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PFA and Ideals on !2 Whose
Associated Forcings Are Proper

Sean Cox

Abstract Given an ideal I , let PI denote the forcing with I -positive sets. We
consider models of forcing axiomsMA.�/which also have a normal ideal I with
completeness !2 such that PI 2 � . Using a bit more than a superhuge cardinal,
we produce a model of PFA (proper forcing axiom) which has many ideals on !2
whose associated forcings are proper; a similar phenomenon is also observed in
the standard model of MAC!1.� -closed/ obtained from a supercompact cardi-
nal. Our model of PFA also exhibits weaker versions of ideal properties, which
were shown by Foreman and Magidor to be inconsistent with PFA.

Along the way, we also show (1) the diagonal reflection principle for inter-
nally club sets (DRP.IC!1/) introduced by the author in earlier work is equiva-
lent to a natural weakening of “there is an ideal I such that PI is proper”; and (2)
for many natural classes � of posets,MAC!1.�/ is equivalent to an apparently
stronger version which we callMACDiag.�/.

1 Introduction

In [4], we introduced the diagonal reflection principle (DRP)—which is a highly
simultaneous form of stationary set reflection—and proved that DRP follows from
strong forcing axioms. DRP asserts that a certain naturally defined set of !1-sized
structures—namely, those structures on which the nonstationary ideal condenses
correctly—is stationary (see Section 3 below; such condensation notions originally
appeared in Foreman [6]). Independently, Viale [13] proved similar results.

A motivation for this paper is the following observation: if F is a filter which
concentrates on sets witnessing DRP, then by examining generic ultrapowers which
use F (such ultrapowers have critical point !2), we see that P MF exhibits properties
which resemble properness. (This observation follows from Theorem 8 below.) So a
natural way to strengthen DRP is to require that P MF is actually proper.
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Most of this paper is devoted to models of strong forcing axioms MA.�/ which
have an ideal I such that PI 2 �; in particular, we obtain such ideals whose dual fil-
ter concentrates on sets witnessing DRP. In Section 4 we observe that, in the standard
model ofMAC!1.� -closed/ obtained from collapsing everything below a supercom-
pact cardinal to !1, there are ideals whose duals concentrate on sets witnessing DRP
and whose associated forcings have � -closed dense subsets. It is natural to ask if a
similar situation can arise under PFA (proper forcing axiom); we answer this ques-
tion affirmatively. In particular, we prove the following theorem, which is stated more
precisely as Theorem 12 in Section 5.

Theorem Relative to a super-2-huge cardinal, it is consistent that PFA holds and
that there are ideals I such that PI is proper. Moreover, there are such ideals whose
dual concentrates on sets witnessing DRP.

This model has several other interesting features. In [9], Foreman and Magidor
showed that if either

� .!3; !2/ � .!2; !1/ or
� there is a presaturated ideal on !2;

(1)

then PFA fails. On the other hand, the model of PFA we produce in Section 5 shows
that weaker versions of (1)—namely that .�; !2/ � .!2; !1/ holds for an inaccessi-
ble � and that there is an ideal on !2 with closure properties resembling, but weaker
than, presaturation—are (simultaneously) consistent with PFA.

Finally, it is well known that PFA implies that every proper poset Q completely
embeds below some condition in ŒH� �!1=NS (for all sufficiently large � ); this is due
to the existence of stationarily manyM 2 }!2.H� / such that !1 �M and there ex-
ists an .M;Q/-generic. Let SH�Q denote this stationary set.1 So, in particular, if PFA
holds and I is an ideal whose associated forcing PI is proper, then PI completely
embeds into another ideal forcing PI 0 where MI 0 concentrates on S

H�0
PI . (Namely, I 0

is the nonstationary ideal restricted to SH�0PI .) In general the nature of this complete
embedding PI ! PI 0 is mysterious; however, we produce a model of PFA with such
complete embeddings of a simple form. (The proof appears in Section 6.)

Theorem Relative to a super-3-huge cardinal, it is consistent that PFA holds and
that there are ideals I; I 0 such that PI ;PI 0 are proper, I 0 projects to I in the Rudin–
Keisler sense, and this projection is also a projection in the sense of forcing.

The paper is organized as follows. Section 2 gives background material and nota-
tion, including a discussion “plus” versions of forcing axioms and Foreman’s du-
ality theorem (which is heavily used throughout the paper); Section 3 discusses
DRP and characterizations in terms of ideals on !2; Section 4 is about models of
MAC!1.� -closed/ with � -closed ideal forcings; Section 5 is about models of PFA
with proper ideal forcings; and Section 6 discusses “Ideal projections as forcing pro-
jections” in models of PFA.

2 Notation and Background

2.1 Ideals }�.H� / denotes the set ofM � H� such that jM j < � andM \ � 2 �.
If Z is a set, NS � Z denotes the ideal ¹A � Z j A is nonstationary in

S
Zº.2

Throughout this paper, ideal always means a normal ideal. If I is an ideal, then MI
denotes the filter which is dual to I ; similarly, if F is a filter, then MF denotes its dual



PFA and Ideals on !2 Whose Associated Forcings Are Proper 399

ideal. IC denotes the I -positive sets (i.e., if I � }.Z/, then IC is the collection of
S 2 }.Z/ such that S … I ); if F is a filter, then FC means MFC. If � is a class and
F a filter, we say that F concentrates on� iff there is some A 2 F such that A � �
(and an ideal I concentrates on � iff MI concentrates on �). The forcing associated
with I is .IC;�/, which we will denote by PI ; this is equivalent to forcing with
}.Z/=I � ¹0º, where by definition S DI T iff the symmetric difference of S and T
is in I .
.�; �/ � .� 0; �0/ denotes the statement, “for every first order structure A on

� , there is a Z � A such that jZj D � 0 and jZ \ �j D �0 (the classic Chang’s
conjecture is the special case .!2; !1/ � .!1; !/).”

We refer to a notion related to saturation of an ideal; this notion is analyzed in
more detail in [3], though no results from that paper are used here.

