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Abstraction Principles and the Classification of
Second-Order Equivalence Relations

Sean C. Ebels-Duggan

Abstract This article improves two existing theorems of interest to neologicist
philosophers of mathematics. The first is a classification theorem due to Fine
for equivalence relations between concepts definable in a well-behaved second-
order logic. The improved theorem states that if an equivalence relation E is
defined without nonlogical vocabulary, then the bicardinal slice of any equiva-
lence class—those equinumerous elements of the equivalence class with equinu-
merous complements—can have one of only three profiles. The improvements
to Fine’s theorem allow for an analysis of the well-behaved models had by an
abstraction principle, and this in turn leads to an improvement of Walsh and
Ebels-Duggan’s relative categoricity theorem.

1 Introduction

Neologicist philosophers of mathematics are impressed by the fact that some abstrac-
tion principles can interpret interesting fragments of mathematics. These principles
are sentences of an enriched second-order language of the following form: for E an
equivalence relation between second-order objects, and @ a functor taking second-
order objects to first-order objects, the abstraction principle AE Œ@� is the sentence

.8X; Y /
�
@X D @Y $ E.X; Y /

�
: (1)

In virtue of their form, say neologicists, abstraction principles are eligible to be “ana-
lytic truths”—meaning that they are epistemically near enough to logical truths.1
And if abstraction principles count, in some sense, as near enough to logical, then so
should any mathematics they interpret.
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So goes the argument, and not without objections and replies. Much turns on
what would count as a “(near enough to) logical” abstraction principle. But a plau-
sible minimal requirement is this: an abstraction principle’s equivalence relation
must itself be “logical,”2 and so cannot require identification of particular objects,
concepts, or relations for its definition. The thinking is that logic is indifferent to
particulars, whether objects, concepts (monadic second-order objects), or relations
(polyadic second-order objects). So for an abstraction principle to be logical, it is
necessary that its equivalence relation be accordingly indifferent. A natural way to
flesh out this notion of “indifference” is with the notion of permutation invariance:
the status of the relation does not vary, no matter how one exchanges the objects of
its concern.3

Further complicating the neologicist’s hopes is the fact that not all abstraction
principles—even those based on permutation-invariant equivalence relations—
should count as logical: so not only does said neologicist need an account of how an
abstraction principle could be logical, but that account must also sort the good prin-
ciples from the bad. So more needs to be said for what kinds of logical equivalence
relations there are on concepts, and which are apt to yield suitably logical abstraction
principles. It is thus of interest to classify logical equivalence relations on concepts.

This article proves a classification theorem for such equivalence relations. Though
discovered independently, it happens that the classification theorem here presented
is a stronger version of one already on the books. Fine’s theorem in [7, Theorem 4,
p. 142] classifies infinite concepts in standard models. The theorem is then used to
determine the finest abstraction principle satisfiable on all infinite standard models
(see [7, Theorem 6, p. 144]).

But Fine’s theorem in its given form hides its true power; hence our new presen-
tation. In our version the result is put in a deductive setting in which cardinalities
are well behaved. This is relatively minor, but it allows us to apply the theorem to
problems cast in just such deductive settings (about which more in a moment). More
importantly, our version of the theorem sorts equivalence relations, and their abstrac-
tion principles, more usefully. In other words: there are abstraction principles well
discussed in the literature on neologicism, but as Fine states the theorem in [7], one
needs to squint to see how their equivalence relations are classified. The version
here given allows for more clear-eyed recognition of this sorting, and allows for a
generalization of the classification to (Dedekind) finite concepts as well.

It is something of a journey from this restatement and expansion of Fine’s theorem
to its payoff, but the midpoint is a worthy stop. The improved theorem enables an
analysis of when a given abstraction principle has a well-behaved model (not just
a standard model). The existence of such models, as we shall see, is determined
by the classification of the principle’s equivalence relation on a certain subclass of
concepts—the bicardinally equivalent ones. This at least gives the neologicist a tool
for analyzing the space of abstraction principles.

The terminal payoff comes in the form of a more direct result: the restated and
expanded theorem allows an improvement of the relative categoricity theorem given
by Walsh and Ebels-Duggan in [23]. Walsh and Ebels-Duggan showed that abstrac-
tion principles are naturally relatively categorical when and only when their equiv-
alence relation is coarser than that of the neologicist’s favored abstraction principle,
HP. Using the improved version of Fine’s theorem, we show that this result obtains
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even when we remove the qualifier “naturally.” This improvement allows for a plau-
sible case to be made that HP and its ilk pass a minimal threshold for logicality,
since (unqualified) relative categoricity is arguably the correct notion of permutation
invariance for abstraction principles.

The remainder of this article is organized as follows. Sections 2–4 are introduc-
tory, motivating the project and setting in place the formal machinery for the the-
orems. Section 2 explains why Fine’s theorem could use improvement, and gives
an informal characterization of the improved theorem, which we call the Main The-
orem. Section 3 describes the second-order language in which we will work, and
its structures; as well as listing our use of standard abbreviations and giving formal
clarifications of the terms we have loosely defined above and in Section 2. Here also
we describe the cardinality assumptions we adopt with slight modification from [23],
explaining the sense in which our background logic admits only “well-behaved car-
dinalities.” Section 4 explains why restricting our attention to bicardinally equivalent
concepts is apt for our purposes.

With the preliminaries done, Section 5 provides a rigorous statement and proof
of the Main Theorem. The remaining sections discuss the relevance of the Main
Theorem to the neologicist project. Our aim in these sections will not be to argue for
or against a particular version of neologicism, but instead to let the Main Theorem
shed light on some technical questions of interest. Section 6 will address the sorting
of so-called “bad companions” by the Main Theorem; while Section 7 proves and
discusses the extension of the relative categoricity theorem of [23]. For ease of
exposition, we put off some of the more tedious or repetitive proofs to appendices,
and we conclude with these.

2 Why Bother a Sleeping Theorem?

The restatement and expansion of Fine’s theorem is more than just a curious exercise,
for we believe there is a better statement of the theorem than the original. We begin
by giving Fine’s version.

To state Fine’s theorem efficiently, we need a bit of notation which we will use
in the rest of the article. Letting “[,” “\,” and “�” denote the usual Boolean func-
tions on sets of union, intersection, and difference, we will use “X4Y ” to mean
the symmetric difference between X and Y , namely, the set .X � Y / [ .Y � X/.
And we will denote the complement of X in a universe M by M � X . Finally,
we will say that X and Y are bicardinally equivalent to mean that jX j D jY j and
jM�X j D jM�Y j; that is, thatX and Y are equinumerous (in a given structure M)
and that their complements are also equinumerous (also in the given structure). We
will abbreviate bicardinal equivalence by writing “XˇY .” Note that ˇ is (provably)
an equivalence relation in second-order logic.

Now, to Fine’s theorem. Let M be a standard model of second-order logic, let X
and Y be infinite concepts such that X ˇ Y , and let E be a permutation-invariant
equivalence relation. The concepts X and Y are representative just if

M ˆ .8Z;W /
�
Z;W ˇX ^E.X; Y / ! E.Z;W /

�
: (2)

Fine’s Classification Theorem Given a standard model M, infinite concepts X
and Y of M are representative if and only if they meet exactly one of the following
conditions.
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(1) jX4Y j D jX j < jM j. In Fine’s words, X and Y are “small but very
different.”

(2) ! � jM�X j; jM�Y j < jX j D jM j and j.M�X/4.M�Y /j D j.M�X/[

.M � Y /j. In Fine’s words, X and Y “are almost universal but with infinite
very different complements.”

(3) jX j D jM �X j D jM j D jM �Y j D jY j, and jX4Y j D jX4.M �Y /j D

jX j or vice versa. In Fine’s words, X and Y “are bifurcatory with one very
different from the other and from its complement.”

This statement of Fine’s theorem is somewhat dizzying; Fine’s statement is more
succinct since he uses definitions we have spelled out. But the complexity of the
theorem is not by itself a count against it. The reason it can be improved, however,
is that its classes do not obviously organize the variations of equivalence relations
at play in the investigation of abstraction principles. The above statement of Fine’s
theorem also obscures a generalization of the theorem: in fact there is a general
version of Fine’s theorem that applies to finite, as well as infinite, concepts. It is hard
to see how this could be given the classification Fine offers.

Restating Fine’s theorem will make it easier to use, and highlights the connections
between the resultant classification and abstraction principles of particular interest to
neologicists. (Unfortunately, restating and expanding the theorem to the finite case
requires proving it anew. One would hope to rely on Fine’s proof, but in fact once
the work is done for the extension, the initial theorem is all but proved.)

To improve on Fine’s classification theorem, we start by thinking about three types
of abstraction principles and their similarities.

We noted in the Introduction that Frege’s logicist project was to show that arith-
metic is in some sense “really” logic by showing that arithmetic laws are in fact log-
ical laws. Frege executes his program in two steps. He first proves in second-order
logic (without our cardinal assumptions) that BLV,

.8X; Y /."X D "Y $ X D Y /; (3)

implies HP,
.8X; Y /.#X D #Y $ X � Y /: (4)

Here “D” indicates coextensiveness of concepts, and “�” indicates equinumerosity,
the existence of a bijection between concepts. Note that in the notation of (1), BLV
is AD and HP is A�.

Frege then shows that in second-order logic (with full comprehension), HP inter-
prets (what is now called) second-order Peano arithmetic. In fact, relatives of HP
will do the same thing,4 including the bicardinality principle, BP, which is Aˇ. So
if BLV is logical, then so are HP and BP, and thus so is arithmetic.

But BLV is no principle of logic, since it is quite famously inconsistent in second-
order logic, deriving the Russell paradox. Neologicism proceeds against Frege’s
objections in [8, Section 63], asserting arithmetic is logical from the second part of
the program alone—that is, that as HP is plausibly logical, so then is arithmetic.5

At a minimum, abstraction principles must be consistent to count as logical. But
that this minimum is not enough is the “bad company” problem: there are consistent
abstraction principles that are otherwise unacceptable, at least to the neologicist. The
prototypical bad companion is NP:6

.8X; Y /
�
�X D �Y $ jX4Y j < !

�
: (5)
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The principle NP is unwelcome to the neologicist because in contexts of well-behaved
cardinalities, it implies that the universe is Dedekind finite.7

Another bad companion, discussed in [23, Section 5.5], is the complementation
principle CP:

.8X; Y /
�
©X D ©Y $

��
jX j D jY j D jM �X j

^ .X D Y _X D M � Y /
�

_
�
jX j ¤ jM �X j ^ jY j ¤ jM D Y j

���
:

This principle sorts only concepts the same size as their complements. Such concepts
are grouped together with only their complements, and all other concepts are grouped
in a “junk” equivalence class. As we will show below, this principle also counts as
“bad company” (see Section 6.3).

Taking stock, we have so far two good abstraction principles in HP and BP, and
three bad ones (BLV, NP, and CP). Can we sort these into useful classes? We can if,
like Fine, we look at their behavior just on bicardinally equivalent concepts. Clearly,
when restricted to just bicardinally equivalent concepts, the equivalence relations of
HP (equinumerosity) and BP are trivial: they include all such concepts.

Second, BLV and NP are, in a sense, of the same type: the equivalence relations for
both are concerned with the size of the symmetric difference between the two related
concepts. The principle BLV discriminates concepts if their symmetric difference has
nonzero size. Likewise NP discriminates if the symmetric difference is Dedekind
infinite. Say such equivalence relations that sort concepts according to the size of
their symmetric difference are separations: two concepts with “few” objects falling
under one but not both of the two concepts are equivalent; two concepts with “many”
such objects are not equivalent.

Lastly, we have CP. Such an equivalence relation is neither trivial, nor a sepa-
ration, but it has many of the drawbacks of separations. And such an equivalence
relation can be generalized, as NP is a generalization of BLV: two bicardinally equiv-
alent concepts can be grouped together if their symmetric difference is “small,” or
the complement of their symmetric difference is “small.” So let us say that on bicar-
dinally equivalent concepts, such relations are complementations: they sort concepts
by the size of their symmetric difference, or the size of the complements of their
symmetric difference.

Finally, say that an equivalence relation E is a refinement of an equivalence rela-
tion E 0 if whenever two concepts are E-equivalent, they are E 0-equivalent.8

We can now state the informal (though somewhat inexact) version of our Main
Theorem.

(Informal) Main Theorem Let E be a purely logical equivalence relation, and
let our background logic be a strong but natural version of second-order logic. If
we look only at E on bicardinally equivalent concepts, then E is either the trivial
equivalence relation, or it is a refinement of a separation, or it is a refinement of a
complementation.

This version of Fine’s result makes more obvious the relationship between its clas-
sification scheme and the kinds of abstraction principles that have been seen in the
neologicist’s laboratory. In restating the theorem we observe a striking alignment:
the problematic abstraction principles arise from nontrivial equivalence relations.
This is no accident; as we will see in Section 6, abstraction principles involving



82 Sean C. Ebels-Duggan

nontrivial equivalence relations limit the size of their models in just the way that is
typical of bad company.

3 The Language L0, Comprehension, and Cardinality Assumptions

Our background logic is a basic, though robust, version of second-order logic,
adopted with slight weakening from [23, Section 2]. In short, the language L0

uses lowercase letters to vary over first-order objects, and uppercase letters to vary
over second-order objects of all finite arities (arity will be clear from context in our
presentation)—such objects of singular arity are called concepts or sets, others are
called relations. All terms of L0 are variables; we exclude constants of either type.
Formulas of L0 and their interpretation are as usual.

Thus models of this language are of the form

M D
�
M;S1ŒM �; S2ŒM �; : : :

�
; (6)

whereM is nonempty and the members of Si ŒM � are subsets ofM i for i � 1. We do
not require Si ŒM � to be the full power set of M for compatibility of our results with
those of [23]; that is, we work in the nonstandard semantics. Likewise we require
our models to satisfy comprehension axioms for all formulas in their signature; these
axioms are of the form

.9X/.8y/
�
Xy $ ˆ.y; Np; NR/

�
; (7)

where Np is a sequence of parameters fromM , and NR is a sequence of relation param-
eters from

S
i2N Si ŒM �. This ensures that all finite concepts, and many more besides,

are included in S1ŒM �. The remaining axioms of our logic, which we will call
second-order logic, are those of D2 found in Shapiro [18, pp. 65–67], but excluding
the axiom of choice. We will soon be augmenting this logic with choice principles
to ensure well-behaved cardinalities.

