f W †� ! †� where f .x/ D 0log jxj. To prove nonreducibility,
we apply Lemma 2.3. It is easy to see that the lemma applies since #id.n/ � 2n,
#E�.n/ D nC 1, and #E� .n/ � logn.

In general, one can replace the exponential function used in the definition of E� by
other growth functions. For instance, if one uses functions with greater growth rates,
then the resulting equivalence relation will be <R E� . In this fashion one can easily
produce an infinite descending chain of equivalence relations below E� .

None of the results in this section are new since it has been shown in [3] that
the partial order �R below E� contains a copy of the countable atomless Boolean
algebra.

3 Structural Results between E� and id

In this section, we show that the reducibility �R between E� and id already has a
rich structure. Among other things, we will demonstrate an infinite ascending chain
and an infinite antichain between E� and id. We will prove the main embeddability
result mentioned in Section 1, which in particular implies that any finite partial order
can be embedded into the relation <R among equivalence relations between E� and
id. To achieve these, we construct a class of equivalence relations as follows.

Definition 3.1

(a) We call a set A � N good if A is infinite, A 2 P, and, by letting
¹an W n � 1º enumerate the elements of A in strictly increasing order, the
function an 7! n is polynomial-time computable.

(b) For a good set A � N, let ¹an W n � 1º enumerate all elements of A in
strictly increasing order. Define LA W †� ! N by

LA.x/ D

´
0 if jxj < a1,
n if n � 1 is such that an � x < anC1.

Note that LA is polynomial-time computable (see Lemma 3.2 below).
(c) Let A � N be good, and let ¹an W n � 1º enumerate all elements of A in

strictly increasing order. Let ' W N ! N be a polynomial-time computable
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function with '.n/ � an for all n � 1. Define an equivalence relation E';A
by

hx; yi 2 E';A ” LA.x/ D LA.y/ and
if LA.x/ > 0, then x and y agree in the first '

�
LA.x/

�
bits.

Lemma 3.2 If A � N is good, then LA is polynomial-time computable.

Proof Let A be good, and let ¹an W n � 1º enumerate all elements of A in
strictly increasing order. Then there exist a polynomial-time computable function
' recognizing A, that is, '.x/ D 1 if x 2 A and '.x/ D 0 otherwise, and a
polynomial-time computable function  W an 7! n. Note that the values that  
takes on elements not in A are not relevant. We compute LA as follows. Given a
string x, we compute jxj. We then run '.m/ for m D jxj; jxj � 1; : : : ; 0 until we
find the largest m with '.m/ D 1. This process requires at most jxj applications of
' on strings of length at most jxj, so it can be done in time that is polynomial in
jxj. If '.m/ D 1, then m D an for some n � 1. Since we run this computation in
decreasing order, we see that if m is the largest with '.m/ D 1, then m D an where
jxj < anC1.

So suppose m is the result of this computation. Then, LA.x/ D  .m/ for this m.
If this computation does not return any m with '.m/ D 1, then jxj < a1, and so in
this case, LA.x/ D 0.

It follows easily from the definition that E';A �R id. As the following theorem
demonstrates, the relative complexity of E';A is closely related to the growth rates of
the functions ' and n 7! an, which enumerates elements of the set A.

Theorem 3.3 LetA � N be good, and let ¹an W n � 1º enumerate all elements of
A in strictly increasing order. Let ' and  be polynomial-time computable functions
from N to N with '.n/;  .n/ � an for all n � 1. Then the following hold.

(i) If '.n/ �  .n/ for all n, then E';A �R E ;A.
(ii) If ' is increasing, '.n/ D �.log an/, and for any polynomial p.n/

 .n/ ¤ O
�
'

�
p.an/

��
;

then E ;A —R E';A.
(iii) Let B � N be good, and let ¹bn W n � 1º enumerate all elements of B in

strictly increasing order. If an � bn for all n � 1, then E';B �R E';A.

