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Abstract A set of integers A is computably encodable if every infinite set
of integers has an infinite subset computing A. By a result of Solovay, the
computably encodable sets are exactly the hyperarithmetic ones. In this arti-
cle, we extend this notion of computable encodability to subsets of the Baire
space, and we characterize the …0

1-encodable compact sets as those which admit
a nonempty †1

1-subset. Thanks to this equivalence, we prove that weak weak
König’s lemma is not strongly computably reducible to Ramsey’s theorem. This
answers a question of Hirschfeldt and Jockusch.

1 Introduction

A set A � ! is computably encodable if every infinite set X � ! has an infi-
nite subset computing A. Jockusch and Soare [16] introduced various notions of
encodability, and Solovay [28] characterized the computably encodable sets as the
hyperarithmetical ones. We extend the notion of computable encodability to collec-
tions of sets as follows. A set C � !! is …0

1-encodable if every infinite set X � !

has an infinite subset Y such that C admits a nonempty Y -computably bounded
…

0;Y
1 -subset D � !! . By this, we mean that D D ŒT � for some Y -computable tree

T whose nodes are bounded by a Y -computable function. Our main result asserts
that the compact sets that are …0

1-encodable are exactly those admitting a nonempty
†1

1-subset. This extends Solovay’s theorem, as the members of the †1
1-singletons

and those of the computably bounded …0
1-singletons are exactly the hyperarithmetic

ones (see Spector [29]) and the computable ones, respectively. Our motivations fol-
low two axes.

First, the development of mass problems such as Muchnik and Medvedev degrees
(see Hinman [11]) revealed finer computational behaviors than those captured by
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the Turing degrees. For example, the cone avoidance basis theorem (see Jockusch
and Soare [15]) asserts that the PA degrees are of no help in computing a single
incomputable set of integers. However, it would be simplistic to deduce that PA
degrees carry no computational power. For example, they enable one to compute
separating sets given two computably inseparable c.e. sets. This work can therefore
be seen as part of a program of extending core computability-theoretic theorems
about Turing degrees to their generalized statements about mass problems.

Our second motivation comes from the reverse mathematics and computable anal-
ysis of Ramsey’s theorem. Computable encodability is a very important feature of
Ramsey’s theorem, as for every k-coloring of Œ!�n and every infinite set X there is
an infinite homogeneous subset contained in X . Computable encodability provides
a formal setting to many intuitions about the computational weakness of Ramsey’s
theorem. In particular, we use this notion to answer a question asked by Hirschfeldt
and Jockusch [12] about the link between variants of König’s lemma and Ramsey’s
theorem over strong computable reducibility.

1.1 Reductions between mathematical problems A mathematical problem P is
specified by a collection of instances, coming together with a collection of solutions.
Many ordinary theorems can be seen as mathematical problems. For example,
König’s lemma (KL) asserts that every infinite, finitely branching tree admits an
infinite path. In this setting, an instance of KL is an infinite, finitely branching tree
T , and a solution to T is any infinite path P 2 ŒT �.

There are many ways to compare the strength of mathematical problems. Among
them, reverse mathematics study their logical consequences (see Simpson [26]).
More recently, various notions of effective reductions have been proposed to compare
mathematical problems, namely, Weihrauch reductions (see Brattka and Rakotoni-
aina [1] and Dorais, Dzhafarov, Hirst, Mileti, and Shafer [4]), computable reductions
(see Hirschfeldt and Jockusch [12]), and computable entailment (see Shore [24]),
among others. A problem P is computably reducible to another problem Q (written
P �c Q) if every P-instance I computes a Q-instance J such that every solution to
J computes relative to I a solution to I . A problem P is Weihrauch-reducible to
Q (written P �W Q) if, moreover, this computable reduction is witnessed by two
fixed Turing functionals. There exist strong variants of computable and Weihrauch
reductions written P �sc Q and P �sW Q, respectively, where no access to the
P-instance I is allowed in the backward reduction. In this article, we will focus on
strong computable reduction.