Most symbols used are standard; we rehearse a few. The symbol t, which appears
in Proposition 8, means the disjoint union; we will at times abuse notation using it
to mean the union of two disjoint sets. As usual we use “�” to assert the existence
of an injection, and “�” the existence of a bijection. We will also use expressions
like “jX j � jY j” and “jX j D jY j,” and we will use the convention of writing,

for example, X
f
� Y to mean that f is an injection from X into Y ; we proceed

likewise with the other expressions. As above, the expression “ˇ” indicates the

relation of bicardinality; the expression “X
f

ˇ Y ” means that f is a bijection from
M to itself and f .X/ D Y and f .M � X/ D M � Y . Both � and ˇ are provably
equivalence relations in second-order logic; we will say in the obvious circumstances
that concepts are cardinally, or bicardinally, equivalent.

We identify concepts as infinite in M if they are Dedekind infinite, that is, that
there is in M an injection from the concept into a proper subconcept of itself, and
we write this with the expression jX j � !. We say that X is finite in M if it is not
Dedekind infinite, writing it jX j < !. These expressions are used exclusively within
the model M. When we wish to say that a setX is finite or infinite in the metatheory,
we will either say so explicitly, or use “jX j D n for some n 2 N” or “jX j < jNj”.

We will abuse notation and use “M ” for both the first-order domain of M and the
universal concept ¹x j x D xº; and we will use functional notation for relations that
are functional in M. In general, we will write f 2 M to mean that for some i 2 N,
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f is an i -ary function and f 2 SiC1ŒM �; we proceed similarly with concepts and
relations. We write f .X/ to mean the image of X under f ; such a relation is always
in M by comprehension.

Though L0 is expressively rich, it is not too rich, for (crucially for our results) any
function � W M ! M that extends to permute objects of all types in M is an auto-
morphism of M. This can be seen by the fact that, for a given M and � W M ! M 0,
the “push model of M under �” is always isomorphic to M, with � the witnessing
isomorphism.9 If � is also such as to make M the same structure as its “push model,”
then such a � is an automorphism. By comprehension, if � W M ! M is a bijection
in M, then � meets the needed criteria. Thus, we may state the relevant result in the
following form for our use.

Permutation Invariance PI If � W M ! M 2 M is a bijection andˆ.x;X/ is an
L0-formula, then

M ˆ .8x;X/
�
ˆ.x;X/ $ ˆ

�
�.x/; �.X/

��
: (8)

Under the same hypotheses about � , if E.X; Y / is an L0-definable equivalence
relation on concepts of M , then

M ˆ E.X; Y / $ E
�
�.X/; �.Y /

�
: (9)

Here, of course, E being L0-definable means definable without parameters: the for-
mula defining E has only the second-order variables X and Y free. Definability
via an L0-formula is the technical correlate of the informal “purely logical” used
in Section 1. Our main results depend on PI, in the sense that they obtain for any
equivalence relation that is permutation-invariant, not just those L0-definable.

The second way our background logic is robust is that we require that the relation
of equinumerosity behave as it does in more familiar contexts, for example, ZFC. In
particular, we require the following to obtain in all models M under consideration:

Cardinal Comparability CC

M ˆ .8X; Y /.X � Y _ Y � X/: (10)

Infinite Sums are Maxima ISM

M ˆ .8X; Y /.jX j; jY j � ! ! jX t Y j D max
�
jX j; jY j

�
: (11)

Infinite Products are Maxima IPM

M ˆ .8X; Y /.jX j; jY j � ! ! jX � Y j D max
�
jX j; jY j

�
: (12)

Cardinalities are Well Founded CWF For any L0-formula ˆ.X/,

M ˆ .9X/
�
ˆ.X/

�
! .9X/

�
ˆ.X/ ^ .8Y /

�
ˆ.Y / ! X � Y

��
: (13)

We take over these principles nearly directly from [23]; both for their handiness and
as we will apply the Main Theorem to offer a solution to some open questions from
that paper (see Section 7).10 Thus, in what follows and unless otherwise noted, all
structures satisfy full comprehension and these cardinality assumptions.

The principles CC and ISM are ubiquitous in the proof of our first version of the
Main Theorem, Theorem 6. The schematic principle CWF is used in moving from
Theorem 6 to the second formal version of the Main Theorem, Theorem 7. The
principle IPM is deployed mainly in the form of a pairing function in Section 7.
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We will need specific notation suited to dealing with the divergence, in nonstan-
dard semantics, between Dedekind finitude and finitude in the metatheory. As this
notation pertains only to the proof of the formal version of the Main Theorem, we
introduce it in Section 5.

4 Bicardinal Equivalence and Permutation Invariance

Our Main Theorem says that an L0-definable equivalence relation, when restricted
to bicardinally equivalent concepts, can have one of only three profiles. But why is
it interesting to look at this particular restriction of such equivalence relations? This
portion of our article will motivate this restriction.

Our interest in L0-definable equivalence relations is that, provided that second-
order languages are a part of logic, these relations meet at least one criterion of
logicality: they are permutation-invariant. But one interesting fact about second-
order logic is that there are L0-definable properties that can distinguish second-order
objects. To see what this means, consider the formula

Singleton.X/ W .9x/.8y/.Xy $ y D x/ (14)

The formula Singleton.X/ can distinguish between second-order objects in suf-
ficiently rich structures for second-order languages: if a structure includes dis-
tinct first-order objects a and b, then in that structure Singleton.¹aº/ while
:Singleton.¹a; bº/. These second-order objects are thus distinguished by the
formula “Singleton.X/.” Thus, while first-order objects are indistinguishable using
only L0-definable notions, second-order objects are not. It makes sense, then, that
we would want to pay special attention to collections of second-order objects that
are not distinguishable in this way. And we need not look far for concepts that are so
indistinguishable. As can be seen from PI, concepts are bicardinally equivalent if
and only if they cannot be distinguished using an L0-formula. It is thus of interest to
see how purely defined equivalence relations behave on these concepts in particular.

Relatedly, bicardinal equivalence is indicative of permutations. LetE be an equiv-
alence relation on concepts. We will say that E is an indicator of permutations just
if, for any second-order structure M,11 and any function f W M ! M such that if
X 2 M then f .X/ 2 M, if

.8X; Y /
�
E

�
f .X/; f .Y /

�
! E.X; Y /

�
(15)

in that structure, then f is a permutation (it is a bijection from the first-order domain
M to itself), provided 0 < jM � f .M/j < !.

Theorem 1 Bicardinality is an indicator of permutations.

Proof Observe that if f is not injective, then (15) fails: let x; y be such that
f .x/ D f .y/, and note that :.¹x; yºˇ¹f .x/º/ and f .¹x; yº/ D ¹f .x/ºˇ¹ff .x/º.
So it remains only to show that if f is injective and (15) holds in M, then f is sur-
jective.

Further, if jM j is finite in M, then every injection on M is a permutation. So we
may further assume that M is not finite in M.

Working in M, we show first that

if jX j D jM j; then M � f .X/ˇ f
�
M � f .X/

�
: (16)
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That the concepts are equinumerous follows from the fact the f is injective. To see
that their complements are equinumerous, we have that

jM j �
ˇ̌
M � f

�
X � f .X/

�ˇ̌
(17)

D
ˇ̌�
M � f .X/

�
[ ff .X/

ˇ̌
�

ˇ̌
ff .X/

ˇ̌
D jM j; (18)

where the last equality follows again by the injectivity of f . By the Schröder–
Bernstein theorem, jM � f .X � f .X//j D jM j.12 As f .X/ D M � .M � f .X//,
jM � .M � f .X//j D jM j.

Thus by (16), we have
M � f .M/ˇ f

�
M � f .M/

�
: (19)

Since ˇ is preserved under complementation,
f .M/ˇM � f

�
M � f .M/

�
; (20)

which implies that
jM j D

ˇ̌
f .M/

ˇ̌
D

ˇ̌
M � f

�
M � f .M/

�ˇ̌
: (21)

So by (16) together with (20) and (21), we obtain that
f .M/ˇM � f

�
M � f .M/

�
ˇ f

�
M � f

�
M � f .M/

��
: (22)

By assumption we have (15), and soM ˇM � f .M � f .M// from (22). Comple-
mentation then gives that ; ˇ f .M � f .M//, which means that M � f .M/ D ;,
and so f .M/ D M . Thus f is surjective, and so a permutation.

Bicardinally equivalent concepts are thus interesting in their own right. So it makes
sense to observe the behavior of purely defined equivalence relations on just concepts
that are ˇ-equivalent.

For this reason we introduce the following notation. As is customary, given an
equivalence relation E and a concept X we denote the E-equivalence class contain-
ing X by ŒX�E . Looking at how E behaves on the sets ˇ-equivalent to X , we say
that the bicardinal slice of E is the set of equivalence classes of ˇ-equivalent sets.
More formally, we have the following.

Definition 2 Let M be a model, and let E be an equivalence relation on sets of
M. Given a set X in M, we let

E.ˇ/.X; Y / , X ˇ Y ^E.X; Y / (23)
so that

ŒX�E.ˇ/ D ŒX�ˇ \ ŒX�E : (24)
Thinking of E as a collection of concepts, we can then write

E.ˇ/ D
®
ŒX�E.ˇ/ j X 2 M

¯
: (25)

We can then think of E as consisting in bicardinal slices of the form
E.ˇ/X D

®
ŒY �E.ˇ/ j X ˇ Y

¯
(26)

since
E.ˇ/ D

[
X2M

E.ˇ/X : (27)

These notions will be used in stating Theorem 7, the formal version of the Main
Theorem.
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5 The Bicardinal Classification of Equivalence Relations

We are now nearly in a position to state our main results formally. Our theorem will
classify equivalence relations at bicardinal slices. We first must formally state the
classes into which any relation can be sorted.

Theorem 7 is the formal version of the Main Theorem, which we prove in two
stages. The intermediate step is Theorem 6; the remaining step is deploying the
cardinality assumption CWF to obtain the final result.

Proving these theorems is onerous because nonstandard models allow that con-
cepts finite according to M might not be finite in the metatheory. This distinction
is important because the proofs of our main results depend on Lemmas 22 and 24,
which deploy, in the metatheory, finitely many permutations that “move” one con-
cept onto another while preserving equivalence classes. Thus, we will at times wish
to indicate for given sets X and Y that finitely many copies of Y are enough to cover
X . Thus, we write n � jY j � jX j to mean that for some set Z with jZj D n 2 N,
M ˆ jZ � Y j � jX j. Similar expressions will be used in an associated way so that
their meaning is obvious.

However, since finiteness in M is not the same as finiteness in the metatheory, we
cannot count on expected relations of cardinality obtaining. In particular, in M we
have the expected Archimedean property in that

.8X; Y /
�
jX j; jY j < ! ! .9Z/

�
jZj < ! ^ jZ � Y j � jX j

��
(28)

is a theorem of second-order logic. But in a nonstandard model it is not in general
true that for any X; Y 2 S1ŒM � with M ˆ jX j; jY j < !, there is an n 2 N such that
M ˆ n � jY j � jX j. For this reason, we introduce the following definition.

Definition 3 Given X; Y 2 Si ŒM �, we write jX j E jY j to mean that there is an
n 2 N such that

M ˆ n � jY j � jX j: (29)
Further, we write jX j C jY j to mean that jX j E jY j and :.jY j E jX j/. Note

that E and C are relations in the metatheory; they are not, in general, expressible in
L0.

In what follows, all concepts are understood to be concepts in given structures M. In
accordance with the two steps toward our main result, we give two definitions for the
purposes of classification.

Definition 4 Let E be an L0-definable equivalence relation over concepts of a
given structure M. For any concept X , we say that E.ˇ/X

(1) is trivial if ŒX�E.ˇ/ D ŒX�ˇ,
(2) is separative, or refines a separation, if for all Y;Z 2 ŒX�ˇ,

E.Y;Z/ ) jY4Zj C jX j; (30)

(3) is complementative, or refines a complementation, if for all Y;Z 2 ŒX�ˇ,

E.Y;Z/ )
�
jY4Zj C jX j or

ˇ̌
M � .Y4Z/

ˇ̌
C jX j

�
: (31)

Obviously if E.ˇ/X is separative, then it is complementative; therefore we say that
E.ˇ/X is properly separative or refines a separation if it is separative and nontrivial,
and properly complementative or refines a complementation if it is complementative,
nonseparative, and nontrivial.
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Remark 5 If X is properly complementative and Y 2 ŒX�E.ˇ/, then M � Y 2

ŒX�E.ˇ/.
We now state the intermediate and final results as follows.
Theorem 6 Let E be an L0-definable equivalence relation over a given structure
M. Then for any conceptX ,E.ˇ/X is either trivial, separative, or complementative.
If jM j > 2, then exactly one of these options holds. If X is finite in M and E.ˇ/X
is nontrivial, then either

M ˆ E.Y;Z/ , jY4Zj C jX j (32)
or

M ˆ E.Y;Z/ ,
�
jY4Zj C jX j or

ˇ̌
M � .Y4Z/

ˇ̌
C jX j

�
: (33)

Theorem 7 (Formal Main Theorem) Let E be an L0-definable equivalence rela-
tion over a given structure M. Then for any concept X , E.ˇ/X is either trivial,
separative, or complementative. If jM j > 2, then exactly one of these options holds.
Further, if M ˆ jX j < !, then ŒX�E.ˇ/ is either ŒX�ˇ, or ¹Xº, or ¹X;M �Xº.
As we have said above, this is a strong version of Fine’s theorem—as one can see
with the aid of a few pages of Venn diagrams.