Proof For (i), suppose '.n/ �  .n/ for all n. We define a strong reduc-
tion function f W †� ! †� from E';A to E ;A. Let x 2 †�. If jxj < a1,
then LA.x/ D 0, and we define f .x/ to be the empty sequence. Otherwise,
LA.x/ > 0 and '.LA.x// � aLA.x/ � jxj. In this case, define f .x/ to be
the sequence of the same length as x which agrees with x on the first '.LA.x//
bits and is 0 for all remaining bits. We check that f works. If x; y 2 †� are
E';A-equivalent, then we actually have f .x/ D f .y/ and therefore f .x/ and f .y/
are E ;A-equivalent. If x and y are not E';A-equivalent, then eitherLA.x/ ¤ LA.y/

or else LA.x/ D LA.y/ > 0 but x and y disagree in the first '.LA.x// bits. If
LA.x/ ¤ LA.y/, then LA.f .x// ¤ LA.f .y// and so f .x/ and f .y/ are not
E ;A-equivalent. If LA.x/ D LA.y/ > 0 and x and y disagree in the first '.LA.x//
bits, then f .x/ and f .y/ also disagree in the first '.LA.f .x/// D '.LA.x// bits,
which implies that f .x/ and f .y/ are not E ;A-equivalent.



276 Gao and Ziegler

For (ii), we give a direct proof instead of applying Lemma 2.3; this turns out
to be notationally simpler but we use the same counting technique. Let ' and
 be such that ' is increasing, '.n/ D ‚.log an/, and for any polynomial p.n/
 .n/ ¤ O.'.p.an///. Assume E ;A �R E';A, and let f be a strong reduction
function from E ;A to E';A. Let n � 1 be arbitrarily fixed. Let N'.n/ be the number
of E';A-equivalence classes which consist of strings x with LA.x/ D n. It is eas-
ily seen by direct counting that N'.n/ D 2'.n/. Similarly, define N .n/ D 2 .n/.
Now f is a one-to-one function on the equivalence classes of E ;A; thus, the N .n/
many distinct E ;A-equivalence classes are mapped via f to N .n/ many distinct
E';A-equivalence classes. Let S.n/ be the set of all x 2 †� with jxj D an. Then for
each x 2 S.n/, LA.x/ D n, and for any y 2 †� with LA.y/ D n, there is x 2 S.n/

which is E ;A-equivalent to y (since  .n/ � an). In other words, each of the N .n/
many distinct E ;A-equivalence classes contains an element of S.n/.

Let p.n/ be a polynomial bound for the running time of f ; that is, the com-
putation of f on an input string of length n takes no more than p.n/ many steps
to halt. Then we must have jf .x/j � p.jxj/ for any x 2 †�. Without loss of
generality, assume that p.n/ � n and is monotone increasing. Considering the
E';A-equivalence classes of the elements of ¹f .x/ W x 2 S.n/º, we obtain

N .n/ �

X
k�p.an/

N'.k/ � p.an/N'
�
p.an/

�
:

The second inequality follows from the hypothesis that ' is increasing.
Taking the logarithm on all sides of the inequality, we obtain

 .n/ � '
�
p.an/

�
CO.log an/:

Since '.n/ D �.log an/, we have  .n/ D O.'.p.an///, which is a contradiction.
For (iii), suppose an � bn for all n � 1. Note that, for any x 2 †�,

LB.x/ � LA.x/, and if LB.x/ > 0, then aLB .x/ � aLA.x/ � jxj. Define

f .x/ D

´
the empty sequence if LB.x/ D 0,
x � aLB .x/ otherwise.

Then f is polynomial-time computable. In fact, given x, the computations of LA.x/
and LB.x/ take time that is polynomial in x; then we obtain x � aLB .x/ by checking
on all the candidates, which are successive truncations of x. (Note that we do not
need to assume that the function n 7! an is polynomial-time computable.)