Definition 1 LetH be a set (typically � � H � H� for some � ), let Z � }.H/,
and let I � }.Z/ be an ideal. Suppose that I 0 is an ideal over some Z0 � H� 0 for
� 0 � jH j such that I 0 projects to I ; that is, I D ¹¹Z0 \H j Z0 2 A0º j A0 2 I 0º.
Let � W .I 0/C ! IC be the map S 7! ¹M \H jM 2 Sº.
� If � is a projection in the sense of forcing (i.e., pointwise preimages of max-
imal antichains are maximal), then we say that I; I 0 witnesses “ideal projec-
tions as forcing projections” and write FP.I 0; I /.
� If there is some I 0 such that FP.I 0; I / holds, then we say that FP.I / holds.
� If FP.I 0; I / holds where I 0 is the conditional club filter relative to I atH� 0 ,3

we say that FPConditional Club.I / holds.

In [3] it is shown that FP.I / implies precipitousness of I , and that
FPConditional Club.I / is equivalent to saturation of I . (The latter is essentially due
to Foreman [7, Lemma 3.46].) In the present paper we produce a model of FP.I /
where I is not saturated (or even presaturated).

2.2 Forcing axioms By MA.�/ we always mean MA!1.�/; that is, for every
P 2 � and every !1-sized collection D of dense subsets of P there is a filter on
P which meets every set in D . For an ordinal ˛, MAC˛.�/ means that for every
P 2 � , every !1-sized collection D of dense subsets of P, and every sequence
h PSi j i < ˛i of P-names such that 
P “ PSi is stationary subset of !1” for every
i < ˛, there is a filter F � P which meets every Di , and for every i < !1:
. PSi /F WD ¹ˇ W there is some q 2 F such that q 
 Ľ 2 PSiº is stationary.

The proof of Theorem 2.53 in Woodin [14] shows thatMA.¹Pº/ is equivalent to
stationarity of the following set:

S
H�
P WD

®
the set ofM � .H� ;2; ¹Pº/ such that !1 �M
and there exists an .M;P/-generic object

¯ (2)

for all (some) sufficiently large � . The same argument shows that MAC˛.¹Pº/ is
equivalent to the statement: for every sequence h PSi j i < ˛i of P-names for station-
ary subsets of !1, the set

S
H�
PES;P
WD
®
the set ofM � .H� ;2; ¹P;

PESº/ such that !1 �M and there exists

a g which is .M;P/-generic and PSg is stationaryfor every i < ˛
¯
;

(3)
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is stationary for all (some) sufficiently large � . Using the latter equivalence as moti-
vation, let us define the following apparent strengthening ofMAC!1.¹Pº/.

Definition 2

� For a poset P and a regular cardinal � such that }.P/ 2 H� : S
CDiag;H�
P will

denote the set of M � .H� ;2; ¹Pº/ such that !1 � M and there exists a g
which is .M;P/-generic and such that PSg is stationary whenever PS 2 M is a
P-name for a stationary subset of !1.
� MACDiag.�/ denotes the statement that for all P 2 � and for sufficiently

large regular � , SCDiag;H�
P is stationary.

There are obvious generalizations of Definition 2 which require stationary evaluation
of names of stationary subsets of Œ��! by g.4 We note the following.

Lemma 3 Suppose that � is a class of posets such that whenever P 2 � then
P � Col.!1; }.!1/V Œ

PG�/ 2 � (where PG is the canonical P-name for the P-generic
object). ThenMAC!1.�/ is equivalent toMACDiag.�/.

Proof To see thatMACDiag.�/ impliesMAC!1.�/, fix any P 2 � and a regular
� such that }.P/ 2 H� . If h PSi j i < !1i is a sequence of P-names for station-
ary subsets of !1, then almost every M 2 S

CDiag;H�
P has PES as an element; since

!1 � M , then PSi 2 M for each i . Then if g is any .M;P/-generic which witnesses
thatM 2 SCDiag;H�

P , then . PSi /g is stationary for each i < !1.
Now assume thatMAC!1.�/, and let P 2 �; we want to show thatMACDiag.P/

holds. Let PQ be the P-name for Col.!1; }.!1/V Œ
PG�/, where PG is the canonical P-

name for the P-generic; so by assumption, P� PQ 2 � . Let h PT˛ j ˛ < !1i be a (P� PQ)-
name which is forced to enumerate ¹S 2 V ŒG� j V ŒG� ˆ S � !1 is stationaryº.
Now for each ˛ < !1, P � PQ forces that PT˛ is stationary (since PQG is countably
closed and thus stationary set preserving in V ŒG�). Then byMAC!1.P� PQ/, SH�

PET;P� PQ

is stationary. Let M be any element of SH�
PET;P� PQ

, let PS 2 M be a P-name for a

stationary subset of !1, and let g � h be an .M;P � PQ/-generic witnessing that
M 2 S

H�
PET;P� PQ

. Then PSg D . PT˛/g�h for some ˛ < !1, and the latter is stationary

sinceM 2 SH�
PET;P� PQ

.

Corollary 4 PFAC!1 is equivalent to PFACDiag, MMC!1 is equivalent to
MMCDiag, andMAC!1.� -closed / is equivalent toMACDiag.� -closed /.

Proof Let � be one of those three classes of posets (i.e., proper, station-
ary set preserving for subsets of !1, or � -closed). Then for every P 2 � ,
P � Col.!1; }.!1/V Œ

PG�/ 2 � . Apply Lemma 3.

2.3 Diagonal reflection We recall the definition of DRP from [4].

Definition 5 Let Z be a class of !1-sized sets (e.g., Z could be the class of all
!-closed sets).

The diagonal reflection principle at � relative to Z, abbreviated DRP.�;Z/, is
the following statement:

There are stationarily manyM 2 }!2.H.�!/C/ such that
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(1) M \H� 2 Z;
(2) whenever R 2 M is a stationary subset of Œ� �! , then R \ ŒM \ ��! is sta-

tionary in ŒM \ ��! .
We say that DRP holds on Z iff DRP.�;Z/ holds for all regular � � !2.

Definition 6 wDRP.�;Z/ is defined exactly like DRP.�;Z/ except that we re-
place clause 5 of the definition with the following:
� WheneverR 2M is a projective stationary subset of Œ� �! , thenR\ŒM \��!
is stationary in ŒM \ ��! .