Due to the range of potential definitions of effective reductions, there is a need to
give a justification about the choices of the definition. An effective reduction from P
to Q should reflect some computational aspect of the relationship between P and Q.
The more precise the reduction is, the more insights it gives about the links between
the two problems. As it happens, many proofs that P is not strongly computably
reducible to Q actually produce a single P-instance I such that, for every Q-instance
J , computable in I or not, there is a solution to J computing no solution to I . Such
a relation suggests a deep structural difference between the problems P and Q, in that
even with a perfect knowledge of I , there is no way to encode enough information
in the Q-instance to solve I . We will therefore define P to be strongly omnisciently
computably reducible to Q (written P �soc Q) if, for every P-instance I , there is a
Q-instance J such that every solution to J computes a solution to I .
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1.2 König’s lemma and Ramsey’s theorem König’s lemma and Ramsey’s theorem
are core theorems from mathematics, both enjoying a special status in reverse math-
ematics.

Definition 1.1 (Various König lemmas) KL is the statement “Every infinite
finitely-branching tree has an infinite path.” WKL is the restriction of KL to binary
trees. WWKL is the restriction of WKL to binary trees of positive measure (a binary
tree T � 2<! has positive measure if lims

j¹�2T Wj� jDsºj

2s > 0).

Weak König’s lemma captures compactness arguments and naturally arises from
the study of ordinary theorems (see [26]). It is part of the so-called Big Five (see
Montalbán [17]). On the other hand, weak weak König’s lemma can be thought of
as asserting the existence of randomness in the sense of Martin-Löf (see Downey
and Hirschfeldt [5]). Although weak König’s lemma is strictly weaker than König’s
lemma in reverse mathematics and over computable reducibility, the statements are
trivially equivalent over strong omniscient computable reducibility. Indeed, given
any problem P admitting an instance with at least one solution S , one can define a
binary tree whose unique path is a binary coding of S . In particular, KL �soc WKL.
Weak weak König’s lemma, for it, remains strictly weaker than König’s lemma over
strong omniscient computable reducibility, since the measure of the set of oracles
computing a noncomputable set is null (see Sacks [21]). Therefore one can choose
any tree with a unique incomputable path as an instance of König’s lemma to show
that KL —soc WWKL.

Definition 1.2 (Ramsey’s theorem) A subset H of ! is homogeneous for a color-
ing f W Œ!�n ! k (or f -homogeneous) if each n-tuples over H are given the same
color by f . Moreover, RTn

k is the statement “Every coloring f W Œ!�n ! k has an
infinite f -homogeneous set,” RTn

<1 is .8k/ RTn
k , and RT is .8n/ RTn

<1.

Ramsey’s theorem received a lot of attention in reverse mathematics since it is one
of the first examples of statements escaping the Big Five phenomenon. There is
a profusion of literature around the reverse mathematics and computable analysis
of Ramsey’s theorem (see, e.g., Cholak, Jockusch, and Slaman [2], Hirschfeldt,
Jockusch, Kjos-Hanssen, Lempp, and Slaman [13], Jockusch [14], Seetapun and
Slaman [23]). In particular, RTn

k is equivalent to KL in reverse mathematics for
any standard n � 3 and k � 2 (see [26]), and RT2

k is strictly in between RCA0

and RT3
k (see [23]). More recently, there have been studies of Ramsey’s theorem

under various notions of reducibility. Let SRT2
k denote the restriction of RT2

k to
stable colorings, that is, functions f W Œ!�2 ! k such that lims f .x; s/ exists for
every x. In what follows, k � 2. Brattka and Rakotoniaina [1] and Hirschfeldt
and Jockusch [12] studied the Weihrauch degrees of Ramsey’s theorem and inde-
pendently proved that RT1

kC1 —W SRT2
k and RTn

<1 �sW RTnC1
2 . Note that the

reduction RT1
k �sW SRT2

k trivially holds.
From the point of view of omniscient reductions, the above discussion about

weak König’s lemma shows that RT �soc WKL. Dzhafarov and Jockusch [6] proved
that SRT2

2 —soc RT1
<1. Hirschfeldt and Jockusch [12] and Patey [20] indepen-

dently proved that RT1
kC1 —soc RT1

k , a result later strengthened by Dzhafarov,
Patey, Solomon, and Westrick [7], who proved that RT1

kC1 —soc SRT2
k and that

RT2
2 —soc SRT2

<1. Some differences between strong computable reducibility and
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strong omniscient computable reducibility are witnessed by Ramsey’s theorem. For
example, the second author [20] proved that SRT2

kC1 —sc RT2
k , while we can prove

the following theorem.