5.1 Non-Archimedean arithmetic The proof of Theorems 6 and 7 will require, for
a given X , the use of finitely (in the metatheory) many permutations, each of which
fixes some member of ŒX�E.ˇ/. These permutations will “shuttle” portions of a
given set Z onto its image under a bijection f W Z ! X .

We will deploy the relations E and C in the next section to prove Lemma 22,
which is crucial to proving Theorem 7 in its full generality. For this we will need to
show that certain expected “arithmetic” relations hold. Though tedious to state, we
provide them as follows.
Proposition 8 The following hold for all X; Y;Z;W 2 M:

jX j E jY j or jY j E jX j; (34)
jX j E jY j and jZj � jW j ) jX tZj E jY tW j; (35)�

jZj D jW j and jX tZj C jY tW j ) jX j C jY j
�
; (36)

jX j E jY j E jZj ) jX j E jZj; (37)
jX j E jY tZj )

�
jX j E jY j or jX j E jZj

�
; (38)

jX j D jY tZj ) jX j E jY j or jX j E jZj; (39)
jX j C jY tZj )

�
jX j C jY j or jX j C jZj

�
; (40)

jX j C jX t Y j ) jX j C jY j; (41)
jY tZj E jX j ) jY j E jX j and jZj E jX j; (42)
jY tZj C jX j ) jY j C jX j and jZj C jX j; (43)

jX j C jY j ) jX j C jY tZj; (44)
jX t Y j E jZj and jW j D jY j ) jX tW j E jZj; (45)
jX j E jY tZj and jW j D jY j ) jX j E jW tZj; (46)
jX t Y j C jZj and jW j D jY j ) jX tW j C jZj; (47)
jX j C jY tZj and jW j D jY j ) jX j C jW tZj: (48)
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Their proofs are even more tedious, so we relegate them to Appendix A.13

The following two propositions relate infinity, in both its meta- and intra-theoretic
senses, to the relation C, and are easy to prove using (34) and IPM.

Proposition 9 For all X; Y 2 M,
jX j C jY j , for all n 2 !;M ˆ n � jX j < jY j: (49)

Proposition 10 If M ˆ jX j � !, then
jY j C jX j , M ˆ jY j < jX j:

5.2 Preparatory results Our route to proving Theorem 7 is via Lemma 22, which
is proved in the next section. This lemma specifies sufficient conditions for when
E.ˇ/X is trivial. The main way that we prove Lemma 22 is by exploiting the fol-
lowing consequence of PI.

Proposition 11 Let � 2 M be a permutation of M such that � fixes X . Then for
any Y 2 ŒX�E , �.Y / 2 ŒX�E .

For by PI, Y 2 ŒX�E , �.Y / 2 Œ�.X/�E D ŒX�E , since � fixesX . Intuitively, the
idea is that we can show sets X and Y to be E-equivalent if X is equivalent to some
Z, and there is a permutation fixing X but sending Z to Y .

We introduce the following notation to shorten our exposition.

Definition 12 Let f W X ! Y be a bijection with X and Y disjoint. Then we say
that the permutation induced by f , �.f / W M ! M , is the function defined by

�.f /.x/ D

8̂<̂
:
f .x/ x 2 X;

f �1.x/ x 2 Y;

x otherwise:

Note that if f 2 M, then �.f / 2 M is a well-defined bijection.
Our goal in this subsection is to prove Lemmas 13, 14, 15, and 16, the proofs of

which exploit Proposition 11. Lemmas 13 and 14 are those with the most involved
proofs. In the remainder of this section, where context makes subscripts unnecessary
we will use “ŒX�” to indicate ŒX�E .

Lemma 13 Suppose that there is a Y ¤ X with Y 2 ŒX�, and let Z � Y � X

with M ˆ Z
f
� X � Y . Suppose further that at least one of the following obtains:

jZj E jX \ Y j; (50)
jZj E

ˇ̌
M � .X [ Y /

ˇ̌
: (51)

Then there is a permutation � 2 M such that Œ�X� D ŒX� and Z � �.X �Y / �

�.X/, and
�.x/ ¤ x , x 2 Z [ f .Z/: (52)

Proof The proof is essentially the same whether (50) or (51) obtains. We setW to
be X \ Y if the former obtains, and M � .X [ Y / if not. We reason in M.

As in the proposition, letZ
f
� X�Y , and letZ

g
� n�W . The function g induces

for each j < n a partial function hj W W ! Z defined by hj .w/ D g�1.j; w/. Note
that each hj is injective from its domain to its range, which are disjoint; so �.hj / is
well defined for each j < n.
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We define for each j three permutations, as follows:

pj D �.hj /; (53)
qj D �

�
f � rng.hj /

�
; (54)

rj .x/ D

8̂<̂
:
qj .pj .x// x 2 dom.hj /;

pj .qj .x// x 2 f .rng.hj //;

x otherwise:
(55)

So pj switches rng.hj / and dom.hj //, qj switches rng.hj / and f .rng.hj //, and rj
switches f .rng.hj // and dom.hj /.

Note that pj fixes Y , qj fixes pj .X/, and rj fixes qj .pj .Y //; thus three applica-
tions of Proposition 11 yield that for sj D pj ı qj ı rj ,

sj .X/; sj .Y / 2
�
sj .X/

�
D ŒX�: (56)

Note further that for w 2 dom.hj /,

sj .w/ D rj
�
qj

�
pj .w/

��
D qj

�
pj

�
qj

�
pj .w/

���
D pj

�
pj .w/

�
D w; (57)

where the third equality is due to the fact that qj � dom.hj / is the identity func-
tion. It follows from this and the construction of pj , qj , and rj that if sj .x/ ¤ x,
then x 2 rng.hj / [ f .rng.hj //. Conversely, if x 2 rng.hj / � Y � X , then
sj .x/ 2 X � Y , and if x 2 f .rng.hj // � X � Y , then sj .x/ 2 Y � X . Thus
if x 2 rng.hj / [ f .rng.hj //, then sj .x/ ¤ x. So we have established

sj .x/ ¤ x , x 2 rng.hj / [ f
�
rng.hj /

�
: (58)

Set � D s0 ı � � � ı sn�1, and note that Z D
S

j <n rng.hj /. So we have

�.X � Y / D s0 ı � � � ı sn�1.X � Y / (59)
D s0 ı � � � ı sn�1

��
.X � Y / � f .Z/

�
[ f .Z/

�
(60)

D
�
.X � Y / � f .Z/

�
[ s0 ı � � � ı sn�1

�
f .Z/

�
(61)

D
�
.X � Y / � f .Z/

�
[ s0 ı � � � ı sn�1

�
f

�[
j <n

rng.hj /
��

(62)

D
�
.X � Y / � f .Z/

�
[

[
j <n

sj
�
f

�
rng.hj /

��
(63)

D
�
.X � Y / � f .Z/

�
[

[
j <n

rj
�
qj

�
pj

�
f

�
rng.hj /

����
(64)

D
�
.X � Y / � f .Z/

�
[

[
j <n

rj
�
qj

�
f

�
rng.hj /

���
/ (65)

D
�
.X � Y / � f .Z/

�
[

[
j <n

rj
�
f �1

�
f

�
rng.hj /

���
/ (66)

D
�
.X � Y / � f .Z/

�
[

[
j <n

rj
�
rng.hj /

�
(67)

D
�
.X � Y / � f .Z/

�
[

[
j <n

rng.hj / (68)

D
�
.X � Y / � f .Z/

�
[Z: (69)
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Here (61) follows by (58), as does (63). Equations (65), (66), and (67) follow, respec-
tively, from (53), (54), and (55).

Thus Z � �.X � Y / � �.X/ 2 ŒX� by (56); moreover, (58) implies (52).

Lemma 14 Suppose that there is a Y ¤ X with Y 2 ŒX�, and letZ � M�.X[Y /

with Z
f
� X \ Y . Suppose further that one of the following obtains:

jZj E jX � Y j; (70)
jZj E jY �X j: (71)

Then there is a permutation � 2 M such that Œ�X� D ŒX�, Z � �.X \ Y /, and
satisfying (52).

As the idea for the proof of Lemma 14 is essentially the same as that of Lemma 13,
we omit it. Now for two easy lemmas.

Lemma 15 Suppose that Z � M � .X [ Y /, Z
f
� X � Y with Y 2 ŒX� and

Y ¤ X . Then there is a permutation � 2 M such that Œ�X� D ŒX�, Z � �.X �Y /,
and satisfying (52).

Lemma 16 Suppose that Z � X � Y , Z
f
� X \ Y with Y 2 ŒX� and Y ¤ X .

Then there is a permutation � 2 M such that Œ�X� D ŒX�, Z � �.X \ Y /, and
satisfying (52).

Proof of Lemmas 15 and 16 For Proposition 15, note that � D �.f � Z/ fixes Y ,
so ŒX� D Œ�.X/� by Proposition 11. The rest is obvious and routine.

For Lemma 16, proceed similarly but set � D �.f � Z/.

5.3 Almost complementarity and symmetry The results of the previous section
showed what functions are needed in order to, speaking loosely, “transform one set
into another,” while staying in the same equivalence class. In this section we define
properties that determine sufficient conditions for the application of those results. In
particular, we establish Lemma 22, which says that as long as these properties obtain
for a set of a given cardinality, then all sets of that cardinality are E-equivalent.

We begin, then, by defining these properties.

Definition 17 We say that setsX; Y are almost complementary in M if jX j D jY j

and none of the following is satisfied in M:

jY �X j E jX \ Y j; (72)
jX � Y j E jX \ Y j; (73)
jX � Y j E

ˇ̌
M � .X [ Y /

ˇ̌
; (74)

jY �X j E
ˇ̌
M � .X [ Y /

ˇ̌
: (75)

Similarly, we say thatX; Y are symmetric in M if jX j D jY j and for someZ 2 M

distinct from X and Y , jZj D jX j and neither of the following is satisfied for M:ˇ̌
Z � .X [ Y /

ˇ̌
E jX � Y j; (76)ˇ̌

Z � .X [ Y /
ˇ̌

E jY �X j: (77)
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In many cases, we will establish that either (76) or (77) holds in M by establishing
that one of the following holds for M:ˇ̌

M � .X [ Y /
ˇ̌

E jX � Y j; (78)ˇ̌
M � .X [ Y /

ˇ̌
E jY �X j: (79)

This is licensed by (37).
The following two propositions follow by (47) and (48) and CC.

Proposition 18 Suppose that � W M ! M is a permutation. Then
(1) X; Y are almost complementary if and only if �.X/; �.Y / are almost com-

plementary;
(2) X; Y are symmetric if and only if �.X/; �.Y / are symmetric.

Proposition 19 Distinct sets X and Y cannot be both almost complementary and
symmetric.

Definition 20 In what follows, distinct, E-equivalent sets that satisfy one of
(72)–(75) and one of (76)–(77) will play a special role. Thus we say that sets X; Y
are opportune if they are distinct, Y 2 ŒX�, and they are neither almost complemen-
tary nor symmetric. We moreover will say that a single set X is opportune if there is
a Y such that the pair X; Y is opportune.

Definition 21 Two sets X; Y are relatively finite in M just if jX � Y j D jY �X j

in M. (Note that if X; Y are relatively finite, then X ˇ Y .) We set RF.X/ to be the
set of sets Y that are relatively finite in M to X .

Lemma 22 If X; Y are opportune, then RF.X/ � ŒX�E.ˇ/. That is, every set
relatively finite to X in M is E-equivalent to X .

Proof Let Z 2 RF.X/ with Z
f
� X in M; we may assume that f fixes Z \ X

pointwise. We show that there is a permutation � of M such that �.X/ D Z and
Œ�.X/� D ŒX�.

First we partition Z:
Z1 D f �1.X � Y / \ Y �X; Z2 D f �1.X � Y / � Y;

Z3 D f �1.X \ Y / \ Y �X; Z4 D f �1.X \ Y / � Y;

Z5 D f �1.X/ \X D X \Z;

where the equality in Z5 is due to the choice of f . It is easy to see that these sets are
pairwise disjoint and that their union is Z.

Note that Z1

f �Z1

� X �Y . Since X and Y are not almost complementary, at least
one of these holds:

jZ1j E jX \ Y j; jZ1j E
ˇ̌
M � .X [ Y /

ˇ̌
: (80)

Either way, Lemma 13 provides a permutation �1 2 M such that Œ�1X� D ŒX� and
Z1 � �1.X � Y / � �1.X/ and satisfying (52). Note that by (52), Z5 � �1.X/, so

Z1 [Z5 � �.X/: (81)
Set X1 D �1.X/; Y1 D �1.Y /.

Then since Z2 � M � .X1 [ Y1/ (by (52)), and since (by (52) again)

Z2

f �Z2

� X1 � Y1, by Proposition 15 there is a permutation �2 2 M with
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Z2 � �2.X1 � Y1/ � �2.X1/ 2 ŒX� and satisfying (52). By (81) and (52),
we have that

Z1 [Z2 [Z5 � �2.X1/ 2 ŒX�: (82)

Set X2 D �2.X1/; Y2 D �2.Y1/. Since Z3 � Y2 �X2 and Z3

f �Z3

� X2 \Y2 (by
(52) twice), there is by Lemma 16 a permutation �3 2 M satisfying (52) and with
Z � �3.X2 � Y2/ � �3.X2/ 2 ŒX�. By (82) and (52), we have that

Z1 [Z2 [Z3 [Z5 � �3.X2/: (83)

Finally, set X3 D �3.X2/; Y3 D �3.Y2/. Note that Z4 � M � .X3 [ Y3/ and

that Z4

f �Z4

� X3 \ Y3 (by (52) twice). Observe now that since �1, �2, and �3 2 M

are permutations and since X; Y are not symmetric, X3; Y3 are not symmetric by
Proposition 18. Thus we have that at least one of

jZ4j E jX3 � Y3j; jZ4j E jY3 �X3j (84)

obtains. So by Lemma 14, there is a permutation �4 2 M such that

Z4 � �4.X3 \ Y3/ � �4.X3/ 2 ŒX�: (85)

By (83) and again (52), we have that

Z D Z1 [Z2 [Z3 [Z4 [Z5 D �4.X3/ D �4

�
�3

�
�2

�
�1.X/

���
D �.X/ (86)

for � D �1 ı �2 ı �3 ı �4, which was to be established.