Independently, Viale [13] considered notions very similar to DRP and proved similar
theorems to those in [4]. Adopting his terminology, for an ordinal � of cofinality at
least !2 and an M � .H� ;2; ¹�º : : :/, let us say that M is � \ cof.!/-faithful iff
R\ sup.M \ �/ is stationary in sup.M \ �/ for every R 2M which is a stationary
subset of � \ cof.!/. Similarly, we will say thatM is Œ��!-faithful if the analogous
statement holds for every R 2M which is a stationary subset of Œ��! .

For this paper, the most relevant classes Z in Definition 5 are the classes of inter-
nally approachable (IA!1 ) and internally club (IC!1 ) structures of size !1. IA!1
is the class of all M such that there is some 2-increasing and �-continuous chain
hN� j � < !1i of countable sets such that M D

S
�<!1

N� and every proper ini-
tial segment of EN is an element of M . IC!1 is the (possibly wider) class defined
similarly, except that we only require that each N� is an element ofM (equivalently,
M 2 IC!1 iffM \ ŒM �! contains a club).

2.4 Forcing quotients and Foreman’s duality theorem Following [7], if P and Q are
posets, then i W P ! Q is a regular embedding of P to Q iff i preserves the order,
preserves incompatibility, and pointwise maps maximal antichains in P to maximal
antichains in Q. If i W P! Q is regular and G � P is generic, then Q=i 00G denotes
the collection of q 2 Q such that q is compatible with every member of i 00G; the
ordering on Q=i 00G is just the ordering inherited from Q. Regularity of i ensures
that Q is forcing equivalent to P �Q=i 00 PG (where PG is the canonical P-name for its
generic object).

We will often use the following construction of precipitous filters and caution
that it varies slightly from many of the constructions in [7] because the construction
below yields a filter which does not extend the ground model’s ultrafilter.5 Suppose
that j W V !U N is an ultrapower embedding via some normal ultrafilter U 2 V
which concentrates on ¹M j M � H�º and has critical point � (where � � �). Let
P 2 H� be a poset; note that j � P W P! j.P/ preserves order and incompatibility.
Assume also that

j � P is a regular embedding from P to j.P/: (4)
This happens, for instance, whenever P has the �-cc, which will always be the case
in this paper.6 So j.P/ is forcing equivalent to P � j.P/=j 00 PG. Then whenever G
is .V;P/-generic and H is .V ŒG�; j.P/=j 00G/-generic, in V ŒG�ŒH� the map j can
be lifted to a OjG�H W V ŒG� ! NŒG�ŒH� via �G 7! j.�/H 0 , where H 0 is the
.V;P � j.P/=j 00 PG/-generic obtained by transferring G � H via the forcing equiv-
alence of P � j.P/=j 00 PG with j.P/. This map will be well defined and elementary
(see Cummings [5, Section 9] for details). Also, OjG�H .G/ is equal to the generic
for .V; j.P// obtained by transferring G � H to a generic for j.P/ modulo the
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equivalence of j.P/ with P � j.P/=j 00G. This last fact can be used to show that
N \ Oj 00G�HH�ŒG� D j

00H�. Now Oj 00G�HH�ŒG� is an element of NŒG�ŒH�, and

UG�H WD
®
A 2 V ŒG�

ˇ̌
A � }.H�ŒG�/ and Oj 00G�HH�ŒG� 2 OjG�H .A/

¯
(5)

is a V ŒG�-normal ultrafilter.7 We caution again that we are using Oj 00G�HH�ŒG�, not
j 00H�, to define the ultrafilter UG�H , and as a result UG�H will typically not extend
U (e.g., if P turns � into a successor cardinal, then UG�H concentrates on mod-
els which believe that � is a successor cardinal, while U concentrates on models
which believe that � is inaccessible). Still, using the definition of UG�H , the fact that
N \ Oj 00G�HH�ŒG� D j 00H�, and the assumption that j is an ultrapower embedding
which maps P regularly into j.P/, then UG�H will always concentrate on the set A
of thoseM 0 � H�ŒG� such that we have the following:
� M 0 \ V 2 V ; letM denoteM 0 \ V .
� M is an element of the underlying set

SS
U measured by U (e.g., if U is

an ultrafilter on }.S/ thenM 0 \ V 2 S ).
� V ˆ “M \ P is a regular subposet of P” (recall that we are assuming (4)).

Using these facts, it can be shown that NŒG�ŒH� D ¹ OjG�H .f /. Oj 00G�HH�ŒG�/ j
f 2 V ŒG� \ AV ŒG�º (recall from above that A 2 V ŒG� will always have mea-
sure one in UG�H ), and it follows that OjG�H is the ultrapower map corresponding to
ult.V ŒG�; UG�H /.

In V ŒG� define the following functions on A (here we again use the notation
M WDM 0 \ V wheneverM 0 \ V 2 V ):

(1) Q.M 0/ WD P=.G \M/.
(2) h.M 0/ WD the generic for P=.G \M/ obtained by G and the forcing equiva-

lence between P and .P \M/ � P=. PG \ LM/.
(3) Given a q 2 j.P/=j 00G, note that q 2 V and that there is some fq 2 V such

that q D Œfq�U (here U was the ultrafilter in the ground model). Then define
in V ŒG� the function f 0q on A byM 0 7! fq.M/.

Then one can check:

For anyH which is .V ŒG�; j.P/=j 00G/-generic,
.1/ ŒQ�UG�H D j.P/=j

00GI
(6)

.2/ Œh�UG�H D H I

.3/ for every q 2 j.P/=j 00G; Œf 0q �UG�H D q:

Definition 7 In V ŒG�, F.j / denotes the collection of all A � }.H�/ such that

j.P/=j 00G LA 2 PUG� PH .

F.j / is a filter in V ŒG� and inherits the completeness and normality properties from
U (see [7, Section 3.2]). By (6) and a special case of Foreman’s duality theorem—
namely, [7, Proposition 7.13]—we have the following:

In V ŒG�, the map A 7! k LA 2 PUG� PHkro.j.P/=j 00G/ is an isomor-
phism between F.j /C and a dense subset of ro.j.P/=j 00G/.