We verify that f is a strong reduction. First, suppose x and y are E';B -equivalent.
Then we have LB.x/ D LB.y/. If they are zero, then f .x/ D f .y/ and is the
empty sequence, and in particular, f .x/ and f .y/ are E';A-equivalent. Suppose
that LB.x/ D LB.y/ > 0. Then x and y must agree on the first '.LB.x// bits.
By definition, f .x/ and f .y/ are truncations to the length aLB .x/ of x and y,
respectively. We have LA.f .x// D LB.x/ and LA.f .y// D LB.y/. Therefore,
LA.f .x// D LA.f .y//, and we have that f .x/ and f .y/ still agree on the first
'.LA.f .x/// D '.LB.x// bits, so f .x/ and f .y/ are E';A-equivalent.

For the other direction, suppose that x and y are not E';B -equivalent. Then either
LB.x/ ¤ LB.y/ or else LB.x/ D LB.y/ > 0 but x and y do not agree on the
first '.LB.x// bits. Since LA.f .x// D LB.x/ and LA.f .y// D LB.y/, we have
LA.f .x// ¤ LA.f .y// if LB.x/ ¤ LB.y/. If LB.x/ D LB.y/ but x and y do
not agree on the first '.LB.x// bits, then LA.f .x// D LA.f .y// > 0 but f .x/ and
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f .y/ do not agree on the first '.LA.f .x/// bits, since f .x/ and f .y/ are just trun-
cations of x and y to the length aLB .x/, and '.LA.f .x/// D '.LB.x// � aLB .x/.
In either case, we see that f .x/ and f .y/ are not E';A-equivalent. This shows that
f is a strong reduction.

In the remainder of this section we give some applications of Theorem 3.3. In fact,
for these applications we will fix the good set A D N n ¹0º. Thus, an D n in the
enumeration of elements of A, and we have LA.x/ D jxj. For notational simplicity,
let E' denote E';A for this particular A.

In summary, let ' W N ! N be an increasing, polynomial-time computable func-
tion with '.n/ � n for all n 2 N, and let E' be the equivalence relation defined
by

hx; yi 2 E' ” jxj D jyj and x and y agree in the first '
�
jxj

�
bits:

Note that E� �R E' �R id. The first reduction is witnessed by the same strong
reduction function f W †� ! †�, where f .x/ D 0jxj, that we used in the proof of
Proposition 2.4.

We are now ready to construct an infinite ascending chain and an infinite antichain
between E� and id.
Corollary 3.4 There is an infinite sequence of functions 'm 2 PF such that
E'm

<R E'mC1
for all m.

Proof For each m � 1, define 'm.n/ D min¹n; .logn/mº. Then each 'm is
polynomial-time computable and logn � 'm.n/ � n for all n. Since 'm.n/ �

'mC1.n/ for all n, we have E'm
�R E'mC1

by Theorem 3.3(i). On the other hand, for
any polynomial p.n/, 'm.p.n// D ‚..logn/m/. Since .logn/mC1 ¤ O..logn/m/,
we have that 'mC1.n/ ¤ O.'.p.n///. Thus, E'mC1

—R E'm
by Theorem 3.3(ii).

We thus have E'm
<R E'mC1

for all m.

Again, it is easily seen that the construction in the above proof can be modified to
obtain longer chains. For instance, if we use functions such as logn.log logn/k ,
logn.log logn/.log log logn/k , and so on, one can obtain more infinite ascending
sequences in-between the ones obtained in the above proof. As a consequence, one
can embed the linear order on the ordinal !k for any finite k into the relation <R
between E� and id.
Corollary 3.5 There is an infinite sequence of functions 'm 2 PF such that
E'm

—R E'm0 for any m ¤ m0.
Proof Let h�; �i W N � N ! N be a polynomial-time computable pairing function
such that the decoding functions .�/1 and .�/2 are both polynomial-time computable.
For instance, the usual Cantor diagonalization function is itself a polynomial in both
variables and therefore is such a function.