Theorem 1.3 SRT2
<1 �soc RT2

2.

Proof Given a stable coloring f W Œ!�2 ! k, and x < y, let g.x; y/ D 1 if and
only if f .x; y/ D lims f .y; s/.

We first claim that every infinite g-homogeneous set A is for color 1. Indeed,
suppose it is for color 0. Let x 2 A, and let i; s0 2 ! be such that f .x; s/ D i for
every s > s0. For every y 2 A such that y > s0, f .x; y/ ¤ lims f .y; s/ since A

is g-homogeneous for color 0. But f .x; y/ D i since y > s0, so lims f .y; s/ ¤ i ,
and this for almost every y 2 A. By iterating the argument, we prove that f uses an
unbounded number of colors, which is a contradiction.

We next claim that every A is homogeneous for f . Let x 2 A, and let
i D lims f .x; s/. We will show that, for almost every y 2 A, lims f .y; s/ D i .
Indeed, for almost every y 2 A, f .x; y/ D lims f .x; s/ D i , and since A is g

homogeneous for color 1, f .x; y/ D lims f .y; s/, and so lims f .y; s/ D i . Now
suppose lims f .x; s/ D j ¤ i for some x 2 A. The same argument shows that for
almost every y 2 A we have lims f .y; s/ D j ¤ i , which is a contradiction. Thus
for every x 2 A we have lims f .x; s/ D i . As A is homogeneous for color 1, for
every x < y 2 A we have f .x; y/ D lims f .y; s/ D i .

Hirschfeldt and Jockusch compared Ramsey’s theorem and König’s lemma over
strong omniscient computable reducibility and proved that RT1

2 —soc WWKL and
that WKL —soc RT. They asked whether weak weak König’s lemma is a consequence
of Ramsey’s theorem over strong computable reducibility. We answer negatively by
proving the stronger separation WWKL —soc RT.

1.3 Background in higher computability We use in the article several tools from
higher computability or effective descriptive set theory that we sum up here. More
details on the following well-known definitions and theorems can be found in Sacks
[22], Chong and Yu [3], and Moschovakis [18], among others.

Definition 1.4 A subset of !! is †1
1 if it is definable by a formula of arithmetic

with quantification over ! or over !! , such that the quantifications over !! are only
existential (and not preceded by a negation).

Theorem 1.5 (Kleene normal form) A set A � !! is †1
1 if and only if there exists

a computable predicate R � !! � !! � ! such that
A D

®
X W 9Y 8z R.X; Y; z/

¯
:

In the following definition, We denotes the eth c.e. set, and h ; i denotes a computable
pairing function.

Definition 1.6 We denote by Kleene’s O the set of codes e such that the relation
n <e m if and only if hn; mi 2 We is a well-order. An ordinal is computable if it is
the order-type of such a well-order defined by some We .

For any set X , it is possible to iterate the jump of X in the Turing degrees, through
the computable ordinals in a rather straightforward way. For a computable ordinal ˛,
let X .˛/ denote the Turing degree of the ˛th iteration of the Turing jump of X .
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Definition 1.7 A set A � ! is hyperarithmetic if it is Turing below ;.˛/ for some
computable ordinal ˛. It is hyperarithmetic in X if it is below X .˛/ for some ordinal
˛ computable in X .

A basis for the †1
1-sets is a collection of sets B � !! such that B \ D ¤ ; for

every nonempty †1
1-set D � !! . The following two basis theorems are well known.

Theorem 1.8 (Gandy, Kreisel, and Tait [9]) If A is not hyperarithmetic, then every
nonempty †1

1-set D � !! has a member X such that A is not hyperarithmetic in X .

Theorem 1.9 The sets Turing below Kleene’s O are a basis for the nonempty
†1

1-subsets of !! .

In particular, we will prove and use in this article (see Theorem 2.3) an extension
of Theorem 1.8. Finally, the Gandy–Harrington topology on !! is the topological
space !! whose basic open sets are the †1

1-sets. We will use the following theorem.