(7)

3 Equivalent Formulations of DRP and Effect of DRP on Generic Embeddings

In this section we show that the existence of ideals whose forcings are proper implies
DRP (at least if the ideal concentrates on IC!1 ), and, in turn, DRP always yields
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ideals whose associated forcings resemble proper forcings in a weak sense. Namely,
DRP implies that for sufficiently small �, stationary subsets of Œ��! are not destroyed
in the generic ultrapower of V (though they may be destroyed in the generic exten-
sion!). In [4] we showed the following (see Section 2.3 for the definition of IC!1
and IA!1 ):
� MAC!1.� -closed/ implies DRP.�; IA!1/ for all regular � � !2 (and MM
implies wDRP.�; IA!1/ for every regular � � !2; see Definition 6).
� DRP.�; IC!1/ implies that there is a stationary set of M 2 IC!1 \

}!2.H.�!/C/ on which NS � ŒH� �
! condenses correctly; that is, if

� W HM ! M is the inverse of the transitive collapse of M and NH WD

��1.H� /, then .NS � Œ NH�!/HM coheres with .NS � Œ NH�!/V .
There are several equivalent formulations of DRP.�; IC!1/; note that formula-

tions (C) and (D) below look like weak versions of saying PI is proper.

Theorem 8 For regular � � !2, let Z� denote the collection of M 2

}!2.H.�!/C/ such thatM \H� 2 IC!1 . The following are equivalent:
(A) DRP.�;Z� /;
(B) there are stationarily many M 2 Z� such that NS � ŒH� �

! condenses
correctly viaM ;

(C) there is a normal ideal I whose dual contains the club filter overZ� such that

PI “every stationaryR � ŒH� �! from the ground model remains stationary
in ult.V; PG/”;

(D) there is a stationary S � Z� such that S 
NS “every stationaryR � ŒH� �!
from the ground model remains stationary in ult.V; PG/.”

Proof Note that ifM \H� 2 IC!1 , thenM \ ŒM \H� �! contains a club.8 This
implies that, letting �M W HM ! M be the inverse of the Mostowski collapse map
and NH WD ��1M .H� /, if S 2M is a stationary subset of ŒH� �! , then S \ ŒM \H� �!
is stationary if and only if V believes that ��1M .S/ is stationary in Œ NH�! (see the proof
of Theorem 3.6 in [4] for more details). This gives the equivalence of (A) with (B).

For the remainder of the proof, we use the standard fact9 that if U is a normal V -
ultrafilter on some Z � }!2.H�/ (e.g., if U is generic for the forcing with a normal
ideal) and j W V !U ult.V; U / is the ultrapower, then

j � H� 2 ult.V; U / and is represented by ŒM 7! �M �U ,
where �M is the inverse of the Mostowski collapse ofM . (8)

To see that (A) implies (D), let S be the stationary set which witnesses
DRP.�;Z� /, let G be generic for .V; }.Z� /=.NS � Z� // with S 2 G, and
let j W V !G ult.V;G/ be the generic ultrapower. Let R 2 V be a stationary
subset of ŒH� �! ; note that, by the definition of Z� , there are G-many models with
ŒH� �

! and R as elements. By (8), together with Los’s theorem and the fact that (A)
implies (B), ult.V;G/ believes that NS � Œj.H� /�

! condenses correctly via j �,
where j � WD j � H.�!/C . In particular, ult.V;G/ believes that .j �/�1.j.R// D R
is stationary.

(D) clearly implies (C).
Finally, we prove that (C) implies (A). Let G be generic for .V;PI /, and

let j W V !G ult.V;G/ be the generic embedding. Then for every station-
ary R � ŒH� �

! , since R remains stationary in ult.V;G/ and since ult.V;G/ ˆ
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“j 00H.�!/C \ j.H� / is internally club,” we have that ult.V;G/ ˆ “j.R/ reflects to
j 00H� .” So by Los’s theorem there areG-many structuresM such that every R 2M
that is a stationary subset of ŒH� �! reflects toM \H� . Since the dual of I extends
the club filter, this collection ofM is stationary and witnesses DRP.�;Z� /.

Corollary 9 Suppose that I is a normal ideal which concentrates on
IC!1 \ }!2.H.�!/C/ such that PI is proper. Then DRP.�; IC!1/ holds.

Proof This is an immediate corollary of part C of Theorem 8, the definition
of properness, and the fact that stationarity is downward absolute from V ŒG� to
ult.V;G/.

We also state, without proof, a similar characterization for wDRP.Unif!1/ (here
Unif!1 denotes the class of !1-sizedM such that cf .sup.M \ �// D !1 for every
� 2 M of uncountable cofinality). The proof is very similar to the proof of Theo-
rem 8, except that one would instead use the fact that for M 2 Unif!1 , if S 2 M
is a stationary subset of � \ cof.!/, then S reflects to sup.M \ �/ if and only if V
believes that ��1M .S/ is stationary in ��1M .�/.

Theorem 10 For regular � � !2, let Z� denote the collection of M 2

}!2.H.�!/C/ such thatM \H� 2 Unif!1 . The following are equivalent:
(A) wDRP.�;Z� /;
(B) there are stationarily manyM 2 Z� such that NS � � \ cof.!/ condenses

correctly viaM ;
(C) there is a normal ideal I whose dual contains the club filter over Z� such

that 
PI “every stationary R � � \ cof.!/ from the ground model remains
stationary in ult.V; PG/”;

(D) there is a stationary S � Z� such that S 
NS “every stationary
R � � \ cof.!/ from the ground model remains stationary in ult.V; PG/.”

4 Models of DRP.�/ With Ideal Forcings That Have a � -Closed Dense Subforcing

In Foreman, Magidor, and Shelah [10] it was noted that if � is supercompact, then
MAC!1.� -closed/ holds in V Col.!1;<�/.10 In that model, a special case of Foreman’s
duality theorem (see [8, Proposition 7.13]) implies that for every � -closed poset Q
and every �, there is an ideal which concentrates on SQ \ }!2.H�/ and such that
the forcing with the ideal is equivalent to a � -closed forcing. We give a rough sketch
of the argument; more details and similar arguments appear in Section 5, where we
obtain analogous results for PFA (but starting from much larger cardinals than a
supercompact).