Define an increasing sequence of natural numbers Nk by induction:
N0 D 1;

NkC1 D 21C.logNk/
2

:

We are now ready to define 'm for any m 2 N as

'm.n/ D

´
min¹n; .logn/2º if Nk � n < NkC1 and .k/1 D m,
min¹n; .logNk/2º if Nk � n < NkC1 and .k/1 ¤ m.
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Each 'm is polynomial-time computable. It is easy to see that each 'm is
increasing. To see that 'm.n/ D �.logn/, it is enough to check that, as func-
tions in k, logNkC1 D O.'m.Nk//. For this, just notice that, asymptotically,
'm.Nk/ D .logNk/2 whereas logNkC1 D 1C .logNk/2.

We claim that if m ¤ m0, then 'm.n/ ¤ O.'m0.n//. This would complete the
proof by Theorem 3.3(ii).

Suppose this is not so, and assume that 'm.n/ D O.'m0.n//. Then for some
constant C > 0 and N , 'm.n/ � C'm0.n/ for all n � N . Suppose N is large
enough that .logn/2 � n for all n � N . It follows in particular that, for all k such
that Nk � N ,

'm.NkC1 � 1/ � C'm0.NkC1 � 1/:

If in addition .k/1 D m, then by our definition of 'm we have

'm.NkC1 � 1/ D
�
log.NkC1 � 1/

�2
� C.logNk/2:

Hence, there is a constant C 0 such that log.NkC1 � 1/ � C 0 logNk for the infinitely
many k with .k/1 D m. However, when .k/1 D m, we also have

log.NkC1 � 1/ D ‚.logNkC1/ D ‚
�
1C .logNk/2

�
D ‚

�
.logNk/

�2
as functions of k. This is a contradiction.

Note that the equivalence relations constructed in the above proofs are all between E�
and the second equivalence relation constructed in the proof of Corollary 3.4. Again
the technique can be easily adapted for other pairs of equivalence relations obtained
from the proof of Corollary 3.4.

The functions we constructed in the proof of Corollary 3.5 have a stronger prop-
erty that we now explore.

Corollary 3.6 There is an assignment X 7! EX from the collection of all subsets
of natural numbers X 2 P to equivalence relations between E� and id such that, for
any subsets of natural numbers X; Y 2 P,

X � Y ” EX �R EY :

Proof Let 'm be the functions constructed in the proof of Corollary 3.5. For each
polynomial-time computable X � N, define

'X .n/ D max
®
'm.n/ W m 2 X

¯
and EX D E'X

. Each 'X is polynomial-time computable because

'X .n/ D

´
min¹n; .logn/2º if Nk � n < NkC1 and .k/1 2 X ,
min¹n; .logNk/2º if Nk � n < NkC1 and .k/1 … X .

Now if X � Y � N and X; Y 2 P, then 'X .n/ � 'Y .n/ for all n, and therefore,
EX �R EY by Theorem 3.3(i). On the other hand, if X ª Y and we let m 2 X n Y ,
then E'm

—R EY by the same proof of nonreducibility as that of Corollary 3.5.

Since any finite partial order can be embedded into the Boolean algebra .P;�/, it
follows that any finite partial order is embeddable also into the �R relation among
equivalence relations between E� and id.
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4 More Examples and Nonreducibility Results

An important class of computable equivalence relations is that of isomorphism for
finite structures. For each kind of finite structure, such as graphs, groups, and lin-
ear orders, there are many reasonable ways to code the structures by sequences in
†�. For instance, we may consider only structures whose underlying set is an ini-
tial segment of the natural numbers. The isomorphism relation corresponds to an
equivalence relation with a computable subset of †� as its domain. We adopt the
following notation.
Definition 4.1

(1) We denote by GI the graph isomorphism relation: if x; y 2 †� encode finite
graphs, then hx; yi 2 GI if and only if there is an isomorphism between the
graphs coded, respectively, by x and y.

(2) Similarly, we denote by GROUP the isomorphism for finite groups.
(3) We denote by CLIQ the clique relation: if x; y 2 †� encode finite graphs,

then hx; yi 2 CLIQ if and only if the maximum size cliques in the graphs
coded by x and y are of the same size.

All isomorphism relations for finite structures are NP-equivalence relations. Thus,
GI and GROUP are in NP. On the other hand, CLIQ is DP-complete as a set (see
Papadimitriou [8]).