Theorem 1.10 The space !! with the Gandy–Harrington topology is a Baire
space; that is, a countable intersection of dense open sets is dense.

1.4 Notation Given a set A and some integer n 2 !, we let ŒA�n denote the collec-
tion of all unordered subsets of A of size n. Accordingly, we let A<! and ŒA�! denote
the collection of all finite and infinite subsets of A, respectively. Given a 2 Œ!�<!

and X 2 Œ!�! such that max a < min X , we let ha; Xi denote the set of all B 2 Œ!�!

such that a � B � a [ X . The pairs ha; Xi are called Mathias conditions and form,
together with ;, the basic open sets of the Ellentuck topology.

Given a function f 2 !! and an integer t 2 !, we write f t for the set of all
strings � 2 !<! of length t such that .8x < t/�.x/ � f .x/. Accordingly, we write
f <! for

S
t2! f t .

2 Main Result

A function f 2 !! is a …0
1-modulus of a set C � !! if C has a nonempty

g-computably bounded …
0;g
1 -subset for every function g � f . A function f 2 !!

is a modulus of a set A 2 !! if g �T A for every g � f . Note that the notion of
…0

1-modulus of the singleton ¹Aº coincides with the existing notion of modulus of
the set A since the members of computably bounded …0

1-singletons are computable.
The purpose of this section is to prove the following main theorem.

Theorem 2.1 Fix a set C � !! compact in the product topology. The following
are equivalent:

(i) C is …0
1-encodable,

(ii) C admits a …0
1-modulus,

(iii) C has a nonempty †1
1-subset.

Proof (ii))(i): Let f be a …0
1-modulus of C . For every set X 2 Œ!�! , there is a

set Y 2 ŒX�! such that pY � f , where pY .x/ is the xth element of Y in increasing
order. In particular, C has a nonempty …

0;Y
1 -subset. (iii))(ii): Let R.X; Y; z/ be

a computable predicate such that D D ¹X 2 !! W .9Y 2 !!/.8z/R.X; Y; z/º

is a nonempty subset of C . Since D ¤ ;, there are some X; Y 2 !! such
that R.X; Y; z/ holds for every z 2 !. We claim that the function f defined by
f .x/ D max.X.x/; Y.x// is a …0

1-modulus of C . To see this, pick any function
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g � f . The set ¹X � g W .8z 2 !/.9� 2 gz/.8y < z/R.X; �; y/º is clearly …
0;g
1 .

It is nonempty as it contains X . Also, if Z is in the above set, then by compactness
of the set ¹f 2 !! W f � gº we have that Z is in C . It follows that the above
set is a nonempty subset of C , bounded by g. The remainder of this section will be
dedicated to the proof of (i))(iii).

Corollary 2.2 (Solovay [28], Spector [29], Groszek and Slaman [10]) Fix a set
A 2 !! . The following are equivalent:

(i) A is computably encodable,
(ii) A admits a modulus,
(iii) A is hyperarithmetic.

Proof By Theorem 2.1, it suffices to prove that A is computably encodable, admits
a modulus, and is hyperarithmetic if and only if ¹Aº is …0

1-encodable, admits a
…0

1-modulus, and has a nonempty †1
1-subset, respectively.

By Spector [29], a set A 2 !! is hyperarithmetic if and only if it is the unique
member of a †1

1-singleton set C � !! . Therefore, A is hyperarithmetic if and only
if ¹Aº has a nonempty †1

1-subset. Every modulus of A 2 !! is a …0
1-modulus of

¹Aº. Conversely, if ¹Aº admits a …0
1-modulus f , then, for every g � f , ¹Aº is

a g-computably bounded …
0;g
1 -singleton, and so A is g-computable. Therefore f

is a modulus of A. If A is computably encodable, then ¹Aº is …0
1-encodable since

every X -computable set is an X -computably bounded …
0;X
1 -singleton. Conversely,

suppose that ¹Aº is …0
1-encodable. Then, for every set X 2 Œ!�! , there is a set

Y 2 ŒX�! such that ¹Aº is a Y -computably bounded …0
1-class. In particular, Y

computes A.