Let � be supercompact, let P WD Col.!1; < �/, and let G be .V;P/-generic. Let
Q be a � -closed forcing in V ŒG�, and let PQ be a name for it. Inside V ŒG�, pick a �
sufficiently large such that Col.!1; �/ is forcing equivalent to Q � Col.!1; �/ (see
[5, Section 14]). Note that V and V ŒG� compute Col.!1; �/ the same way since they
have the same ! sequences. Let j W V !M be aH�-supercompact ultrapower of V
(i.e., the ultrapower map by some normal fine measure on }�.H�/). Since P has the
�-cc in V , then j � P W P ! j.P/ is a regular embedding, and so the construction
in Section 2.4 is applicable; inside V ŒG� let F.j / be as in Definition 7.

Since Col.!1; �/ is forcing equivalent to Q � Col.!1; �/ and MŒG� is closed
under � sequences from V ŒG�, then MŒG� sees the forcing equivalence. So
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MŒG�ŒH� always has a .HV ŒG�

�
D H

MŒG�

�
;Q/-generic; call it g. Then g generic

clearly transfers via Oj � H
V ŒG�

�
to a . Oj 00HV ŒG�

�
; Oj .Q//-generic Qg, and, more-

over, Oj � H
V ŒG�

�
is an element of MŒG�ŒH�. Thus MŒG�ŒH� always believes

that there is a . Oj 00HV ŒG�

�
; Oj .Q//-generic, and so by definition of F.j / we have

V ŒG� ˆ SQ 2 F.j /.
Furthermore, suppose that PS 2 Oj 00HV ŒG�

�
is a Oj .Q/-name for a stationary subset

of !1; say PS D Oj . PNS/. Then H�ŒG�Œg� D M�ŒG�Œg� ˆ “ PSg is stationary.” Since
� is sufficiently large with respect to Q, MŒG�Œg� ˆ “ PSg is stationary” and thus so
does MŒG�ŒH�, since MŒG�ŒH� is a stationary set-preserving forcing extension of
MŒG�Œg�. From this it follows thatMACDiag.� -closed/ holds in V ŒG�.

By (7), forcing with F.j / is equivalent (in V ŒG�) to forcing with
Col.!1; < j.�//=G. In particular, the forcing associated with F.j / has a � -closed
dense subset. If the arbitrary Q we chose at the beginning was, say, Col.!1;H� /
for some regular � then F.j / concentrates on the set SC!1Q , which consists of sets
which witness DRP.�/ structures.

Finally, we observe that this model satisfies “ideal projections as forcing pro-
jections” (see Section 2.1) for a pair of ideals whose forcings are � -closed.
Suppose that � < � � �0 and that U is a normal measure on }�.�0/ and
jU W V ! MU , the ultrapower map. Let proj.U / be the projection of U to }�.�/
and jproj.U / W V ! Mproj.U /, the ultrapower map. In V ŒG� consider the filters F.U /
and F.proj.U // (see Definition 7). We need to show that FP.F.U /; F.proj.U ///
holds in V ŒG�. The simple but key observation is that ColMproj.U/.!1; < jproj.U /.�//

is a complete subforcing in the sense of V ŒG� of ColMU .!1; < jU .�//, since all
the listed models are closed under !-sequences (so they all compute the same rel-
evant Levy collapse posets), and Col.!1; < jproj.U /.�// is a regular subforcing of
Col.!1; < jU .�//. This ensures that the canonical map .F 0/C ! FC given by
A 7! ¹Z \ � j Z 2 Aº is a forcing projection. We omit the details here, but
a similar argument is given in Section 6. The point is that the ideal projection
from .F.U //C ! .F.proj.U ///C is the same as the composition of the following
sequence of forcing projections. (It is important that the map numbered 4 in this list
is a forcing projection in the sense of V ŒG�.) Here P WD Col.!1; < �/ and P00, P0 are
jU .P/ and jproj.U /.P/, respectively:

(1) the dense embedding from .F.U //C ! ro.P00=G/ from (7), given by
A 7! k LA 2 QU

PH 00kro.P00=G/;
(2) the forcing projection from ro.P00=G/ ! ro.P0=G/ obtained from the forc-

ing projection P00=G ! P0=G (i.e., obtained via the map which restricts
conditions in P00 to their support on jproj.U /.�/; recall that this is indeed a
forcing projection in the sense of V ŒG� by the remarks above);

(3) the isomorphism from (a dense subset of) ro.P0=G/ ! .F.proj.U ///C ob-
tained from (7) (i.e., the inverse of the map B 7! k LB 2 Bproj.U / PH 0kro.P0=G/.

5 PFA and Proper Ideals on !2

In this section we construct a model of PFA which has many ideals I such that
PI is proper. Since there are known models of PFA where stationary reflection for
subsets of !2 \ cof.!/ fails (see Beaudoin [1]), and since the existence of an ideal
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I with completeness !2 whose forcing is proper implies such stationary reflection,11
we know that PFA does not imply the existence of ideals on !2 whose forcing is
proper. In Section 3, however, we showed that DRP (which follows from PFAC!1 )
implies that there are ideals whose associated forcings satisfy a very weak form of
properness. In this section we show that PFACDiag is consistent with the existence
of many ideals12 whose associated forcings are proper.

Our model of PFA also exhibits weaker versions of properties which are known to
be inconsistent with PFA. Foreman and Magidor [9] proved that, under PFA, there is
no presaturated ideal on !2 and that .!3; !2/ � .!2; !1/ fails (and that these facts
are preserved under mild forcing extensions of PFA). In particular, there is no ideal
on !2 that has some well-founded generic ultrapower jG W V !G ult.V;G/ where
ult.V;G/ is closed under sequences of length < jG.!2/ from V ŒG�. The following
theorem shows that PFA is consistent with the existence of generic ultrapowers that
are closed under sequences of length jG.!2/ from the ground model.

The theorem uses a superhuge cardinal.

Definition 11 Let n 2 !, and let � be a cardinal.
� � is n-huge iff there is an elementary j W V ! M where M is transitive,

crit.j / D �, and M is closed under j n.�/ sequences. � is huge iff it is
1-huge.
� � is super-n-huge iff for every 
 > � there is an n-huge embedding with
critical point � such that j.�/ > 
 . � is superhuge iff � is super-1-huge.