In the following, we collect some results from the literature.
Proposition 4.2 The following are true.

(i) If E is the isomorphism relation for finite structures of any finite language,
then E �R GI.

(ii) If E is the isomorphism relation for any of the following classes of finite
structures, then E �R id:
(a) finite trees;
(b) finite planar graphs;
(c) finite linear orderings with a unary relation.

(iii) If E is the isomorphism relation for any of the following classes of finite
structures, then E �R E�:
(a) finite sets;
(b) finite fields;
(c) finite abelian groups;
(d) finite cyclic groups;
(e) finite linear orderings;
(f) finite linear orderings with a distinguished point.

(iv) IfE is the isomorphism relation for finite Boolean algebras, thenE �R E� .
(v) If E is the isomorphism relation for any of the following classes of finite

structures, then E �R GI:
(a) finite regular graphs;
(b) finite bipartite graphs.

See [3] for (i), (ii.c), (iii), and (iv). The proof of (ii.a) is folklore and implicit in any
proof that a finite tree isomorphism is in P. A proof of (ii.b) is implicit in the proof of
the theorem of Hopcroft and Tarjan [6] that the isomorphism for finite planar graphs
is in P. The proof of (v.a) can be extracted from Miller [7]. We give a proof of (v.b)
below.
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Proof of Proposition 4.2(v.b) Let G D .V;E/ be an arbitrary finite graph. We
define a bipartite graph G� D .V �; E�/. The mapping G 7! G� will be a strong
reduction from GI to the isomorphism of finite bipartite graphs. Let V � D V [ E

and E� D ¹.v; e/; .e; v/ W v 2 V; e 2 E; and v is a vertex of eº. G� is bipartite
because ¹V;Eº is a partition of its vertices such that every edge in G� is between
a vertex in V and a vertex in E. Suppose G1 and G2 are two finite graphs. It is
clear that if G1 Š G2, then G�

1 Š G�
2 . In fact, any isomorphism between G1 and G2

induces an isomorphism ofG�
1 andG�

2 by the definition ofG�. For the converse, first
note that G is connected if and only if G� is connected. Without loss of generality,
we may assume both G1 and G2 are connected. Suppose that � is an isomorphism
from G�

1 to G�
2 . Then � must map V1 to either V2 or E2, since the two graphs

are bipartite. In the first case, it must happen that �.V1/ D V2 and �.E1/ D E2,
and therefore, � induces an isomorphism between G1 and G2. In the second case,
�.V1/ D E2 and �.E1/ D V2. Note that each vertex in E1 in G�

1 has degree 2.
Thus, it must happen that each vertex in V2 inG�

2 has degree 2, and thus, each vertex
in V1 in G�

1 has degree 2. This means that all vertices in the two graphs have degree
2, and G�

1 must be a simple cycle. The same holds for G�
2 . These imply that both

G1 and G2 are simple cycles, and they are of the same length. Thus, G1 and G2 are
isomorphic.

It was shown in [3, Corollary 18] that

E� <R GROUP <R GI

and
id —R GROUP:

The proofs of the nonreducibility directions are all based on the counting argument
used to prove Lemma 2.3.

Note that
E� �R CLIQI

this is witnessed by the strong reduction function x 7! f .x/, where f .x/ is the code
for the complete graph with jxj vertices. Note that #CLIQ.n/ D O.n/. Thus, by
Lemma 2.3, we have

id —R CLIQ:

Since id �R GI, it follows that
GI —R CLIQ:

We summarize the reducibility and nonreducibility results for the six interesting
equivalence relations in a diagram on the following page. In the diagram, a solid
arrow represents reducibility <R, an arrow with a cross represents nonreducibility
—R, and a dotted line indicates that the opposite direction is unsettled.

The following propositions clarify the reducibility from CLIQ with other equiva-
lence relations in the diagram.