Recall the basis theorem of Gandy, Kreisel, and Tait [9], who proved that whenever a
set A 2 !! is non-hyperarithmetic, every nonempty †1

1-set D � !! has a member
X such that A is not hyperarithmetic in X . We now need to extend this basis theorem
by replacing non-hyperarithmetic sets by compact sets with no nonempty †1

1-subsets
in order to prove the remaining direction of Theorem 2.1. Note that when we apply
Theorem 2.3 with C D ¹Aº for some non-hyperarithmetic set A, we get back the
non-hyperarithmetic basis theorem of Gandy, Kreisel, and Tait.

Theorem 2.3 (†1
1
-immunity basis theorem) For every compact set C � !! with

no nonempty †1
1-subset, and every nonempty †1

1-set D � !! , there is some X 2 D

such that C has no nonempty †
1;X
1 -subset.

Theorem 2.3 is an easy consequence of the following lemma.

Lemma 2.4 Fix a compact set C � !! with no nonempty †1
1-subset and a

†1
1-predicate P.X; Y /. Every nonempty †1

1-set D � !! has a nonempty †1
1-subset

E such that ¹Y 2 !! W P.X; Y /º is not a nonempty subset of C for every X 2 E .

Proof We reason by case analysis. In the first case, ¹Y 2 !! W P.X; Y /º ª C

for some X 2 D . Let Y … C be such that P.X; Y / holds. By closure of C ,
there is some finite initial segment � � Y such that Œ�� \ C D ;. The †1

1-set
E D ¹X 2 D W .9Y � �/P.X; Y /º is nonempty and satisfies the desired prop-
erties. In the second case, for every X 2 D , ¹Y 2 !! W P.X; Y /º � C . Then
¹Y 2 !! W .9X 2 D/P.X; Y /º is a †1

1-subset of C and therefore must be empty.
We can simply choose E D D .
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Proof of Theorem 2.3 Let us consider for any †1
1-predicate P.X; Y /, the union

UP of all the †1
1-sets E such that ¹Y 2 !! W P.X; Y /º ª C for every X 2 E . By

Lemma 2.4, each UP is dense for the Gandy–Harrington topology (where open sets
are those generated by the †1

1-sets). Also, !! with the Gandy–Harrington topology
is a Baire space (see Theorem 1.10). It follows that

T
P UP is dense. In particular,

it has a nonempty intersection with any †1
1-set. Moreover, it is clear by the definition

of UP that C contains no †
1;X
1 -subset for any X 2

T
P UP .

We will now prove the core lemma from which we will deduce the last direction of
Theorem 2.1. To do so we will need the Galvin–Prikry theorem, which states that
every Borel set A � 2! is Ramsey; that is, there exists a set X 2 Œ!�! such that
ŒX�! � A or ŒX�! � 2! �A. In our case, we will need a slightly stronger version of
the theorem. This stronger version was already used in a similar way by Soare [27]
to build an infinite set which contains no subset of higher Turing degree.

Theorem 2.5 (Galvin and Prikry [8, Theorem 2]) Let A be a Borel subset of 2! .
For any X 2 Œ!�! , there must exist Y 2 ŒX�<! such that ŒY �! � A, or there must
exist Y 2 ŒX�<! such that ŒY �! � 2! � A.

This stronger version follows from the proof of Galvin–Prikry’s theorem. It is also
explicitly stated by Silver [25], who shows in particular that Galvin–Prikry holds for
†1

1-sets.
In what follows, we assume the functional � has the purpose of computing a

tree of the Baire space. In particular, we will consider only ¹0; 1º-valued function-
als. A computation �X W !<! ! ¹0; 1º is considered valid if �X is total and if
¹� 2 !<! j �X .�/ #D 1º is a tree of the Baire space. In this case, Œ�X � denotes the
set of infinite paths of this tree.

Lemma 2.6 Fix a set X 2 Œ!�! and a compact set C � !! with no nonempty
†

1;X
1 -subset. For every functional � and every t 2 !, there is a set Y 2 ŒX�! such

that, for every G 2 ŒY �! , if �G is a tree, then either Œ�G � \ C D ; or �G.�/ #D 1

for some string � 2 !<! of length at least t such that C \ Œ�� D ;. Moreover, we
can choose Y so that C has no †

1;Y
1 -subset.