Dealing with opportune sets via Lemma 22 will enable us to deal with cases in which
X is finite, both within and outside of M. We use a special class of opportune sets
to deal with X infinite in M.

Definition 23 We will say that X; Y are ideally opportune if they are opportune
and either jX j E jM � X j or jY j E jM � Y j. We will also say that the single
concept X is ideally opportune if there is a Y such that X; Y are opportune and
jX j E jM �X j.

We now turn to proving another lemma that will address the more general case, in
which X is not finite in the metatheory (though it may be finite in M). We begin
with another preparatory lemma.

Lemma 24 Suppose that X is ideally opportune, and X ˇZ. Then Z 2 ŒX�.

Proof Note that if jX j < !, then X and Z are relatively finite, so Z 2 ŒX�E.ˇ/

by Lemma 22. So we assume that jX j � !.
Thus by Proposition 10, and since X is ideally opportune, we may assume that

jZj D jX j � jM �X j D jM �Zj.
Now if jX j D jM �X j, then

jM �Zj � jZj D jX j D jM �X j D jM j:

If jZ �X j < jX �Zj, then as M �X D .M � .X [Z// [ .Z �X/, by ISM, we
obtain

jX j �
ˇ̌
M � .X [Z/

ˇ̌
: (87)

We proceed similarly for jX �Zj < jZ �X j.
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On the other hand, if jX j < jM �X j, then as jX j D jZj, jX [Zj < jM �X j by
ISM. Then by ISM again, we have thatˇ̌

M � .X [Z/
ˇ̌

D jM j � jM �X j > jX j;

which again yields (87).
Given (87) with f a witnessing injection, observe that f .X/ and X are disjoint

and so relatively finite. By Lemma 22, since X is one of a pair of opportune sets,
f .X/ 2 ŒX�E.ˇ/. But then f .X/;X are opportune as well. Moreover, as Z; f .X/
are disjoint and equinumerous, they also are relatively finite. So by Lemma 22,
Z 2 Œf .X/�E.ˇ/ D ŒX�E.ˇ/.

5.4 The intermediate Theorem 6 We are now nearly ready to prove Theorem 6. We
first deal with degenerate cases, namely those in E.ˇ/X that may be trivial and
also separative. The following propositions follow from IPM and (40) and (44) of
Proposition 8.

Proposition 25 If

M ˆ jM j � 1 _ jX j D 0 _ jX j D jM j < !; (88)

then E.ˇ/X is both a separation and trivial.
Further, if jM j D 2 and jX j D 1, then E.ˇ/X is either both trivial and a

complementation, or it is a separation.

Proposition 26 If Y;Z 2 ŒX�ˇ are symmetric, then jY4Zj C jX j.

Proposition 27 If Y;Z 2 ŒX�ˇ are almost complementary, then jY \ Zj; jM �

.Y [Z/j C jX j.

Proposition 28 If M ˆ ! � jX j � jM � X j and E.ˇ/X is either separative or
complementative, then it is not trivial.

The crucial move in proving Theorem 6 is in the following lemma.

Lemma 29 Suppose that M ˆ jM j > 2 ^ 1 < jX j � jM � X j and that E is
an L0-definable equivalence relation over M. Then E.ˇ/X is exactly one of trivial,
properly separative, or properly complementative.

Proof We first establish the lemma for the case where jX j < ! in M. Obviously
no more than one can obtain; we show that at least one must. Since all equinumerous
sets finite in M are relatively finite in M, by Lemma 22, if there are opportune sets
in ŒX�E.ˇ/, then

ŒX�ˇ D ŒX�ˇ \RF.X/ � ŒX�E.ˇ/

and so E.ˇ/X is trivial. So we may assume that there are no opportune sets
Y;Z 2 ŒX�E.ˇ/, and thus that for any Y;Z 2 ŒX�E.ˇ/, either Y;Z are symmetric,
or Y;Z are almost complementary by Lemma 22.

Suppose now that all pairs of sets in ŒX�E.ˇ/ are symmetric. By Proposition 26,
all such pairs satisfy (30). Now by Proposition 18, this holds for every concept
bicardinally equivalent to X ; thus E.ˇ/X is properly separative.

On the other hand, if there are Y;Z 2 ŒX�E.ˇ/ that are not symmetric, then
these are almost complementary. By Proposition 27, the nonsymmetric concepts in
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ŒX�E.ˇ/ satisfy (31). Clearly then (30) fails of them, so E.ˇ/X is not separative.
By Proposition 26, all the symmetric concepts satisfy (30), and so (31). Proposi-
tion 18 ensures then that E.ˇ/X is complementative, and since (as just shown) not
separative, it is properly complementative. So the result holds for all jX j finite in M.

The case in which X is infinite in M is similar. By Proposition 28, at most one of
the options can hold; we show that at least one must. By Lemma 24, ifE.ˇ/X is non-
trivial, then there are no ideally opportune concepts in ŒX�E.ˇ/. Since by assump-
tion jX j � jM � X j, it follows that there are no opportune concepts in ŒX�E.ˇ/.
The above argument establishes again that E.ˇ/X is either properly separative or
properly complementative.

Corollary 30 Suppose that M ˆ jM j > 2 ^ 1 < jM � X j < jX j and that E is
an L0-definable equivalence relation over M. Then E.ˇ/X is exactly one of trivial,
properly separative, or properly complementative.

Proof It is easy to see that if E is an equivalence relation, then so is the
L0-definable

Ec.X; Y / , E.M �X;M � Y /:

Thus, by Lemma 29, Ec.ˇ/M �X is exactly one of trivial, properly separative, or
properly complementative. But by the definition of Ec , Ec.ˇ/M�X has the same
profile as E.ˇ/X .

Lemma 29 and Corollary 30 suffice to prove the first part of Theorem 6. The remain-
der follows from the following lemma.

Lemma 31 Suppose that M ˆ jX j < ! and that there is a W ¤ X with
W 2 ŒX�E.ˇ/, and E.ˇ/X nontrivial. Then for any Y;Z 2 ŒX�ˇ, either (32) or
(33) holds.

Proof By the first part of Theorem 6, E.ˇ/X is either properly separative or prop-
erly complementative. By Lemma 22, we know that thoughX;W are relatively finite
(since they are finite), they are not opportune, soX;W are either symmetric or almost
complementary.

We will first show that if X;W are symmetric, then for any Z 2 ŒX�ˇ,

jX4Zj C jX j ) M ˆ E.X;Z/: (89)

Assume that X;W are symmetric, so for some H with jX j D jW j D jH j,ˇ̌
H � .X [W /

ˇ̌
B jX �W j; jW �X j: (90)

Assuming
jX4Zj C jX j; (91)

we have that jX j D jH j B jX �W j; jW �X j; it then follows from (41) of Proposi-
tion 8 that

jX \W j B jX �W j; jW �X j: (92)
So by (38) of Proposition 8, we have

jZ �X j � jX4Zj C jX \W j: (93)

Thus by Lemma 13, Z � X � �.X/ with �.X \ Z/ D X \ Z and E.�.X/;X/.
Thus Z 2 ŒX�E , and this establishes (32).



Classification of Second-Order Equivalence Relations 95

Now we will show that if X;W are almost complementary, then for any
Z 2 ŒX�ˇ,�

jX4Zj C jX j or jX \Zj;
ˇ̌
M � .X [Z/

ˇ̌
C jX j

�
) M ˆ E.X;Z/: (94)

So assume that X;W are almost complementary.
If (91) obtains, then we haveˇ̌

.Z �X/ \W
ˇ̌

� jZ �X j � jZ4X j C jX \Zj (95)

by (41) of Proposition 8, and so Z 2 ŒX�E by Lemma 13.
On the other hand, suppose that

jX \Zj C jX j; (96)ˇ̌
M � .X [Z/

ˇ̌
C jX j: (97)

By (96) and (41), jX \Zj C jX �Zj. But then by (97) and (41) again,ˇ̌
.W �Z/ \X

ˇ̌
� jX \Zj C jW \Zj and (98)ˇ̌

W � .X [Z/
ˇ̌

�
ˇ̌
M � .X [Z/

ˇ̌
C jW \Zj; so (99)

jW �Zj C jW \Zj (100)

by (40). As similar argument shows that

jZ �W j C jW \Zj (101)

and thus that jW4Zj C jW j by (38). From here we can use the argument from
earlier in this proof establishing (32), and the fact that ŒW �E D ŒX�E , and we have
that Z 2 ŒX�E .

From Theorem 6 we obtain the following corollary, which we will use in proving
Theorem 7.

Corollary 32 IfX is finite in the metatheory, then ŒX�E.ˇ/ is either ŒX�ˇ, or ¹Xº,
or ¹X;M �Xº.

Proof If X is finite in the metatheory, then jX4Y j C jX j if and only if
jX4Y j D 0. This is likewise the case for jX \ Y j; jM � .X [ Y /j C jX j.

5.5 The classification Theorem 7 To prove Theorem 7, we need to use CWF to
address some complications lingering due to our use of nonstandard semantics. We
show that under CWF all proper separations and proper complementations on finite
concepts are the finest possible, even if “finite” only means “finite in M.” Theorem 7
follows from the theorem proved in this section.

Definition 33 Suppose that E is properly separative on ŒX�ˇ. Then J 2 M is
called a measure of E on ŒX�ˇ just if for all Y;Z 2 ŒX�ˇ,

E.Y;Z/ , jY4Zj C jJ j:

Suppose that E is properly complementative on ŒX�ˇ. Then J 2 M is called a
measure of E on ŒX�ˇ just if for all Y;Z 2 ŒX�ˇ,

E.Y;Z/ , jY4Zj C jJ j or
ˇ̌
M � .Y4Z/

ˇ̌
C jJ j:

Theorem 34 Let M ˆ jX j < !. If E is nontrivial at ŒX�ˇ, then its measure is ;.
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Proof IfE is nontrivial on ŒX�ˇ, then by Theorem 6 it is either a proper separation
or a proper complementation. Suppose that J is a nonzero measure of E on ŒX�ˇ.

Let L.�/ abbreviate the formula�
8U; V 2 ŒX�ˇ

�
.E.U; V / !

�
jU4V j < j�j _

ˇ̌
M � .U4V /

ˇ̌
< j�j

�
:

Clearly L.J /, so by CWF, there is a smallest J 0 such that L.J 0/. If J 0 ¤ ;, then
observe by Corollary 32 that jJ 0j ¤ n for any natural number n—that is, J is not
finite in the metatheory. Thus, letting j 2 J 0 we have that :L.J 0 � ¹j º/, and so
there are U; V 2 ŒX�E.ˇ/ such that

E.U; V / but jU4V j –
ˇ̌
J 0

� ¹j º
ˇ̌
: (102)

(If the witnessing U; V to :L.J 0/ satisfy the second disjunct of the consequent,
just choose U;M � V so that they satisfy (102).) As L.J 0/, we have that
jU4V j D jJ 0 � ¹j ºj.

By assumption E.ˇ/X is nontrivial, so regardless of whether it is a complemen-
tation or a separation, there is a Z with

U ¤ V; jU4V j C jJ j;
ˇ̌
Z � .U [ V /

ˇ̌
B jJ j: (103)

As jX j � jJ j, jU j D jV j D jX j, and jU4V j C jJ j, we have that jU \ V j D jX j

by Proposition 8. Thus, with (103) we have that

jU \ V j;
ˇ̌
Z � .U [ V /

ˇ̌
> 2: (104)

Thus, let a 2 U \ V and b; c 2 Z � .U [ V /, and set

U 0
D

�
U � ¹aº

�
[ ¹bº; V 0

D
�
V � ¹aº

�
[ ¹cº: (105)

Note now that as
jU4U 0

j D jV4V 0
j D 2 C jJ j; (106)

we have E.U;U 0/; E.V; V 0/, and so E.U 0; V 0/. Thus, since L.J /, jU 04V 0j < jJ j,
but it is easy to see that the construction of U 0 and V 0 ensure that jU 04V 0j D

jJ [ ¹aºj > jJ j.

Theorem 34 proves Theorem 7 forX finite in M. For the rest, one need only consider
X such that M ˆ jX j � !. By Proposition 10, if E.ˇ/X is separative, then

M ˆ .9X 0
� X/

�
8Y;Z 2 ŒX�ˇ

��
E.Y;Z/ ! jY4Zj < jX 0

j
�

(107)

and likewise if E.ˇ/X is complementative. This completes the proof of Theorem 7.

6 The Classification of “Bad Companions”

The “bad company problem” faced by neologicists is the two-part challenge of find-
ing a plausible criterion for the “logicality” of abstraction principles, and showing
that the good abstraction principles like HP are logical in this sense, while the bad
ones like BLV, NP, and CP are not. It is thus relevant to note how Theorem 7 and
its apparatus bear on the joint consistency of abstraction principles, since at the very
least any abstraction principles qualifying as “logical” should be jointly consistent.

Consistency results in the absence of well-behaved cardinalities are difficult to
obtain. As such our discussion will be directed toward the neologicist who thinks
“logical” abstraction principles must be jointly consistent in the presence of well-
behaved cardinalities. We will thus use “jointly consistent” as if it implicitly has the
qualification on the behavior of cardinalities.
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Such a neologicist is committed to thinking that joint consistency with HP is a
necessary condition for the logicality of abstraction principles. In the remainder of
this section we apply Theorem 7 and its apparatus to discern which abstraction prin-
ciples are consistent with a Dedekind infinite universe. These obviously determine
which abstraction principles are consistent with HP, and thus which must be ruled
out from being “logical.”