Proposition 4.3 The following are equivalent:
(i) P D NP;
(ii) CLIQ �R E�;
(iii) CLIQ �R E�.
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Proof Obviously (ii) and (iii) are equivalent. To see (i))(ii), assume P D NP.
Then there is a polynomial-time algorithm to determine, given a finite graph G and
a number k, whether G contains a clique of size k. Let G have n vertices. Then
by setting k D 2; : : : ; n, the maximal k such that G contains a clique of size k can
be computed in polynomial time. If we run this decision algorithm and output a
sequence of length this maximal k, then this gives a strong reduction function in P
from CLIQ to E�. For (ii))(i), note that NP � DP and that CLIQ is DP-complete
as a set. If CLIQ �R E�, then CLIQ 2 P and so is every DP set.

Thus, if P D NP, then CLIQ is of the same complexity as E�.

Proposition 4.4 If P ¤ NP, then CLIQ —R id.

Proof This is because if CLIQ �R id, then CLIQ 2 P.

In other words, if P ¤ NP, then CLIQ is incomparable with id and E� <R CLIQ.

Proposition 4.5 If NP ¤ coNP, then CLIQ —R GI, and in particular, CLIQ —R id
and CLIQ —R GROUP.

Proof If CLIQ �R GI, then CLIQ 2 NP. Since coNP � DP, it would follow that
NP D coNP D DP.
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In other words, if NP ¤ coNP, then CLIQ is incomparable with either GI or id, and
E� <R CLIQ.

The following lemma was essentially proved in [1] (cf. [3, Lemma 32]).

Lemma 4.6 (Blass–Gurevich) If P D NP, then E �R id for every E 2 NP.

Thus, if P D NP, then GI �R id and therefore GROUP <R id.

5 Finitary Equivalence Relations

In this section, we note that there is a canonical initial segment of the �R hierar-
chy for P-equivalence relations. We also show that if P ¤ NP, then there are NP-
equivalence relations strictly above id. These results are obtained by considering a
special class of equivalence relations.

Definition 5.1 An equivalence relation E is called finitary if E has only finitely
many nontrivial equivalence classes, that is, all but finitely many E-equivalence
classes are singletons.

It is easy to see that if E is a finitary equivalence relation on †�, then E 2 P if and
only if each E-equivalence class is in P if and only if E �R id.

We consider two subclasses of finitary equivalence relations. The first class con-
sists of those with only finitely many equivalence classes. The canonical examples
of such equivalence relations are the congruence relations on natural numbers. For
each positive n 2 N, denote by �n the congruence relation mod n, that is,

x �n y ” x � y mod n
for x; y 2 N. Up to �R, the equivalence relations �n are exactly the same as all
P-equivalence relations with finitely many equivalence classes. Moreover, they form
an infinite ascending chain that is an initial segment of the �R hierarchy.

Next, we consider equivalence relations induced by a single set.

Definition 5.2 For any subset S of †�, we define an equivalence relation RS on
†� by

hx; yi 2 RS ” either x D y or both x 2 S and y 2 S .

Equivalence relations of the form RS are of course finitary. About their mutual
reducibility, we have the following observation.

Lemma 5.3 Let S; T � †�. If RS �R RT , then either RS �R id or S is
polynomial-time reducible to T .

Proof Suppose RS �R RT via a strong reduction function f 2 PF. Then for any
x; y 2 S , hf .x/; f .y/i 2 RT . We have two cases. Case 1: for any x 2 S , f .x/ … T .
In this case, f .x/ D f .y/ for any x; y 2 S . Then, f witnesses that RS �R id. Case
2: for any x 2 S , f .x/ 2 T . Note that, for any x … S , f .x/ … T . Thus, f is a
reduction function from S to T .

Note that id is itself of the form RS , with S D ;. Also, note that there is a coinfinite
S � †� with RS <R id. An example is R†�n¹0º� �R E�.

Proposition 5.4 Let S � †� be nonempty. Then the following hold.
(i) S 2 NP if and only if RS 2 NP.
(ii) If S is NP-hard, then RS is NP-hard as a set.
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(iii) If RT �R RS for all T � †� with T 2 NP, then S is NP-hard.
(iv) If P ¤ NP and S is NP-hard, then RS —R id.