See Kanamori [12] for more information about notions related to hugeness. In par-
ticular, � is n-huge iff there is a �-complete normal ultrafilter U over some }.�/ and
cardinals � D �0 < �1 < � � � < �n D � such that ¹x � � j otp.x \ �iC1/ D
�iº 2 U for each i < n.

Theorem 12 Suppose that there is a super-2-huge cardinal. Then there is a proper
forcing extension which satisfies PFACDiag and has the following property.

Let Q be any proper poset. Then for a proper class of inaccessible � there is an
ideal I�;Q such that
� MI�;Q concentrates on SDiag

Q \ ¹M � H� j otp.M \ �/ D !2 andM \
!2 2 !2º (i.e., MI�;Q concentrates on sets in SDiag

Q which witness .�; !2/ �
.!2; !1/);
� the forcing associated with I�;Q is proper;
� whenever jG W V !G ult.V;G/ is a generic ultrapower by I�;Q, then
ult.V;G/ is closed under � D jG.!2/-sequences from V (though not nec-
essarily from V ŒG�).

Proof Let � be a super-2-huge cardinal. We will do the standard construction, but
for that we need a Laver function for huge embeddings.13

Fact 13 Let n 2 !, and let n � 1. If � is super-.nC1/-huge, then there is a Laver
function Lav W � ! V� for n-huge embeddings; that is, for every x and every � there
is an n-huge embedding j such that cr.j / D �, j.�/ � �, and j.Lav/.�/ D x.

This is well known, but we include a sketch of the proof, since there is a technical
issue here that does not arise when constructing a Laver function for supercompact
embeddings.14 I also thank the anonymous referee for pointing out an error in the
original version.
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Proof Mimic the proof of Theorem 20.21 in [11]. Let us say that i is an .˛;� �/-
n-huge embedding iff i is n-huge, cr.i/ D ˛, and i.˛/ � �; similarly, we say that i
is .˛; �/-n-huge if i is n-huge with critical point ˛ and i.˛/ D �. For any ˛ and any
partial function g W ˛ ! V˛ , set the following:

�˛;g W' the least ordinal � such that for some x 2 V�, there
is no .˛;� �/-n-huge embedding i such that i.g/.˛/ D x (if
such a � exists).

(9)

Recursively, define a partial function f � W � ! V� by the following:
Assuming f � � ˛ has been defined;

.1/ if �˛;f ��˛ is not defined, then f �.˛/ is not defined either;

.2/ if �˛;f ��˛ is defined but none of the x witnessing this fact
(10)

are in V� , then again f �.˛/ is not defined;
.3/ otherwise f �.˛/ is defined to be some x 2 V� which

witnesses that �˛;f ��˛ is defined.
Note that if f �.˛/ is defined, say f �.˛/ D x˛ , then x˛ 2 V� and there is no
.˛;� �˛;f ��˛/-n-huge embedding i such that i.f � � ˛/.˛/ D x˛ .

Suppose for a contradiction that � is super-(nC 1)-huge and that there is no Laver
function from � ! V� for n-huge embeddings. So ��;f is defined for every partial
f W � ! V� , and, in particular,

��;f � is defined .in V /: (11)
By super-.nC 1/-hugeness of �, there is some (nC 1)-huge embedding j W V !M

such that cr.j / D � and j.�/ > ��;f � .

Claim 14 �M
�;f �

and j.f �/.�/ are defined, and �M
�;f �
� �V

�;f �
.

Proof By (11) and the definition of ��;f � , there is some x� 2 V��;f � which
witnesses (in V ) that ��;f � is defined. Since ��;f � < j.�/ and M is closed under
j.�/ sequences, then this x� is an element of VM

j.�/
.

Set �� WD �V
�;f �

. Note that since f � maps into V� , then j.f �/ � � D f �.
We will show that M ˆ “There is no .�;� ��/-n-huge embedding i such that
i.f �/.�/ D x�.” If we manage to prove this, then since x� 2 V�� D VM

��
and

�� < j.�/ (by choice of j ), then j.f �/.�/ will indeed be defined (since then x� is
an element of VM

j.�/
and thus we would be in the last clause, rather than the middle

clause, in the definition (10) of j.f �/ insideM ). Moreover, this will also show that
�M
�;f �
� �� (by minimality in the definition of the �.�;�/ function as defined inM ).

Note that x� need not be equal to j.f �/.�/, but this is not necessary, as we only are
trying to show that j.f �/.�/ is defined.

So suppose for a contradiction that M ˆ “There is some .�;� ��/-n-huge em-
bedding i such that i.f �/.�/ D x�”; the quoted statement is †2 in parameters �,
��, f �, x�. Since � is super-.nC 1/-huge, then, in particular, � is supercompact in
V and j.�/ is supercompact in M . Then VM

j.�/
�†2 M (see Kanamori [12, Propo-

sition 22.3]). So VM
j.�/
D Vj.�/ ˆ “There is some .�;� ��/-n-huge embedding i

such that i.f �/.�/ D x�.” Then there is some � 2 Œ��; j.�// and a normal measure
U 2 Vj.�/ such that U � }}.�/ codes this n-huge embedding; but since j.�/ is
inaccessible in V and � < j.�/, then U also codes an n-huge embedding from the



408 Sean Cox

point of view of V .15 This contradicts the fact that (in V ) there is no .�;� ��/-n-
huge embedding i such that i.f �/.�/ D x�.

So by Claim 14 we may set Nx WD j.f �/.�/ and N� WD �M
�;f �

. We reach a contradic-
tion by showing that M ˆ “There is some .�;� N�/-n-huge embedding i such that
i.f �/.�/ D Nx.” This is the first point where we use the .nC 1/-hugeness of j (up
to now we have only used 1-hugeness of j ). Let U be the n-huge ultrafilter derived
from j ; that is, set �n WD j n.�/ and U WD ¹A � }.�n/ j j 00�n 2 j.A/º. By standard
arguments, if iU W V ! N is the ultrapower, then iU .f �/.�/ D j.f �/.�/ D Nx and
iU .�/ D j.�/ > ��;f � � N�. SinceM is closed under j nC1.�/-sequences from V ,
then U 2M and iU � M is the ultrapower map as computed inM ; so, in particular,
M ˆ “iU .f �/.�/ D Nx and iU .f �/.�/ > N�,” which is a contradiction.