Proof For every � 2 !<! , let

Q� D
®
Y 2 ŒX�! W 8v 2 ŒY �<! �v.�/ " or �v.�/ #D 1

¯
:

Note that each Q� is …
0;X
2 uniformly in � (in particular, it is †

1;X
1 uniformly in � ).

Also note that, for every Y 2 Q� and for every Z 2 ŒY �<! , if �Z computes a tree,
then � is a node of this tree.

Suppose first that, for every ` 2 !, there is some � 2 !<! of length ` such
that Q� ¤ ;. If Q� ¤ ; for some � 2 !<! of length at least t such that
C \ Œ�� D ;, then, by Theorem 2.3, there is some Y 2 Q� such that C has no
nonempty †

1;Y
1 -subset. Such a Y and � satisfy the desired properties. If C \Œ�� ¤ ;

for every � 2 !<! of length at least t such that Q� ¤ ;, then, by compactness of C ,
the set

¹h 2 !!
W 8� � h with j� j � t we have Q� ¤ ;º

is a nonempty †
1;X
1 -subset of C , contradicting our hypothesis.
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Suppose now that there is some ` 2 ! such that Q� D ; for every � 2 !<! of
length `. Let �0; : : : ; �n�1 be the finite sequence of all � 2 !` such that C \Œ�� ¤ ;.
This sequence is finite by compactness of C . Let

E D
®
Y 2 ŒX�! W 8v 2 ŒY �<!

8i < n �v.�i / " or �v.�i / #D 0
¯
:

Note that E is …
0;X
2 and in particular †

1;X
1 . Also note that, for every Y 2 E and for

every Z 2 ŒY �! , if �Z computes a tree, then Œ�Z � \ C D ;.
We claim that E is nonempty. To see this, let

A0 D
®
Y 2 ŒX�! W �Y .�0/ #D 0

¯
:

By the Galvin–Prikry theorem (Theorem 2.5), there must exist a set Y 2 ŒX�! such
that ŒY �! � A0 or such that ŒY �! � Œ!�! � A0. But, as Q� D ;, it means that
8Y 2 ŒX�! 9Z 2 ŒY �! Z 2 A0. Thus there can be no Y 2 ŒX�! such that
ŒY �! � Œ!�! � A0. Thus there must be some Y0 2 ŒX�! such that ŒY0�! � A0.
We can now repeat this same argument iteratively for every i < n, with the sets
AiC1 D ¹Y 2 ŒYi �

! W �Y .�i / #D 0º, to argue the existence of a set YiC1 2 ŒYi �
!

and ŒYiC1�! � AiC1. At the end, we obtain a set Yn 2 ŒX�! with Yn 2 E .
Now by Theorem 2.3, there is some Y 2 E such that C has no nonempty

†
1;Y
1 -subset. Such a Y satisfies the desired conditions. This completes the proof.

Lemma 2.7 Fix a Mathias condition ha; Xi and a compact set C � !! with no
nonempty †

1;X
1 -subset. For every functional � and every t 2 !, there is a condition

ha; Y i � ha; Xi such that, for every G 2 ha; Y i and every H 2 ŒG�! such that
�H is a tree, either C \ Œ�H � D ; or �H .�/ #D 1 for some string � 2 !<! of
length at least t such that C \ Œ�� D ;. Moreover, we can choose Y so that C has no
†

1;Y
1 -subset.

Proof Let a0; : : : ; an�1 be the finite listing of all subsets of a, and, for every i < n,
let �i be the functional defined by �Z

i D �ai [Z . By iterating Lemma 2.6 on each
�i , we obtain a set Y 2 ŒX�! such that C has no nonempty †

1;Y
1 -subset, and, for

every Z 2 ŒY �! and every i < n, either C \ Œ�Z
i � D ; or �Z

i .�/ #D 1 for some
string � 2 !<! of length at least t such that C \ Œ�� D ;.

We claim that ha; Y i satisfies the desired properties. Fix any G 2 ha; Y i and
H 2 ŒG�! . In particular, H D ai [ Z for some i < n and Z 2 ŒY �! . Therefore,
either C \ Œ�H � D C \ Œ�Z

i � D ;, or �H .�/ #D �Z
i .�/ D 1 for some string

� 2 !<! of length at least t such that C \ Œ�� D ;.