One reason why the bad company problem can appear vexing is that any “logical”
equivalence relation can give rise to an abstraction principle. Facing an untamed
menagerie of such equivalence relations, the neologicist would face an equally wild
zoo of abstraction principles. The import of Theorem 7 is in taming the menagerie—
or better, classifying the species. At each bicardinal slice of M, there are only three
“classes” of equivalence relations on that slice. This enables us to see clearly why
certain abstraction principles have the types of models they do: at certain (finite or
infinite!) bicardinal classes, nontrivial equivalence relations distinguish more equiv-
alence classes than there are objects.

We have said that BLV, NP, and CP all count as bad companions. We thus have
so far two bad companions deploying refinements of separations, and one deploying
a refinement of a complementation. Of the former, BLV involves the finer (in fact
finest) separation; as we will see in contexts with IPM it is in a sense the paradigm
case of a separative abstraction principle. We will also discuss the paradigm case of a
complementative abstraction principle; it is not CP but a close relative, the Liberated
Complementation Principle (LCP):

.8X; Y /.`X D `Y $ X D Y _X D M � Y /:

Remark 35 The equivalence relation for BLV is the finest equivalence relation
that refines a separation for every X 2 M (it is also the finest equivalence relation,
full stop; see [1]). The equivalence relation for NP refines a separation at all bicardi-
nal slices of M for Dedekind infinite sets. Finally, the equivalence relation for LCP
refines a complementation at X 2 M if jX j D jM � X j, and in fact it is the finest
equivalence relation refining a complementation at bicardinal slices for such X .

6.1 Translation and restricted abstraction principles In the remainder of this section
we will need the following definitions.

Definition 36 For M ˆ jX j; ! � jM j D jM � X j, we will write Y � ŒX�ˇ as
shorthand for jY j < jX j _ Y 2 ŒX�ˇ.

Let E be an equivalence relation. Let '.Y;Z/ be a formula. We say that ' is
functional below X in M if

M ˆ jX j � jM �X j ^ .8Y /
�
Y � ŒX�ˇ ! .9ŠZ/'.Y;Z/

�
: (108)

We say that ' is functional at X if
M ˆ .8Y /.Y 2 ŒX�ˇ ! .9ŠZ/'.Y;Z/: (109)

Often in the presence of such a ' we will use functional notation, using F'.Y / for
the unique object Z such that '.Y;Z/, dropping the subscript where it is unneeded
for understanding.

If AE Œ@� is an abstraction principle, and ' a formula functional below X in M,
then we say that � translates AE 0.� X/ via ' in M to mean that

M ˆ .8Y;Z/
�
Y;Z � ŒX�ˇ !

�
@
�
F'.Y /

�
D

�
@
�
F'.Z/

�
$ E 0.Y;Z/

��
: (110)
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If ' is functional at X , then we say that AE Œ@� translates AE 0.D X/ via ' in M to
mean that

M ˆ .8Y;Z/
�
Y;Z 2 ŒX�ˇ !

�
@
�
F'.Y /

�
D @

�
F'.Z/

�
$ E 0.Y;Z/

��
: (111)

Finally, we may say that AE Œ@� translates AE 0 in M via ' just if
M ˆ .8Y;Z/

�
@
�
F'.Y /

�
D @

�
F'.Z/

�
$ E 0.Y;Z/

�
: (112)

These definitions afford us the capacity to talk of the restricted abstraction prin-
ciples AE Œ@�.� X/ and AE Œ@�.D X/ in the sense that M satisfies one of these just
if “.8x/.x D x/” translates that principle in M via “Y D Z.”

In what follows of this section we show that if 2 < jX j D jM � X j and E.ˇ/X
is nontrivial, then (in the presence of IPM) AE is inconsistent. The engine of these
results will be the following two propositions.

Proposition 37 Let $ be an L0-sentence. Suppose that for all M ˆ AE Œ@�,
AE Œ@�^$ translatesAE 0.D M/ in M via ', and thatAE 0.D M/ and$ are jointly
inconsistent (in our background logic). Then AE and $ are jointly inconsistent (in
our background logic) as well.

Proof If AE ^$ is consistent, then by the completeness of second-order logic for
the nonstandard semantics, there is a structure M D .M; S1ŒM �; : : : ; @/ ˆ AE ^$ .
As '.Y;Z/ is functional at M , define @0Y D @.F'.Y //; @0 is then a function in
M from concepts to objects. We now augment M to M0 D .M; S1ŒM �; : : : ; @; @0/,
and note that since AE translates AE 0.D M/, M0 ˆ AE 0 Œ@0�.D M/. Since $
is an L0-sentence (with parameters from M), M0 ˆ $ . A routine induction on
the complexity of formulas shows that M0 satisfies the comprehension axioms in
the expanded language L0Œ@

0�. Thus if AE Œ@� ^ $ has a model, then so does
AE 0 Œ@0�.D M/ ^$ .

For the next proposition, observe that if M ˆ jM j � !, then IPM ensures that there
is a bijection h�; �i W M �M ! M . We will use this notation in what follows, as well
as writing hX; Y i to mean ¹hx; yi j x 2 X; y 2 Y º.14 We also obtain the following.

Proposition 38 For jM j � !, let h�; �i W M � M ! M be a bijection whose
existence is assured by IPM. For X; Y , if either

jY j D 1 � jX j � jM �X j (113)
or

jY j; ! � jX j � jM �X j; (114)
then hY;Xi 2 ŒX�ˇ.

Lemma 39 Let M ˆ jX j � !. If M ˆ jX j � jM � X j and E.ˇ/X refines a
separation, then AE translates BLV.� X/ via

%.Y;Z/ WD Z D hY;Xi: (115)
Under the same conditions, ifE.ˇ/X refines a complementation (and does not refine
a separation), then AE translates LCP via
'.Y; U / WD .9V /

���
@; 2 Y ^ V D hY;Xi

�
_

�
@; 2 M � Y ^ V D hM � Y;Xi

��
^

��
V ¤ hM;Xi ^ V D U

�
_

�
V D hM;Xi ^ U D ;

���
: (116)



Classification of Second-Order Equivalence Relations 99

Proof For both assertions, note that by hypothesis, M ˆ jM j � jX j � !, so by
IPM the bijection h�; �i exists. Note that since E.ˇ/X is nontrivial, @; ¤ @Y for
any Y 2 ŒX�ˇ, since otherwise by PI E.ˇ/X would be trivial, as E.;; X/ holds
wheneverE.;; f .X// holds for jX j D jf .X/j and jM�X j D jf .M�X/j. Further,
if this Y ¤ ;, then hY;Xi 2 ŒX�ˇ by Proposition 38 (under the conditions of the
second assertion this follows since jX j D jM �X j D jM j.)

We prove the first assertion in brief. It is easy to verify that % is functional (and
so is functional below X ). Let jY j; jZj � jX j.

For distinct Y;Z ¤ ;, jhY;Xi4hZ;Xij D jX j by IPM, so if Y ¤ Z, then since
E.ˇ/X is a separation, :E.hY;Xi; hZ;Xi/, and so by AE , @hY;Xi ¤ @hZ;Xi.
Conversely, if Y D Z, then hY;Xi D hZ;Xi. Since E is an equivalence relation, it
follows that E.hY;Xi; hZ;Xi/, and so, by AE , that @hY;Xi D @hZ;Xi.

For the second assertion, it is easy to verify that ' is functional (and so is func-
tional below X ). Toward verifying the consequent of (110) and working in M, we
need only show that

@U'.Y / D @U'.Z/ $ Y D Z _ Y D M �Z (117)

for all concepts Y;Z 2 M.
By the definition of U' , U'.;/ D U'.M/ D ;. So clearly if X and Y are chosen

from ;;M , then (117) obtains.
Now, if Y D ;, then U'.Y / D ;, and if Y D M , then U'.Y / D ;.

On the other hand, if Y ¤ ;;M , then U'.Y / 2 ŒX�ˇ. Thus by AE Œ@�,
@.U'.Y // ¤ @.U'.;// D @.U'.M//. Thus

; ¤ Z ! @.U';/ ¤ @.U'Z/; (118)
M ¤ Z ! @.U'M/ ¤ @.U'Z/: (119)

Now, if Y;Z ¤ ;;M , then we have

Y ¤ Z !
ˇ̌
U'.Y /4U'.Z/

ˇ̌
D jX j; (120)

Y ¤ M �Z !
ˇ̌
M �

�
U'.Y /4U'.Z/

�ˇ̌
D jX j: (121)

So, since E.ˇ/X refines a complementation, we have that

@
�
U'.Y /

�
D @

�
U'.Z/

�
! Y D Z _ Y D M �Z (122)

by AE Œ@�.
Clearly by the construction of U' ,

Y D Z ! E
�
U'.Y /; U'.Z/

�
; (123)

Z ¤ ; ¤ Y D M �Z ! E
�
U'.Y /; U'.Z/

�
: (124)

So we have, again by AE Œ@� and the E.ˇ/X refining a complementation,

Y D Z _ Y D M �Z ! @
�
U'.Y /

�
D @

�
U'.Z/

�
; (125)

which completes the proof of the translation of LCP.

We know now some of which abstraction principles translate restrictions of BLV and
LCP. We now show when, in the presence of IPM, these restrictions are inconsistent
for each such principle. Each of the following two subsections will conclude by
applying Lemma 39; the final subsection applies Theorem 7 to unify those results.
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6.2 Refinements of separations and BLV.D X/ The utility of Lemma 39 is in relat-
ing equivalence relations that are nontrivial on bicardinal slices to what might be
called their prime examples. In this section we treat BLV and its restrictions as the
prime examples of separations, and show that in infinite structures, refinements of
separations translate certain restrictions of BLV. The next section proves analogous
results for LCP and its restrictions.

From the lemma, we obtain very quickly the following.

Corollary 40 Suppose that M ˆ jX j D jM�X j D jM j. Then M 6ˆ BLV.D X/.

Proof Given X as in the hypothesis, if M ˆ BLV.D X/, then E.ˇ/X is a sepa-
ration, and so refines a separation. Thus BLV.D X/ translates both BLVŒ"1�.� X/

and BLVŒ"2�.� M �X/. With M
f
� X and M

g
� M �X , set

"Y D

´
f ."1Y / jY j � X;

g."2Y / jM � Y j < jM �X j:

Clearly then BLV.D X/ and jX j D jM � X j D jM j translate BLV, which is incon-
sistent. Thus BLV and jX j D jM � X j D jM j are jointly inconsistent, and by
Proposition 37, BLV.D X/ and jX j D jM � X j D jM j are jointly inconsistent,
which was to be demonstrated.

The situation is no better for BLV.D X/ if M is finite (in M).

Lemma 41 Suppose that M ˆ 0 < jX j < jM j < !. Then M 6ˆ BLV.D X/.

Proof Let X be given, and since jM j > 1, we establish the following abbrevia-
tions: for x 2 X and a … X ,

Xx D X � ¹xº; (126)
aCXx D Xx [ ¹aº: (127)

Note that for all x 2 X and a … X , ja C Xxj 2 ŒX�ˇ but a C Xx ¤ X . Thus if
M ˆ BLV.D X/, then "X ¤ ".a C Xx/. Moreover, for distinct x; y 2 X , a C Xx

and aCXy are distinct (thus so are their abstracts), and for distinct a; b … X , aCXx

and b CXx are distinct (thus so are their abstracts).
Now j¹a C Xx j x 2 Xºj D jX j for each a … X , and j¹a C Xx j a … Xºj D

jM �X j for each x 2 X . Furthermore, for fixed x0 2 X; a0 … X ,
¹a0 CXx j x 2 Xº \ ¹aCXx0

j a … Xº D ¹a0 CXx0
º:

Lastly, note that by permutation invariance, "; ¤ "X; ".a C Xx/ for any a … X;

x 2 X . Thus, and since M ˆ jM j < !, and letting
A D

®
".a0 CXx/ j x 2 X

¯
; B D

®
".aCXx0

/ j a … X
¯
; (128)

we have
jM j D jM �X j C jX j (129)

D jAj C
ˇ̌�
B �

®
".a0 CXx0

/
¯�

[ ¹"Xº
ˇ̌

(130)
D

ˇ̌
A [ B [ ¹"Xº

ˇ̌
(131)

<
ˇ̌
A [ B [ ¹"Xº

ˇ̌
C

ˇ̌
¹";º

ˇ̌
(132)

�
ˇ̌
rng."/

ˇ̌
� jM j; (133)

which means that jM j < jM j, a contradiction.
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The preceding results on refinements of separations and on restrictions of BLV yield
the following.

Corollary 42 If E.ˇ/X refines a separation and M ˆ jX j D jM � X j, then
M 6ˆ AE .

Proof Corollary 40 and Lemma 41 imply that (in the presence of IPM)
M ˆ jX j D jM �X j ! :BLV.D X/: (134)

If E.ˇ/X is a separation and M ˆ jX j < !, then by Theorem 7, M ˆ BLV.D X/

if M ˆ AE . But this contradicts (134).
On the other hand, if M ˆ jX j � !, then by Lemma 39, AE translates

BLV.D X/. So AE cannot hold in M as again this contradicts (134).

6.3 Refinements of complementations and LCP.D X/ The situation is quite similar
for LCP. Here we handle the finite case first.

Lemma 43 We have
LCP.D X/ ˆ jX j D jM �X j < ! ! jM j � 4; (135)

LCP ˆ jM j < ! ! jM j � 2: (136)

Here, abusing notation, “ˆ” indicates the derivability relation in second-order logic
with well-behaved cardinalities.

We begin with the following.

Proposition 44 The following is a theorem of second-order logic:
.8X; Y /

�
jX j > 2; jY j � 2 ! jX [ Y j � jX � Y j

�
(137)

with a strict inequality in the consequent if X [ Y is Dedekind finite.

Proof We assume without loss of generality that X and Y are disjoint. Let
a; b; c 2 X and d; e 2 Y be pairwise distinct. Then define f W X [ Y ! X � Y by

f .x/ D

8̂<̂
:
.a; x/ x 2 Y; x ¤ d;

.x; d/ x 2 X;

.b; e/ x D d:

Clearly f is injective; it is not surjective since .c; e/ … rng.f /. Further, if
g W X � Y ! X [ Y is a bijection, then g ı f witnesses that X [ Y is Dedekind
infinite.