We note that the assumptions of Fact 13 can be weakened a bit: in the proof, we
only needed the embedding j W V ! M to have the property that the n-huge ul-
trafilter derived from j is an element ofM . For this it would suffice to assume that
� is “super-.n C 1/-almost-huge” (or in fact much less, though more than super-n-
hugeness seems to be required for the argument).

Let P be the standard Baumgartner forcing to produce a model of PFA, but using
the Laver function from Fact 13. So P is a countable support iteration of length �
where for ˛ < �, the ˛th component is the (P � ˛)th evaluation of Lav.˛/, if P � ˛
forces Lav.˛/ to be a proper forcing (see [11] for details). Let G be .V;P/-generic.
Let Q 2 V ŒG� be a proper poset, let � be a (regular) cardinal, let PQ 2 V be a name
for Q, and let j W V ! N be a huge embedding with critical point � such that
j.�/ > � and PQ D j.Lav/.�/.

In V ŒG� let Fj be as in Definition 7. We need to show the following:
(1) forcing with .Fj /C is a proper forcing;
(2) forcing with .Fj /C yields a generic ultrapower which is closed under �.!2/

sequences from the ground model, where � is the generic ultrapower embed-
ding;

(3) Fj concentrates on S
Diag
Q .

Now N believes that j.P/ is a countable support iteration of proper forcings,
where each forcing in the iteration has size < j.�/. Since N is closed under < j.�/
sequences, then for every � < j.�/, N is correct whenever it believes that j.P/ � �
forces j.Lav/.�/ to be proper; also, N correctly computes the countable support
iteration of j.Lav/.16 Thus V ˆ “j.P/ is a countable support iteration of proper
forcings and is thus proper.” Then we use the following fact.17

Fact 15 If R is a countable support iteration of proper forcings, then for every
˛ < lh.R/: R˛ 
 “R= PG˛ is proper.”

Then with j.P/ playing the role of the R from Fact 15, we have the following in
V ŒG�:

j.P/=.j 00G/ D j.P/=G is proper: (12)
Then (7) and (12) imply that PFj is proper in V ŒG�.

We want to see that SDiag
Q 2 Fj . (This part only requires the supercompact-

ness of � and is just the standard argument due to Baumgartner.) Let H be any
.V ŒG�; j.P/=G/-generic. V ŒG� andNŒG� have sufficient agreement so thatNŒG� ˆ
“Q is a proper forcing.” So by the definition of Baumgartner’s forcing, the �th
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component of H is generic for .N ŒG�;Q/ and, equivalently, generic for .V ŒG�;Q/.
Let g denote this component. Now Oj � WD OjG�H � H

V ŒG�

�
2 NŒG�ŒH�; this is

standard (it is the inverse of the collapsing map obtained from j 00HV
�

and j 00G).
Thus NŒG�ŒH� sees that g can be transferred to a . Oj 00G�HH�ŒG�; OjG�H .Q//-generic;
call this generic Qg. In addition, if PS D OjG�H .

PNS/ is any element of Oj 00G�HH�ŒG�
which is a OjG�H .Q/-name for a stationary subset of !1, then PNSg is stationary in
HV
�
ŒG�Œg� D HN

�
ŒG�Œg�. Since � is sufficiently large with respect to Q this implies

that PNSg is stationary in NŒG�Œg�, and since NŒG�ŒH� is a stationary set-preserving
forcing extension of NŒG�Œg� (by Fact 15), PNSg is still stationary in NŒG�ŒH�.

Thus we have shown that, for arbitraryH , the model Oj 00G�HH�ŒG� is an element of
OjG�H .S

Diag
Q /; so SDiag

Q 2 Fj by the definition of Fj . Also note that since j 00� 2 N
and has order type � D j.�/ D @

NŒG�ŒH�
2 , then NŒG�ŒH� ˆ otp. Oj 00G�HH�ŒG� \

ORD/ D @2 and Oj 00G�HH�ŒG�\@2 2 @2. So Fj concentrates on sets which witness
.�; !2/ � .!2; !1/.

The closure of the generic ultrapower is proved as follows. We say that
f W � ! ORD is a function in V ŒG�, where � � iK.!2/ and K is any generic for
forcing with FCj over V ŒG�, and that iK is the generic ultrapower map. By (7) there
is some H such that iK D OjG�H and OjG�H W V ŒG� ! NŒG�ŒH� is the generic
ultrapower. Say that f D PfG , and for each � < � let A� be a maximal antichain of
conditions in P which decide the value of Pf . L�/; note each A� 2 V� � N , so by the
hugeness of j we have that hA� j � < �i is an element of N . Thus f is an element
of NŒG�.

6 PFA Plus “Ideal Projections as Forcing Projections”

Finally, we prove that if we start with a super-3-huge cardinal, then the ideals in
Theorem 12 can instantiate very special forms of “ideal projections as forcing pro-
jections.” This is a property which falls somewhere between precipitousness and
saturation; moreover, certain instances of “ideal projections as forcing projections”
are equivalent to saturation of the projection ideal (see [3]). In particular, we obtain
a model of PFA where FP.I 0; I / for some I 0 whose dual concentrates on Œ�.I /�!-
faithful models;18 this property is stronger than the properness of PI .

Suppose that � is super-3-huge (see Definition 11). By Fact 13, there is a Laver
function Lav for 2-huge embeddings; that is, for every x and every � there is a � � �
and a 2-huge .�; �/-embedding i such that i.Lav/.�/ D x. Now use this Laver func-
tion in the Baumgartner forcing P for PFA, as in the proof of Theorem 12. Now con-
sider some normal ultrafilter U on ¹X � �00 j otp.X/ D �0 and otp.X \ �0/ D �º;
note that U gives rise to a 2-huge embedding. Let jU W V ! MU ; note that
jU .�/ D �

0 and thatMU is closed under j 2U .�/ D �
00 sequences.

Let proj.U / be the projection of U to a .�; �0/-huge ultrafilter,19 and let jproj.U / W
V !proj.U / Mproj.U /. Then jU factors as k ı jproj.U / such that k � �0 C 1 D id. Let
P0 WD jproj.U /.P/. Note that

jU .P/ D jproj.U /.P/ D P0: (13)

Let G be .V;P/-generic. In V ŒG� let PU 00 denote the P0=G-name for the V ŒG�-
ultrafilter on Œ�00��0 derived from . OjU /H (see Section 2.4), and let PU 00 denote the
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P0=G-name for the V ŒG�-ultrafilter on Œ�0�� derived from . Ojproj.U //H (where H is
.V ŒG�;P0=G/-generic). Let F 00 WD F.U / and F 0 WD F.proj.U // be as in Defini-
tion 7.