Proof of Theorem 2.1 (i))(iii): We now prove that if a compact set C � !! has
no nonempty †1

1-subset, then there is a set Y 2 Œ!�! such that, for every G 2 ŒY �! ,
every G-computably bounded …

0;G
1 -set is not included in C .

By iterating Lemma 2.7, build an infinite sequence of Mathias conditions
h;; !i D ha0; X0i � ha1; X1i � : : : such that, for every i 2 !, C has no nonempty
†

1;Xi

1 -subset, jaiC1j � i , and, for every G 2 haiC1; XiC1i, every H 2 ŒG�! , and
every j < i such that ˆH

j is a tree, either C \ ŒˆH
j � D ; or ˆH

j .�/ #D 1 for some
string � 2 !<! of length at least i such that C \ Œ�� D ;. Take Y D

S
i ai as the

desired set. By construction, for every G 2 ŒY �! and every j 2 ! such that ˆG
j is a

tree, either C \ ŒˆG
j � D ; or ¹� 2 !<! W ˆG

j .�/ #D 1 and C \ Œ�� D ;º is infinite.
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Now, if ˆG
j is not computably bounded, then we are done. Otherwise, it is compact

and then, by compactness, there is an infinite path of ŒˆG
j � which is not in C .

Corollary 2.8 WWKL —soc RT.

Proof Let T � 2<! be a tree of positive measure such that ŒT � has no nonempty
†1

1-subset. For example, take T to be a tree whose infinite paths are the elements
of a …

0;O
1 -set of Martin-Löf randoms relative to Kleene’s O (more on algorithmic

randomness can be found in [5] or Nies [19]). Theorem 1.9 says that the sets that are
Turing below Kleene’s O are a basis for the †1

1-subsets of 2! ; thus ŒT � cannot have
any †1

1-subset.
Fix an RT-instance f , and suppose that every infinite f -homogeneous set H

computes an infinite path through T . In particular, ŒT � has a nonempty …
0;H
1 -subset.

Since for every set X 2 Œ!�! there is an f -homogeneous set Y 2 ŒX�! , ŒT � is
…0

1-encodable. Therefore, by Theorem 2.1, ŒT � admits a nonempty †1
1-subset, con-

tradicting our hypothesis.

Note that we make an essential use of compactness in Theorem 2.1. Actually, there
exist …0

1-encodable closed sets C � !! with no †1
1-subset , as witnessed by the

following lemma.

Lemma 2.9 Let Z � ! be a set with no infinite subset Turing below Kleene’s O ,
in either it or its complement. The set

CZ D
®
Y 2 Œ!�! W Y � Z _ Y � Z

¯
is …0

1-encodable and has no nonempty †1
1-subset.

Proof For any X 2 Œ!�! , either X \ Z, or X \ Z is infinite and therefore belongs
to CZ . Thus CZ is …0

1-encodable. Also using Theorem 1.9, the sets Turing below
Kleene’s O are a basis for the †1

1-subsets of 2! , and thus CZ cannot have a nonempty
†1

1-subset.

3 Summary and Open Questions

In this last section, we summarize the relations between variants of Ramsey’s theo-
rem and of König’s lemma over strong omniscient computable reducibility, and we
state two remaining open questions.

In Figure 1, a plain arrow from P to Q means that Q �soc P. A dotted arrow
indicates a hierarchy between the statements. Except for the open arrow from RT2

2

to RT, the missing arrows are all known separations and can be derived from Sec-
tion 1.2. The remaining questions are of two kinds: whether the number of colors
and the size of the tuples has a structural impact reflected over strong omniscient
computable reducibility.

Question 3.1 Is RTn
kC1 �soc RTn

k whenever n; k � 2?

Question 3.2 Is RTnC1
k

�soc RTn
k whenever n; k � 2?

Note that a negative answer to Question 3.1 would give a negative answer to Ques-
tion 3.2 since RTn

<1 �sW RTnC1
2 (see either [1] or [12]).
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KL WKL

WWKLRT

RT2
3 RT2

2

SRT2
<1 SRT2

3 SRT2
2

RT1
<1 RT1

3 RT1
2

?

Figure 1 Versions of RT and KL under �soc.
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