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PERIODICITIES OF T-SYSTEMS AND Y-SYSTEMS

REI INOUE, OSAMU IYAMA, ATSUO KUNIBA, TOMOKI

NAKANISHI, AND JUNJI SUZUKI

Abstract. The unrestricted T-system is a family of relations in the Grothen-
dieck ring of the category of the finite-dimensional modules of Yangian or

quantum affine algebra associated with a complex simple Lie algebra. The

unrestricted T-system admits a reduction called the restricted T-system. In

this paper we formulate the periodicity conjecture for the restricted T-systems,

which is the counterpart of the known and partially proved periodicity conjec-
ture for the restricted Y-systems. Then, we partially prove the conjecture by

various methods: the cluster algebra and cluster category method for the sim-
ply laced case, the determinant method for types A and C, and the direct
method for types A, D, and B (level 2).

§1. Introduction

The Y-system was introduced as a system of functional relations con-
cerning the solutions of the thermodynamic Bethe ansatz equations for the
factorizable scattering theory and the solvable lattice models [Z], [KP], [KN],
[RTV]. It was conjectured that the solutions of the Y-system have period-
icity [Z], [RTV], [KNS1]. Fomin and Zelevinsky proved it for a special case
(level 2 case in our terminology) [FZ3] by the cluster algebra approach
[FZ1], [FZ2], [FZ4]. Since then, a remarkable link has been established
between cluster algebras and cluster categories of the quiver representations
(see [BMRRT], [BMR], [CC], [CK1], [CK2], [Kel2], and references therein).
Based on this categorification method, Keller recently proved the periodicity
of the Y-system for a more general case [Kel2], [Kel3].

Meanwhile, it has been known that the Y-system is related to other sys-
tems of relations called the T-system and the Q-system [KP], [KNS1]. The
T-system is a family of relations in the Grothendieck ring of the category of
the finite-dimensional modules of the Yangian Y (g) or the quantum affine
algebra Uq(ĝ) associated with a complex simple Lie algebra g [KNS1], [N3],
[Her1], [Her2]. As a discrete dynamical system, the T-system can be also
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viewed as a discrete analogue of the Toda field equation [KOS], [KLWZ]. The
Q-system is a degenerated version of the T-system and plays an important
role in the algebraic Bethe ansatz method [Ki], [KR], [HKOTY], [KNT]. As
a side remark, it may be worth mentioning at this point that “T” stands for
transfer matrix and “Q” stands for quantum character [Ki2] in the original
literature.

As a more recent development, a connection between the Q-systems and
cluster algebras is clarified by [Ked], [DiK]. Also, a connection between the
T-systems (or q-characters) and cluster algebras is studied while seeking a
natural categorification of cluster algebras by abelian monoidal categories
[HL].

Having these results as a background, we make three simple observations:

(1) There are actually two classes of the Y-systems (resp. T-systems),
namely, the unrestricted and restricted Y-systems (resp. T-systems).
The latter is obtained by a certain reduction from the former. The peri-
odicity property above mentioned is for the restricted Y-systems.

(2) The cluster algebra structure is simpler in the T-systems than in the
Y-systems.

(3) The representation theory of quantum affine algebras is more directly
connected with the T-systems than with the Y-systems.

These observations motivate us to ask if there is a similar periodicity
property for the restricted T-systems, and indeed, there is.

In this paper, we formulate the periodicity conjecture for the restricted
T-systems, which is the counterpart of the known and partially proved peri-
odicity conjecture for the restricted Y-systems. Then, we partially prove the
conjecture by various methods. We remark that the restricted T-systems
are relations in certain quotients of the Grothendieck ring RepUq(ĝ), while
the T-systems studied in [HL] are relations in certain subrings of RepUq(ĝ).
Accordingly, the correspondence between the T-systems for the simply laced
case and cluster algebras considered here and the one in [HL] are close but
slightly different. We also note that the correspondence between the unre-
stricted T-systems for the simply laced case and cluster algebras is described
in [DiK, Appendix B].

Let us explain the outline of the paper, whose contents are roughly divided
into three parts.

In the first part (Section 2) we introduce the unrestricted T-systems
together with their associated rings, which we call the unrestricted T-algebras.
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Then, we establish an isomorphism between a subring of the unrestricted T-
algebra and the Grothendieck ring of the category of the finite-dimensional
representations of an untwisted quantum affine algebra (Corollary 2.9). The
relation between the unrestricted T- and Y-algebras is also given (Theo-
rem 2.12). They provide the representation theoretical background of the
periodicity problem we are going to discuss.