Consider the map on .F 00/C defined by A 7! proj.A; �0/ WD ¹Z \ �0 j Z 2 Aº.
We want to see that this is the ideal projection of F 00 onto F 0 and that this is also a
projection in the sense of forcing. So assume that A is a maximal antichain in .F 0/C
and that A 2 .F 00/C. We need to show that there is some B 2 A such that A has
F 00-positive intersection with Lift.B/ WD ¹Z 2 Œ�00��0 j Z \ �0 2 Bº.

Let H be .V ŒG�;P0=G/-generic such that A 2 PU 00H (such a generic exists since
A 2 .F 00/C, by the definition of F 00). Then (note that k fixes P0) k can be extended to
Qk WMproj.U /ŒG�ŒH�!MU ŒG�ŒH� and OjG�HU D Qk ı OjG�Hproj.U /, and the map OjG�Hproj.U / is
(from the point of view of V ŒG�ŒH�) the ultrapower of V ŒG� by the projection of PU 00H
to Œ�0�� . By (7), .F 0/C is forcing equivalent (in V ŒG�) to P0 and so this ultrapower
is a generic ultrapower of V ŒG� by .F 0/C; so, in particular, the ultrafilter proj. PU 00H /
meets A; say that B is the element of A which is in proj. PU 00H /. Let B 00 2 PU 00H be
such that B D proj.B 00/. Then B 00 \A is F 00-positive. This completes the proof that
FP.F 00; F 0/ holds.

Finally, by the same argument as in the proof of Theorem 12, the almost-hugeness
of the embeddings and the fact that P is a countable support iteration of proper forc-
ings ensures that P0 is proper from the point of view of V ŒG�. Moreover, we have
that .F 00/C and .F 0/C are both isomorphic to a dense subset of P0. In particular,
forcing with .F 00/C is proper and so F 00 must concentrate on Œ�.F 0/�!-faithful (in
fact ŒORD�!-faithful) models.

Notes

1. This is a general fact about forcing axioms, not just PFA; see Section 2.

2. For example, if Z D ŒH� �
! , then A 2 NS � Z iff A � ŒH� �

! and there is some
F W ŒH� �

<! ! H� such that no element of A is closed under F .

3. This is defined in [7].

4. If P satisfies certain requirements, this often follows fromMACDiag.P/ for sufficiently
small �; for example, if P is � -closed and 
P “jHV

�
j D !1,” thenMAC!1.P/ implies

this generalized version for all small �.

5. The reason for this is that we want the filter to concentrate on elementary substructures
of the generic extension and thus cannot hope that a measure one set of such structures
has any intersection at all with the ground model.

6. If A � P is a maximal antichain, thenM ˆ “j.A/ is a maximal antichain in j.P/” and
this clearly then holds in V as well. Since jAj < � D cr.j /, j.A/ D j ŒA�; so j ŒA� is
maximal in j.P/.

7. Whenever j W M ! N is an embedding (not necessarily definable in M ), d 2 M ,
and j 00d 2 N , then the ultrafilter ¹A 2 M j j 00d 2 j.A/º will always be normal with
respect toM .
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8. Thus the name; in fact, this characterizes IC!1 .

9. This is essentially Claim 2.26 of [7], though that claim is specifically about generic
ultrapowers by normal ideals. Roughly, normality of U with respect to functions from
V ensures that the 2U -extension of Œid�U is equal to j 00

U
H� . This, in turn, implies that

the transitive collapse of Œid�U as computed in ult.V; U / is in the well-founded part of
ult.V; U /. Assuming that the well-founded part of ult.V; U / has been transitivized, this
transitive collapse is equal toH� and the inverse of the collapsing map is j � H� .

10. Here Col.�; �/ denotes the usual Levy collapse to add a surjection from � onto � as in
Jech [11, (15.18), p. 238]. Col.�;< �/ denotes the version which adds surjections from
� to � for every � < � , as in [11, (15.19), p. 238].

11. This is well known. If an ideal forcing (where the ideal has, say, completeness !2)
is proper and G is generic for the forcing, then for any S � !2 \ cof.!/ in V , S
remains stationary in V ŒG� and thus S D j.S/ \ !2 is stationary in ult.V;G/, where
j W V !G ult.V;G/. So by elementarity, V believes that every stationary subset of
!2 \ cof.!/ reflects.

12. In the sense that for every proper Q there are proper class many ideal forcings whose
ideals concentrate on SQ.

13. Corazza [2] considered Laver functions for super-almost-huge embeddings, starting from
a super-1-huge cardinal. An argument similar to the one below using only a Laver func-
tion for almost huge cardinals would still give proper ideals, but we want our ideals to
concentrate on models which witness .�; !2/ � .!2; !1/; this is why we instead use a
Laver function for huge embeddings.

14. This technical issue occurs in the proof of Claim 14. The issue is that if U is a .�; �/-
supercompact ultrafilter and � < �, then the projection of U to }�.�/ is a .�; �/-
supercompact ultrafilter. This need not be the case for ultrafilters witnessing hugeness.

15. And V ˆ “iU is .�;� �/-n-huge and iU .f �/.�/ D x�.”

16. Note that these facts only use the almost hugeness of j .

17. The author is not aware of a reference for this fact, but it is apparently widely known. One
way to prove it is to use the fact that P˛ has the !-covering property to show that V P˛

believes the following: “The tail forcing P=G˛ is forcing equivalent to my countable
support iteration of the same iterands.”

18. Here�.I/ is some regular cardinal sufficiently large so that the properness, precipitous-
ness, and so on of IC is correctly decided by H�.I/. Clearly, if there is an inaccessible
� > trcl.I /, then �.I/ can be taken to be strictly less than the least such �; the precise
value of �.I/ is not important in the present application.

19. That is, proj.U / D ¹¹X \ �0 j X 2 Aº j A 2 U º.
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