Proof For (i), the implication .)/ follows from the definition. For .(/ of (i) and
for (ii), fix an element a 2 S . Then for any x 2 †�, x 2 S if and only if hx; ai 2 RS .
The function x 7! hx; ai is a polynomial-time computable function reducing S to
RS as sets.

Now (iv) follows immediately from (ii). To prove (iii), assume RT �R RS for all
NP subsets T � †�. In particular, id �R RS , and it follows that S is coinfinite.
We argue for (iii) in two cases. If P D NP, then any nonempty, proper subset of
†� is NP-hard. Suppose P ¤ NP. Let T be NP-hard. Then RT —R id by (iv). By
Lemma 5.3 we must have a polynomial-time reduction from T to S , and hence, S is
NP-hard.

Now it is easy to define NP-complete S � †� for which id �R RS . If P ¤ NP, then
id <R RS for such an S .

The following notion is in some sense a dual to the notion of finitary equivalence
relations.

Definition 5.5 An equivalence relation E is called finite if every E-equivalence
class is finite.

The equivalence relations E';A we defined earlier in this article and the natural iso-
morphism relations for finite structures are all finite equivalence relations. In partic-
ular, GI is finite.

The following proposition shows that the two notions are indeed orthogonal in
terms of reducibility.

Proposition 5.6 Let E and F be equivalence relations on †�. Suppose E is
finitary and F is finite. Then the following hold.

(a) If E �R F , then E �R id, and in particular, E 2 P.
(b) If F �R E, then F �R id, and in particular, F 2 P.

Proof To prove (a), we only need to verify that every E-equivalence class is
in P. But any strong reduction function f 2 PF witnesses the reduction of any
E-equivalence class to an F -equivalence class, and the latter, being finite, is in P.

For (b), assume that f 2 PF is a strong reduction function from F to E. Let
X D ¹x 2 †� W the E-equivalence class of x is trivialº. Then †� n f �1.X/ con-
sists of only finitely many F -equivalence classes and, therefore, is finite. Define
g.x/ D f .x/ if x 2 f �1.X/, and let g.x/ be the lexicographically least element
of the F -equivalence class of f .x/ if x … f �1.X/. Then g 2 PF and is a strong
reduction function from F to id.

We define a class of finite equivalence relations induced from a single set.

Definition 5.7 For any subset S of †�, we define an equivalence relation DS on
†� by

hx; yi 2 DS ” either x D y or x �
�
jxj � 1

�
D y �

�
jyj � 1

�
2 S .

DS is a finite equivalence relation since † is finite. Note that x 7! xa0 is a strong
reduction function from id to DS . Thus, id �R DS for all S � †�.

Proposition 5.8 Let S � †�. The following are equivalent:



284 Gao and Ziegler

(i) DS 2 P;
(ii) S 2 P;
(iii) DS �R id;
(iv) DS �R id.

Proof The implications (ii))(i),(iii) are obvious, and (iii),(iv) follows from
the above remark. It suffices to show (i))(ii). Then for any x 2 †�, x 2 S if and
only if hxa0; xa1i 2 DS . Thus, if DS 2 P, then S 2 P.

The above proof also gives the following proposition as an immediate corollary,
which we state without proof.

Proposition 5.9 Let S � †�. Then the following hold.
(i) S 2 NP if and only if DS 2 NP.
(ii) If S is NP-hard, then DS is NP-hard as a set.
(iii) If P ¤ NP and S is NP-hard, then id <R DS .

Thus, if P ¤ NP and S is NP-complete, then both RS and DS are NP-equivalence
relations, but they are incomparable in the �R partial order.

6 Open Problems

Results from [3] and this article show that it is possible to prove reducibility and
nonreducibility results about �R without assumptions on the relationship between
complexity classes. The following open problems might lead to such results.

Problem 6.1 Does E �R id for all P-equivalence relations E?

Problem 6.2 Does E �R GI for all finite NP-equivalence relations E?
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