Proof of Lemma 43 For the first assertion, suppose the antecedent. Reasoning
deductively, suppose now that jM j > 4. Then jX j; jM � X j > 2. Set X D A

and M � X D B . Then for each .a; b/ 2 A � B , set Aa
b

D .A � ¹aº/ [ ¹bº and
Ba D .B � ¹bº/ [ ¹aº. Now for .a; b/; .c; d/ 2 A � B distinct (as a pair), we have

©Aa
b D ©Bb

a ; ©Ac
d D ©Bd

c ; ©Aa
b ¤ ©Ac

d : (138)

So f .x; y/ D ©Ax
y D ©By

x defines an injection from A � B into M D A [ B ,
contradicting Proposition 44. Thus, jM j � 4.

For the second assertion, suppose that jM j > 2. Then f .x/ D `¹xº shows that
for rng.`/1 D ¹`X j jX j D 1º, j rng.`/1j D jM j and so by finiteness rng.`/1 D M .
However, for any m 2 M , `¹mº ¤ `; by LCP so `; … rng.`/1 D M , which is a
contradiction.
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Lemma 43 would make it appear that LCP.D X/ must have mostly structures of
infinite size. But it has no structures of infinite size.

Proposition 45 In the presence of IPM, LCP.D X/ implies that the universe is
Dedekind finite.

Proof Given IPM, if jM j � !, then there is a concept X such that jX j D

jM � X j D jM j. We show that LCP.D X/ ^ jM j � ! translates BLV.D X/,
so then by Corollary 40 and Proposition 37, the former is inconsistent.

Let f W M ! X and g W M ! M �X be bijections, and define " by

"Y D

´
f .`Y / `; 2 Y;

g.`Y / `; … Y:

Clearly " is functional at X . Now if Y;Z 2 ŒX�ˇ, `; 2 Y;Z and Y ¤ Z, then
by LCP.D X/ and the injectivity of f , "Y ¤ "Z. If `; 2 Y � Z, then as
f .M/ \ g.M/ D ;, "Y ¤ "Z. Lastly, if `; … Y;Z, then by LCP.D X/ and
the injectivity of g, "Y ¤ "Z.

Together with Lemmas 39 and 43, from Proposition 45 we obtain the following.

Corollary 46 If M ˆ jX j D jM � X j and E.ˇ/X refines a complementation,
then M ˆ AE ! jM j � 4.

Proof Propositions 43 and 45 together give that

M ˆ jX j D jM �X j � 4 ! :LCP.D X/: (139)

If M ˆ jX j < ! and E.ˇ/X refines a complementation, then by Theorem 7,
M ˆ LCP.D X/ if M ˆ AE . But then (139) gives that jX j D jM �X j < 4.

On the contrary, if M ˆ jX j � !, then as E.ˇ/X refines a complementation, by
Lemma 39AE translates LCP.D X/. This with the infinite size ofX in M contradict
(139), so :AE , and the result holds trivially.

6.4 Applying the bicardinal classification Having dealt individually with each kind
of nontrivial equivalence relation, we now apply Theorem 7, for putting together
Corollaries 42 and 46 with Theorem 7 gives the following.

Theorem 47 If M ˆ 2 < jX j D jM � X j and E.ˇ/X is nontrivial, then
M 6ˆ AE .

Proof By Theorem 7, if E.ˇ/X is not trivial, then it either refines a separation or
refines a complementation. In the former case AE is inconsistent by Corollary 42,
and in the latter case AE is inconsistent by Corollary 46 and by our assumption that
jM j > 4.

Remark 48 The converse of Theorem 47 fails, for let AE be the abstraction prin-
ciple NewV:

.8X; Y /
�
&X D &Y $

�
jX j D jY j D jM j _

�
jX j; jY j < jM j ^X D Y

��
:

But by König’s theorem, NewV has no standard models whose first-order domain is
a singular limit cardinal.15
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To put Theorem 47 in the terms used earlier, if M is large enough (having greater
than four elements), then M satisfies no abstraction principle whose equivalence
relation is nontrivial on concepts which evenly divide the universe. So Theorem 7
gives a mark by which to identify (at least) many bad companions: these insufferable
principles limit the size of the universe by nontrivially carving concepts of maximally
large bicardinality.16

7 Classification and Relative Categoricity

Walsh and Ebels-Duggan [23] introduced a criterion that distinguishes the abstrac-
tion principle HP. The so-called “Julius Caesar problem”17 arises from the following
fact. There are abstraction principles, among them HP, with the following unfortu-
nate property: for a given base L0-structure, it is possible to interpret @ in two ways,
both satisfying the abstraction principle, but such that the two expanded structures
are neither isomorphic nor elementarily equivalent. That this can be done with the
equivalence relation � and HP was noted by Frege himself (see [8, Sections 56 and
66]). Walsh and Ebels-Duggan showed that although these abstraction principles
lack these properties, some of them have weaker but still noteworthy equivalence
properties.

Abusing notation somewhat, let AE Œ@� be not only the abstraction principle cor-
related with E, but the theory containing as axioms that abstraction principle and
the axioms of our background logic (including those for well-behaved cardinalities).
With similar abuse, we will use A2

E Œ@1; @2� as a theory containing axioms for our
background logic and the abstraction principles AE Œ@1� and AE Œ@2�. In other words,
A2

E Œ@1; @2� is a theory with two copies of the abstraction principle AE , one for each
abstraction operator. To introduce Walsh and Ebels-Duggan’s weakened equivalence
notions, we first introduce the relevant notion of an isomorphism between induced
models.

Definition 49 Given a structure M D .M; S1ŒM �; S2ŒM �; : : : ; @1; @2/ satisfying
A2

E , for i D 1; 2, let

Mi D
�
rng.@i /; S1ŒM � \ P

�
rng.@i /

�
;

S2ŒM � \ P
�
rng.@i / � rng.@i /

�
; : : : ; @i

�
: (140)

We say that Mi is the model induced by @i .
As noted in [23], for � to be an isomorphism between M1 and M2 it is sufficient

for � to satisfy the following condition: For all X 2 S1ŒM � \ P.rng.@1//,

�@1X D @2.�X/: (141)

Definition 50 The theory AE is naturally relatively categorical just if for
any model M, and any @1; @2 such that M ˆ A2

E Œ@1; @2�, the natural bijection
� W rng.@1/ ! rng.@2/, defined by

�@1X D @2X; (142)

is an isomorphism between the induced models M1 and M2.
The theory AE is relatively categorical just if for any model M, and any @1; @2

such that M ˆ A2
E Œ@1; @2�, M1 Š M2.



104 Sean C. Ebels-Duggan

The theory AE is relatively elementarily equivalent just if for any model M, and
any @1; @2 such that M ˆ A2

E Œ@1; @2�,

M1 ˆ '@1
, M2 ˆ '@2

for every sentence (i.e., closed formula) ' in the language of the theoryAE Œ@�, where
'@i

is the result of replacing every occurrence of @ in ' with @i .

Thus natural relative categoricity is distinguished from relative categoricity in that
the former requires that the natural bijection be an isomorphism; the latter only
requires that an isomorphism exist.

One of the main theorems of [23] established necessary and sufficient conditions
for the natural relative categoricity of an abstraction principle, some of which we
state as follows.

Natural Relative Categoricity Theorem NRCT (see [23]) Let AE be an abstraction
principle. The following are equivalent:

(1) AE is naturally relatively categorical;
(2) AE Œ@� ˆ .8X; Y /.jY j D jX j � j rng.@/j ! E.X; Y //.

Here again, “ˆ” means the deductive consequence relation for our strong background
logic. Abstraction principles satisfying this second condition are said to be cardinal-
ity coarsening on abstracts.

As can be seen plainly, � is the finest equivalence relation such that AE is car-
dinality coarsening on abstracts; thus HP is the finest naturally relatively categorical
abstraction principle. This gives the neologicist a criterion by which to distinguish
HP from other abstraction principles; notably, the abstraction principle NewV, which
is equivalent to BLV.< jM j/, is not naturally relatively categorical (see [23, Sec-
tion 5]).

But there is more that can be asked. Walsh [22, Proposition 14, p. 1687] shows
that HP is relatively categorical in the stronger, unqualified sense. Moreover, the
foregoing establishes the following implication relations:

Natural relative categoricity , Cardinality coarsening on abstracts
+

Relative categoricity
+

Relative elementary equivalence

(143)

Walsh and Ebels-Duggan thus raised the following two questions in [23].

Question 51 Are the conditions for relative categoricity the same as for natu-
ral relative categoricity? Can we drop the specification of the natural bijection in
the NRCT? More precisely, is (2) equivalent to the relative categoricity of AE ?

Question 52 What is the relation between relative categoricity, natural relative
categoricity, and relative elementary equivalence?

It is a consequence of Theorem 7 that Question 51 can be answered in the affirma-
tive, and that, in answer to Question 52, all the implication arrows of (143) can be
reversed.

From here onward it will be helpful to recall the definitions of restricted abstrac-
tion principles from page 98.
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Lemma 53 Suppose thatAE is an abstraction principle and thatAE Œ@� translates
BLV.� 1/ via '.Y;Z/. Then AE Œ@� is not relatively elementarily equivalent, and so
not relatively categorical.

Proof Let @1 be given such that M ˆ AE Œ@1�. Note first that as AE translates
BLV.� 1/, j rng.@/j D jM j � !. We may thus assume that rng.@1/ D M . The @2

we will construct will have the same range; this allows us to avoid worries that the
translation ' of BLV.� 1/ in M, which may contain nested quantifiers, may change
its behavior on the induced models M1 and M2.

For ' translating as above, let x 2 U.X/ if and only if '.X; Y / and x 2 Y .
Consider now

 i D .9a/
�
a D @iU

�
¹aº

��
: (144)

On the one hand, if M ˆ : 1, then select a 2 M , and note that there are
b; c 2 M with b D @1U.¹aº/ and a D @1U.¹cº/. Let f .b/ D a, f .a/ D b, and
let f be the identity map on M � ¹a; bº. As f 2 M since it is definable, setting
@2X D f .@1X/ we have that M ˆ A2

E Œ@1; @2�. And yet M2 ˆ  2.
On the other hand, if M ˆ  1, then let

A D
®
@1X j .9a/

�
a D @1X D @1U

�
¹aº

��¯
: (145)

Suppose first that jAj D j rng.@1/j. As jAj � !, there is a B � A such that
jBj D jA � Bj D jAj by IPM; let g W B ! A � B be a bijection. Then let

@2X D

8̂<̂
:
g.@1X/ @1X 2 B;

g�1.@1X/ @1X 2 g.B/;

@1X @1X … A:

(146)

Again we have that M ˆ A2
E Œ@1; @2�, and M2 ˆ : 2: for if @1U.¹aº/ D a 2 B ,

then @2U.¹aº/ 2 A � B , and so @2U.¹aº/ ¤ a. And likewise if @1U.¹aº/ D

a 2 A � B .
Lastly, suppose that jAj < j rng.@1/j. Then as j rng.@1/j � !, by ISM there is an

injection g W A ! rng.@1/ � A. Setting B D A, the construction as in (146) again
delivers the verdict that M2 ˆ : 2.

We now prove a parallel to Lemma 39.

Lemma 54 Suppose that M ˆ 0 < jX j < ! � jM j and that E.ˇ/X refines a
separation. Then AE translates BLV.� 1/.

Proof By Proposition 38, for any singleton Y , hY;Xi 2 ŒX�ˇ. Further,
if Y ¤ Z and both are singletons, then hY;Xi and hZ;Xi are disjoint, so
jhY;Xi4hZ;Xij – jX j. Thus, setting "Y D @hY;Xi, we have for singletons
Y and Z:

"Y D "Z , E
�
hY;Xi; hZ;Xi

�
, hY;Xi D hZ;Xi , Y D Z:

We now answer Questions 51 and 52.

Theorem 55 An abstraction principle AE is relatively categorical if and only if it
is cardinality coarsening on abstracts.

Further, an abstraction principle is relatively elementarily equivalent if and only
if it is relatively categorical.
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Proof The right-to-left direction of the second assertion is trivial; for the right-to-
left direction of the first, suppose that AE is cardinality coarsening on abstracts, and
let M ˆ A2

E Œ@1; @2�. Let � be the natural bijection defined by �@1X D @2X ; note
that as j�X j D jX j, since AE is cardinality coarsening on abstracts, in A2

E Œ@1; @2� it
follows that @iX D @i�X . Thus

�@1X D @2X D @2�X; (147)

so � is an isomorphism.18

For the left-to-right direction of both assertions, observe that the following
exhaust the possibilities for the cardinal placement of any two equinumerous con-
cepts:

M ˆ jM j D jY j D jX j D jM �X j D jM � Y j; (148)
M ˆ jM j D jY j D jX j D jM �X j > jM � Y j; (149)
M ˆ jM j D jY j D jX j > jM �X j � jM � Y j; (150)
M ˆ ! � jX j D jY j < jM j; (151)
M ˆ jX j D jY j < ! � jM j; (152)
M ˆ jX j D jY j � jM j < !: (153)

To prove the second assertion, then it suffices to show that on each of these pos-
sibilities, if M ˆ A2

E Œ@1; @2�, then either (i) M1 and M2 are isomorphic (and so
elementarily equivalent), or (ii) there are @1; @2 such that M1 and M2 are not ele-
mentarily equivalent (and so not isomorphic). From the right-to-left direction of the
first assertion, we know that if E is cardinality coarsening on abstracts, then (i) holds
for all possibilities. Thus to prove the second assertion, it suffices to prove that if E
is not cardinality coarsening on abstracts, then either M 6ˆ AE , or there are @1; @2

with M ˆ A2
E Œ@1; @2� but M1 and M2 are not elementarily equivalent. This will

prove the first assertion as well.
So suppose that AE is not cardinality coarsening on abstracts; let M ˆ AE

witness this failure. So there are X; Y 2 M such that

M ˆ jY j D jX j �
ˇ̌
rng.@1/

ˇ̌
^ :E.X; Y /: (154)

Clearly then M ˆ 0 < jX j.
The first case in which (148) holds can be ruled out since if E.ˇ/X is nontrivial,

then by Corollaries 42 and 46, M 6ˆ AE . Thus for the second case (149) we must
assume that E.ˇ/X is trivial. Without loss of generality, assume that M ˆ X � Y .
Since by assumption (154), M ˆ jM j D jX j D jY j � j rng.@/j, let f; g 2 M be
respective witnesses of jX j D j rng.@/j and jY j D j rng.@/j. Then set @1 D f ı @

and @2 D g ı @. Since @1; @2 are both definable injections in M, it follows that
M ˆ A2

E Œ@1; @2�. Note, however, that for all Z � X , if jZj D jX j, then Z ˇ X .
Hence, since E.ˇ/X is trivial, E.X;Z/. Thus, as

M1 ˆ .8x/.Xx $ x D x/;

it follows that

M1 ˆ .8U;W /
�
.8x/.Ux $ x D x/ ^ jW j D jU j ! @1U D @1W

�
: (155)

However, note that
M2 ˆ .8x/.Yx $ x D x/
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and that f ı g 2 S2ŒM � and f ı g � Y � Y . Thus f ı g 2 M2, so
M2 ˆ jX j D jY j ^ @2X ¤ @2Y

as by assumption X � Y and M ˆ AE Œ@2�^ :E.X; Y /. Consequently, we see that
M2 6ˆ .8U;W /

�
.8x/.Ux $ x D x/ ^ jW j D jU j ! @2U D @2W

�
:

So by (155), AE is not relatively elementarily equivalent, and so not relatively cate-
gorical.

For (150) observe that, by IPM, if jM j D jX j � !, then there is Z � X such
that jZj D jM �Zj D jM j; by (148) E.ˇ/Z is trivial, and so by (149) both X and
Y are in ŒZ�E .

If (151) holds, then by Theorem 7, E.ˇ/X is nontrivial; but then by Lemma 39
AE translates BLV.� X/ on M. Likewise if (152) holds, then by Lemma 54 we
see again that AE translates BLV.� 1/ on M. But then by Lemma 53, AE is not
relatively elementarily equivalent, and so not relatively categorical.

Finally, if (153) holds, then by Theorem 7, as 0 < jX j < jM j, by Theorem 47
and M ˆ AE , we have that jM j � 4 and M ˆ LCP.D X/. If jM j D 2, then if
E.ˇ/X refines a complementation, then it is trivial (and so cardinality coarsening
on abstracts), so jM j D 4. But then by the argument of [23, Section 5.5, p. 594], AE

is not relatively elementarily equivalent, and so not relatively categorical.

Walsh and Ebels-Duggan prove another theorem (see [23, Theorem 1.2]) for another
weakened equivalence property: that if all objects are abstracts, then the induced
models for AE are isomorphic via the natural bijection if and only if bicardinally
equivalent concepts are E-equivalent. They ask an analogous question as well: Can
one drop the assumption that the natural bijection is an isomorphism and still obtain
the biconditional? The proof of Theorem 55 indicates an affirmative answer here
also: to adapt the proof one must observe that (149) is irrelevant on the assumption
that X and Y are bicardinally, but not E-, equivalent. The other cases remain the
same.

Thus we have the following.

Theorem 56 Suppose that M ˆ A2
E Œ@1; @2� ^ rng.@1/ D rng.@2/ D M . Then

M1 Š M2 if and only if AE is bicardinality coarsening on abstracts.

It may seem surprising to see in Theorem 55 the equivalence of relative elementary
equivalence with relative categoricity. But reflection suggests that this shouldn’t be
so striking after all: for Theorem 55 depends on Theorem 7, and so on the equiva-
lence relations in play being permutation-invariant becauseL0-definable. The equiv-
alence is in a sense an artifact of this restriction. It is an open question as to whether
other invariance conditions (see [1], [5], [7]) would yield the same results.

However, reflection on this equivalence could be taken as philosophically rele-
vant, and indeed good news for the neologicist. For it is trivial, by PI, that in an
L0-structure M, if � is a permutation in M, then the structure resulting from that
permutation is both isomorphic and elementarily equivalent to M. This is trivial, of
course, because the permuted structure is just the original structure. But it is note-
worthy that this triviality hides the coinstantiation of isomorphism and elementary
equivalence.

In light of this, one might ask: Is this coinstantiation preserved under abstraction?
In more detail: given two abstraction operators, @1; @2 for an abstraction principle
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AE , the natural bijection �.@1X/ D @2 will always be in any model of AE Œ@1; @2�.
Therefore if @1 and @2 share the same range, then M2 can be regarded as the structure
resulting from the permutation � of the structure M1. Is it the case that under any
such permutation, the resulting models will be isomorphic if and only if elementarily
equivalent? Indeed, from Theorem 55, the answer is affirmative: this property of
coinstantiation is, in the given sense, preserved under permutations of abstractions.
One might argue on behalf of the neologicist (though we will not) that this shows
abstraction is in some sense a “logical” operation.

8 Conclusion

We began with the promise that strengthening Fine’s classification theorem would
advance our understanding of the demarcation of logical abstraction principles. The
strengthened version of Fine’s theorem yields a strengthened relative categoricity
theorem; the relevant advancement thus comes in the option provided by the latter
result.

Walsh and Ebels-Duggan note that relative categoricity as we have described it
cannot rule out bad companions like NP: since NP has only Dedekind finite mod-
els, it (the principle) is cardinality coarsening on abstracts. They also note, however,
that the equivalence relation underlying NP is not cardinality coarsening on small
concepts—a notion that applies not to abstraction principles but to equivalence rela-
tions. (See [23, Section 5.4].)

The confluence of results presented in this article offers a stronger statement of
this point. As we can see from the results in Sections 6 and 7, when nontrivial
equivalence relations are manifest in a structure, they generate failures of relative
categoricity. It is curious that NP is relatively categorical as a principle. But it is
more relevant that the equivalence relation deployed by NP is nontrivial on all infi-
nite bicardinal slices—it has nontrivial manifestations. And wherever nontriviality
appears in a structure satisfying an associated abstraction principle, it generates a
failure of relative categoricity. Thus, even though NP is by the letter relatively cat-
egorical, it deploys an equivalence relation that generates failures of relative cate-
goricity. On this line of thinking, NP can thus be ruled out. The same goes for other
bad companions.

This is a sketchy argument for several reasons, but for our purposes it need not be
more. As we said at the outset, our goal is to provide and clarify options. All things
considered, this sort of account may be rejected. But the results here adduced, along
with those in [23] and [22], indicate that the sort of answer just offered is one of the
things that should be considered.

In light of this, it may be worth considering relative categoricity as kin to per-
mutation invariance. Both are motivated by the idea that logic is indifferent to the
particulars of objects. Permutations represent this indifference by exchanging objects
arbitrarily, while relative categoricity represents it by treating arbitrarily selected
abstraction assignments. Here, more issues loom. Our discussion has been organized
around permutation invariance, but there are stronger conditions claiming to be nec-
essary for logicality. Permutation invariance is intra-modular: permutations simply
reorder or reorganize the elements of a given structure. Recent work has focused on
the trans-modular notion of isomorphism between structures. This is arguably a bet-
ter mark of the logical than permutation invariance, and better matches the intuitive
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notion of indifference to objects. Though the language L0 is logical in this stronger
sense, we have not addressed how a notion like relative categoricity would apply in
a trans-modular setting.19

One last point is worth making. The results of Section 6 can be recast. Say that
AE proves the universe set-like—in symbols, AE ˆ ZFC.M/—just if CC, ISM,
IPM, and every instance of CWF is provable in the theory AE . The results of Sec-
tion 6, put into this context, say that if AE proves the universe set-like, and if E is
provably nontrivial at “large enough” bicardinalities, then AE is inconsistent. For
if AE ˆ ZFC.M/ and E is nontrivial at a large enough cardinality, then since
ZFC.M/, at that cardinal E is either separative or complementative. Then following
the theorems of that section, IPM renders the principle inconsistent. This can be
summed up by the following.

Corollary 57 If a theory AE proves jM j > 4, then AE is inconsistent (without
the help of our cardinality principles) if and only if AE proves that there is a well-
ordering of M and ŒX�E.ˇ/ is nontrivial for some X with jX j D jM �X j D jM j.

The nontrivial direction follows because our cardinality principles follow from a
well-ordering of the universe.

Similarly, we obtain necessary and sufficient conditions for satisfiability (posses-
sion of a standard model).

Corollary 58 If a theory AE proves jM j > 4, then AE is unsatisfiable if and only
if ŒX�E .ˇ/ is nontrivial for some X with jX j D jM �X j D jM j.

The nontrivial direction again follows by our results, since the cardinality principles
are true in all standard infinite models.

These are not, however, the best results available, since a weaker condition on the
right-hand side may also be sufficient for inconsistency (resp., unsatisfiability). We
can already obtain such improvements understanding “large enough” to mean not
“universe-sized,” but “exponentially large” in the sense of Fine (see Appendix B).
That is, replace “for some X with jX j D jM � X j D jM j” on the right with “for
some X such that TOP.X/,” and the corollaries still hold.

In any case, as an explanation of the consistency and satisfiability profiles of
abstraction principles it is worth considering.

Outside of the discussion on neologicism, we note that the classification theorems
proved herein, being completely general, may have applications of interest in other
research areas related to second-order logic. Having answered some questions, it is
thus apt to raise one in conclusion. We showed in Theorem 6 that for concepts finite
in M, the conditional arrows “)” reverse for both separative and complementative
bicardinal slices. Is this true for more than just finite concepts? In other words, are
there L0-definable equivalence relations in which the arrow of implication does not
reverse?

Appendix A The Proof of Proposition 8

Proof Suppose that jX j µ jY j, so by cardinal comparability, for all n 2 N,
M ˆ n � jY j < jX j. Thus 1 � jX j � jY j, so jY j E jX j, establishing (34).

For X \ Z D Y \W D ; and jZj
g
� jW j, suppose that jX j E jY j. Choose n,

U , and f such that jU j D n (in the metatheory), and jX j
f
� jU � Y j. Then choose
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u 2 U , and let

h.v/ D

´
f .v/ v 2 X;

.u; g.v// v 2 Z:
(156)

The function h is an injection establishing (35).
Toward establishing (36), assume that jZj � jW j and jX t Zj E jY t W j, but

:.jY tW j E jX t Zj/. For a contradiction, assume that :.jX j C jY j/. By (34),
jY j E jX j. But then since jW j � jZj, by (35) we have jY t W j E jX t Zj,
contradicting our assumption.

For (37), choose n;m such that jX j
f
� n � jY j and jY j

g
� m � jZj. Then define

h W X ! nm.nC 1/ �Z by

h.x/ D .nmf1.x/C g1

�
f1.x/

�
; g2

�
f2.x/

�
; (157)

where f1 and g1 output the left value of f and g, respectively, and f2 and g2 output
the right value of f and g, respectively. Verifying that h is injective is routine,
h 2 M by comprehension.

To establish (38), suppose that M ˆ X
f
� n � .Y t Z/. By (34), either Y E Z

or Z E Y ; assume the former, letting g witness the injection in M. Then

h.x/ D

´
f .x/ f2.x/ 2 Z;

.nC f1.x/; g2.f2.x/// f2.x/ 2 Y
(158)

injects X into 2n � Z; h 2 M by comprehension. So X E Z; a similar argument
shows that if Z E Y , then X E Y . Note that (39) follows immediately.

For (40), suppose that M ˆ jY j
f
� n � jX j and M ˆ jZj

g
� m � jX j. Then

h.u/ D

´
f .u/ u 2 Y;

.nC i; x/ u 2 Z; g.u/ D .i; x/
(159)

injects jY tZj into .nCm/� jX j in M. So if jX j C jY tZj, then jY tZj ¶ jX j,
and so jY j µ jX j or jZj µ jX j. By (34) this implies that either jX j C jY j or
jX j C jZj holds. Note that (41) follows immediately.

To establish (42), assume that jY t Zj
f

E jX j. Then f � Y and f � Z are the
required injections. If jX j E jY j, then by (35) and (37), jX j E jY t Zj; so (43)
follows from (42).

For (44), assume that jX j C jY j, so by the definition of C, we have that
jY j µ jX j. Thus by (42), jY tZj µ jX j. Then by (34), jX j C jY tZj.

For (45), assume that jX t Y j
f
C jZj and jW j

g
D jY j. Then

h.u/ D

´
f .u/ u 2 X;

f .g.u// u 2 W
(160)

witnesses jX t W j C jZj. A similar argument establishes (46). Then (47) follows
from (45), (46), and (34), as does (48).



Classification of Second-Order Equivalence Relations 111

Appendix B Fine’s Characterization Theorem

We have noted throughout that our Main Theorem is a version of Fine’s classification
theorem; additionally Theorem 47 bears a striking similarity to Fine’s characteriza-
tion theorem (see [7, Theorem 6, p. 144]). In this last appendix we show how to
present Fine’s characterization theorem in the deductive setting of our article.

Following Fine [7, p. 143], say that a concept is exponentially large in M just if
its subconcepts outnumber the objects of M . For shorthand, now say that a concept
X is “Top” just if X and its complement are both exponentially large. The basal
equivalence relation E0.X; Y / is the equivalence relation such that for any M and
X; Y 2 M, E.X; Y / holds (in the metatheory)20 just if either both X and Y are Top
and M ˆ X ˇ Y , or neither X nor Y is Top and M ˆ X D Y .

Fine’s Characterization Theorem The basal relation E0 is the finest equivalence
relation satisfying permutation invariance such that for any infinite standard model
M, M ˆ AE0

.

The most noticeable differences between Fine’s characterization theorem and Theo-
rem 47 are that the latter concerns only infinite standard models, while the former
addresses all models with well-behaved cardinalities. Fine’s proof of the character-
ization theorem uses his classification theorem. As we have stressed, this classifi-
cation theorem is a version of what we have proved as our Main Theorem. But it
is hard to see how, given that Fine’s terminology does not neatly capture the array
of possibilities. But some reflection, with Fine’s suggested aid of a Venn diagram,
shows that the Fine’s classification theorem can be restated as follows.

Fine’s Classification Theorem (Restated) For X infinite and M standard, we have
the following.

(1) If jX j < jM j and E.ˇ/X is does not refine a separation, then E.ˇ/X is
trivial.

(2) If jX j D jM j > jM � .X [ Y /j and E.ˇ/X refines neither a separation nor
a complementation, then E.ˇ/X is trivial.

(3) If jX j D jM �X j and E.ˇ/X refines neither a separation nor a complemen-
tation, then E.ˇ/X is trivial.

And this yields as a corollary our Main Theorem, restricted to infinite standard mod-
els: that E.ˇ/X must satisfy at least one of being trivial, refining a separation, or
refining a complementation.

Our Theorem 7 can thus be regarded as sharpening and expanding Fine’s achieve-
ment in his classification theorem, except for one easily ironed wrinkle.

Remark 59 In the statement of our theorem: our main concern has been with
identifying L0-definability as a necessary condition on an equivalence relation’s
being logical, so our conditions on E have been that it be L0-definable. However,
inspection of the proofs of our results will show that L0-definability is used only in
invoking permutation invariance. Thus all of our results can be put as Fine’s are:
about equivalence relations satisfying permutation invariance.

As we will show below, Fine’s characterization theorem can also be sharpened and
expanded, with the help of Theorem 7. We prove the characterization theorem in the
deductive setting of Theorem 7.
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To do so, we first need to use L0, rather than the metatheory, to describe concepts
being exponentially large, “Top”, and so to describe the basal equivalence relation
E0. Given a relation R.x; y/, we let RŒx� D ¹y j R.x; y/º. If R 2 M, then so is
RŒx� by comprehension. Using this we can express, in L0, the claim that R “injects”
from equivalence classes of subconcepts of a given concept W to objects with the
following formula (see also [23, p. 588], [18, p. 105]):

.8U � W /.9x/
�
RŒx� � U ^E

�
RŒx�; U

��
^ .8x; y/

�
:E

�
RŒx�; RŒy�

�
! x ¤ y

�
: (161)

We will use the expression “j
S1ŒM��W

E
j

R
� jM j” to abbreviate (161).21 We now have

the material required for expressing the basal equivalence relation.

Definition 60 Given E an L0-definable equivalence relation, abbreviate as fol-
lows:

EXPL.X/ WD :

ˇ̌̌S1ŒM � � X
D

ˇ̌̌
� jM j; (162)

TOP.X/ WD EXPL.X/ ^EXPL.M �X/; (163)
E0.X; Y / WD

�
TOP.X/ ^ TOP.Y / ^X ˇ Y

�
_

�
:

�
TOP.X/ _ TOP.Y /

�
^X D Y

�
: (164)

The abstraction principle AE0
is the correlate of Fine’s basal abstraction principle.

Theorem 61 (Generalization of Fine’s characterization theorem) The abstraction
principleAE0

is consistent, and for any expressible equivalence relationE satisfying
permutation invariance on all models, if AE is consistent, then E0 is finer than E.
(Recall that E0 is finer than E means that ˆ .8X; Y /.E0.X; Y / ! E.X; Y /.)

Note that Theorem 61 implies Fine’s characterization theorem.

Proof We give only the portion of the proof not available elsewhere. (To see that
AE0

is consistent, see [7, p. 144].) Toward establishing the second assertion, note
that extensional equality of concepts is the finest permutation-invariant equivalence
relation ([1, Theorem 2, p. 281] also uses this fact). So let M ˆ AE ; if E is strictly
finer than E0, then there are W;S such that M ˆ TOP.W / ^ TOP.S/, W ˇ S

and :E.W; S/. Thus E.ˇ/W is nontrivial, and by Theorem 7, it either refines a
separation or refines a complementation.

If it refines a complementation, then jW j D jM �W j. If jM j � 4, then

M ˆ .8X; Y /.E0.X; Y / $ X � Y /

and so AE0
is HP. But HP has no models of finite size, and since E is finer than

E0, AE has no finite models either. Thus M is infinite. But then by Theorem 47,
M 6ˆ AE .

If E refines a separation, then by Lemma 39, AE and jW j � jM �W j translate
BLV.� W /. Set R.x; y/ to be .9Y /.x D "Y ^Yy/; R exists by comprehension and
RŒ�Y � D Y . It is easy to verify that BLV.� W / implies thatˇ̌̌S1ŒM � � W

D

ˇ̌̌
R
� jM j;

and this contradicts the assumption that TOP.W /.22
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Notes

1. See most notably Wright [25] and Hale and Wright [10].

2. We put aside concerns, like those of Quine in [17], that second-order languages are
themselves not “logical” in virtue of their quantifying over higher-order objects.

3. This view is associated with Tarski’s identification of logical notions as those that are
permutation-invariant in this sense (see [21]) (for a more recent defense, see Sher [20];
other relevant discussions can be found in Bonnay [2] and McGee [15]. The so-called
Tarski–Sher thesis identifying logicality with permutation invariance is controversial;
that permutation invariance is a necessary feature of logical notions is not (see MacFar-
lane [14]).

4. Interpreting Peano arithmetic does not require the full power of HP, but only that an
abstraction principle match HP on all finite concepts. (See Heck [11] and MacBride [13]
for further discussion.)

5. Wright’s [25] marks the starting point of neologicism, though the observation that
Frege’s program proceeds in two parts was made by Parsons in [16, p. 183, p. 194].

6. The first bad companions appeared in Boolos [3]; one of these was simplified into NP by
Wright in [26].

7. And this is unwelcome to neologicists because they claim an abstraction principle should
not imply anything about sortal concepts unrelated to the abstracts (see Hale [9, p. 415],
Wright [26, pp. 295–97], [27, pp. 314–15], as well as Ebels-Duggan [6]).

8. See Fine [7] and Antonelli [1] for a discussion of “finer” and “coarser” equivalence
relations and their relevance to neologicism. Cook [5] standardizes the terminology and
indicates relations between different kinds of invariance. It was Cook’s paper that made
me see the connection to Fine’s work.

9. See Button [4, pp. 225–31] for more on this method.

10. In [23] the principles CC, ISM, and IPM were deployed as consequences of the principle
GC, though GC’s well-ordering was in the main results only to show that the restrictions
to small concepts and to abstracts were required (see [23, (4.22)–(4.23) and following]).
In this article we will use only the cardinal consequences of GC listed above. Our logic
is also weaker than that deployed in [23] in that we make no use of the principle AC.

11. Not just those with well-behaved cardinalities.

12. Note that this is provable in unaugmented second-order logic (see [18, Theorem 5.2]).

13. The reader may wish to aid his/her reasoning in these following arguments using Venn
diagrams; label a set A “S” for relatively small, and B “L” for relatively large, if A G B .
Proposition 8 basically asserts that the expected reasoning will obtain (e.g., if A is rela-
tively large but A \ B is relatively small, then it follows that A � B is relatively large).
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14. The arguments of this section elaborate on the one given in [6].

15. There is in fact a small error on just this point at [23, p. 596] in stating the results of
Shapiro and Weir [19, p. 315]: “For instance, the claim that the abstraction principle
New V is strongly stable is equivalent to the generalized continuum hypothesis.” The
correct statement is this: New V is not strongly stable, and whether it is stable depends
on whether 2� D �C for unboundedly many �. This error is fully the fault of the current
author.

16. Theorem 47 is in some ways a companion to Fine’s characterization theorem, mentioned
earlier: that what he calls the basal abstraction principle is the finest satisfiable in all
infinite domains. As Theorem 7 is a deductive analogue of Fine’s classification theo-
rem, a deductive analogue of his characterization theorem can also be obtained from
Theorem 7, though we leave this for Appendix B.

17. See [8, Section 55] and, for example, Heck [12] and Hale and Wright [10, Chapter 14].

18. This direction of the proof generalizes the proof in [22, Proposition 14].

19. Woods [24] has addressed the question of indefinite abstraction principles in a trans-
modular setting. Given a domain D and an equivalence relation E on P.D/, let

F.D/E D
®
f W P.D/ ! D j .8X; Y � D/

�
fX D f Y , E.X; Y /

�¯
:

In this setting of [24], the members of F.D/E are called abstraction functions for E,
while an abstraction operator for E is a function � taking domains D as an argu-
ment, outputting a set �D � F.D/E . If � W D ! D0 is a bijection, then � can be
extended to an isomorphism �C of all types over D and D0. As such, �C.�D/ will
be ¹�C ı f ı .�C/�1 j f 2 �Dº (see [24, pp. 281–82]). The abstraction operator
� is then isomorphism-invariant just if �C.�D/ D �D0 for all D;D0, and bijections
� W D ! D0. An abstraction operator is said to be full just if for any D, �D D F.D/E .
Woods endorses the view that indifference to particular objects is the mark of the logical,
and thus that isomorphism invariance is the mark of the logical.

Woods offers as evidence for this claim the proposition on [24, p. 298] that all and
only abstraction operators logical in the sense of isomorphism invariance are both full
and associated with an isomorphism-invariant (in a broader sense) equivalence relation.
However, this proposition, and the lemma used to prove it (presented on [24, p. 296]),
are incorrect. The lemma in question claims that if � is (nonempty and) invariant, then it
is full; but the proof makes two incorrect assumptions. The first is that if f; g 2 F.D/E
and rng.f / � rng.g/, then M � rng.f / � M � rng.g/ (see [24, p. 296]). The second
is that if �.f .A// D g.A/ for f; g 2 F.D/E and all A � D, then �C.f / D g. But
this is not in general true, for the extension of � to �C has �C.f / D �C ı f ı .�C/�1,
and while this implies that �C.f /.A/ D g..�C/�1.A//, the last g..�C/�1.A// D g.A/

holds only, in general, when E is coarser than � (see [23, Theorems 1.1 and 1.2] and
Theorem 55).

The lemma and resulting proposition can be shown false by the example of � for E
and �D D ¹f 2 F.D/E j rng.f / D Dº. Clearly this is not full, and it can be shown
isomorphism-invariant using the techniques of the lemma on [24, p. 297]. This would
suggest suitable restrictions on the cardinality or identity of the range of the abstraction
functions might repair the lemma and proposition. But more robust counterexamples
can be generated by the results of the present article. For these we will first need the
following observation.
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Suppose that MŒ@1; @2� with first-order domain M is standard and witnesses the fact
that AE is not relatively categorical. Then if �C W M ! M0 is an isomorphism, then
M0Œ�.@1/; �.@2/� also witnesses that AE is not relatively categorical, for Mi Š M0

i for
i D 1; 2.

The main idea of the counterexample is to choose a pair @1; @2 of surjective abstrac-
tion functions such that M1 D MŒ@1� © M2 D MŒ@2�. Then for M the domain of
M, we let �M be the set of all abstraction functions @ such that MŒ@� is isomorphic to
MŒ@1�. Clearly @2 will not be among these. Then, for every domain D, we set �D to be
the set containing �C.@/ for each @ 2 �M and each bijection � W M ! D. This ensures
that � will be isomorphism-invariant, but also ensures, by the observation given above,
that it will not be full.

More formally: it is a consequence of Theorem 56 that there are abstraction principles
with surjective abstraction functions @1; @2 on a domain M such that for no bijection
� W M ! D is there a bijection � W D ! D such that

�
�
�C.@1/.A/

�
D �C.@2/

�
�.A/

�
(i.e., the bijection � does not commute with �C.@1/ and �C.@2/). This is true of NewV,
as demonstrated by Theorem 56 in conjunction with the results of [23, Section 5.2].

Thus for each D � M , set

�D
D

®
@ 2 F.D0/E j @ D �C

ı @1 ı .�C/�1 for some bijection � W M ! D
¯
:

The indefinite abstraction operator � is then isomorphism-invariant by construction, but
�C.@2/ … ��.D/ for any bijection �, so � is not full. Applied to the cited case of
NewV developed in [23], we might choose @1 such that the natural membership relation
derived from it is well founded. Thus for any D and any f 2 �D , f will foster such
well-founded relations as well. But for each D there will always be @2 2 F.D/E such
that the natural membership relation is not well founded, and thus such @2 will be omitted
from each �D .

Though the lemma and proposition are false, the above counterexamples do not obvi-
ously determine the correctness of Woods’s overall assertion: that isomorphism invari-
ance (for abstraction operators) is the mark of logic’s characteristic indifference to the
particularities of objects. The second counterexample does depend on the choice of an
abstraction function, but not on the choice of any first-order object. This accords with
Woods’s prediction.

20. Fine’s results are cast in terms of partitions of P.M/, so at this point we will not
talk about M satisfying E0.X; Y /, since Fine’s presentation does not ensure that E0

is expressible. We will show how to express something like E0 in L0 below (see Defi-
nition 60).

21. It is worth noting that since we are allowing nonstandard models, for some E there may
be “false negatives” (whereW D M we omit the restriction “ � M ”): There are models
M and equivalence relations E such that

M ˆ :.9R/
�ˇ̌̌S1ŒM �

E

ˇ̌̌ R
� jM j

�
even though there is, in the metatheory, an injection from the E-partition of S1ŒM � to
M . A sketch of the proof is as follows:

The witnessing equivalence relation will be �. Let L be a language expanding L0 by
countably many constants ci for first-order objects, and let T be the theory containing as
axioms all comprehension axioms in the signature, as well as all sentences of the form:

ci ¤ cj for each i ¤ j ,
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:.9R/
�
'.R/ ^

ˇ̌̌S1ŒM �

�

ˇ̌̌ R
� jM j

�
for each formula '.R/ of L.

Every finite subset of T is consistent (and in fact satisfiable), so T is consistent, and has
a model whose first-order domain M is infinite in the metatheory. The resulting model
witnesses the truth of the theorem.

22. Fine’s characterization results can in fact be generalized neatly to more types of invari-
ance, as Fine does himself (see [7, Corollary 7, p. 146], and [5]).
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