In the second part (Sections 3–7) we introduce the level � restricted
T-systems together with their associated rings, which we call the level �

restricted T-algebras, where � is an integer greater than or equal to 2. Then,
we formulate the periodicity conjecture (Conjecture 3.11) of the restricted
T-systems in terms of the restricted T-algebras. This is the main claim of
the paper. Conjecture 3.11 is completely parallel to that of the restricted
Y-systems (Conjecture 3.12). A detailed summary of our methods and
results concerning Conjecture 3.11 is given in Section 3.4. In brief, we study
and partially prove the periodicity conjecture by three independent meth-
ods: the cluster algebra/category method for the simply laced case in Section
4, the determinant method for types A and C in Sections 5 and 6, and the
direct method for types A, D, and B (level 2) in Section 7. In particular, for
the simply laced case, the relation between the restricted T-algebras and
cluster algebras is clarified in Section 4. For the cluster category method,
we follow the ideas of Keller [Kel2] based on Amiot’s generalized cluster
categories [A].

In the third part (Sections 8 and 9) we apply the extensions of the
above periodicity property to two classes of T- and Y-systems. In Sec-
tion 8 we formulate and prove the periodicity property for the restricted
T- and Y-systems at levels 1 and 0. In Section 9 we formulate the period-
icity property also for the restricted T- and Y-systems associated with the
twisted quantum affine algebras. It turns out that their periodicity property
reduces to that of the untwisted case. We remark that the nonsimply laced
Y-systems studied in [FZ2], [Kel2] are identified with certain reductions of
the restricted Y-systems belonging to this class (Remark 9.22).

We conclude the paper with a brief remark (Section 10) on a formal cor-
respondence between the periodicity of the T-systems and the q-character
of the quantum affine algebras at roots of unity. This suggests that there is
some further connection between the representation theories of quivers and
the quantum affine algebras at roots of unity behind this periodicity phe-
nomenon, possibly through the works of [N1], [N2]. The relation between the
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restricted T- and Y-algebras and cluster algebras for the nonsimply laced
case will be discussed in a separate publication.

Acknowledgments. We thank Sergey Fomin, David Hernandez, Bernhard
Keller, Anatol Kirillov, Bernard Leclerc, Hyohe Miyachi, Roberto Tateo, and
Andrei Zelevinsky for discussions and communications.

§2. Unrestricted T- and Y-systems

In this section we introduce the unrestricted T- and Y-systems of [KNS1]
as a background of the periodicity problem. We also introduce the associ-
ated algebras, which we call the unrestricted T- and Y-algebras. They are
closely connected to the Grothendieck ring of the category of the finite-
dimensional Y (g)-modules or Uq(ĝ)-modules. The content of this section is
rather independent of the rest of the paper.

2.1. Unrestricted T-systems
Throughout the paper, a “ring” means a commutative ring (algebra over

Z) with identity element. For a ring R, R× denotes the set of all the invertible
elements of R. The set of all the positive integers is denoted by N.

Let Xr be a Dynkin diagram of finite type with rank r, and let I =
{1, . . . , r} be the enumeration of the vertices of Xr as in Figure 1. We follow
[Ka] except for E6, for which we choose the one naturally corresponding to
the enumeration of the twisted affine diagram E

(2)
6 in Section 9.

Let C = (Cab), Cab = 2(αa, αb)/(αa, αa), be the Cartan matrix of Xr. We
set numbers t and ta (a ∈ I) by

t =

⎧⎪⎨⎪⎩
1 Xr: simply laced,

2 Xr = Br, Cr, F4,

3 Xr = G2,

(2.1)

ta =

⎧⎪⎨⎪⎩
1 Xr: simply laced,

1 Xr: nonsimply laced, αa: long root,

t Xr: nonsimply laced, αa: short root.

Let U be either the complex plane C or the cylinder Cξ := C/(2π
√

−1/ξ)Z
for some ξ ∈ C \ 2π

√
−1Q.

Definition 2.1. The unrestricted T-system T(Xr) of type Xr is the fol-
lowing system of relations for a family of variables T = {T

(a)
m (u) | a ∈ I,m ∈
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Ar

1 2 r − 1 r

Br

1 2 r − 1 r

Cr

1 2 r − 1 r

Dr

1 2

r − 1

r − 2 r

E6

1 2 3 5 6

4

E7

1 2 3 4 5 6

7

E8

1 2 3 4 5 6 7

8

F4

1 2 3 4
G2

1 2

Figure 1: The Dynkin diagrams Xr and their enumerations

N, u ∈ U }, where T
(0)
m (u) = T

(a)
0 (u) = 1 if they occur in the right-hand sides

in the relations.
(Here and throughout the paper, 2m (resp. 2m+1) in the left-hand side,

e.g., represents elements 2,4, . . . (resp. 1,3, . . . ).)
For simply laced Xr,

(2.2) T (a)
m (u − 1)T (a)

m (u + 1) = T
(a)
m−1(u)T (a)

m+1(u) +
∏

b∈I:Cab=−1

T (b)
m (u).

For Xr = Br,

T (a)
m (u − 1)T (a)

m (u + 1) = T
(a)
m−1(u)T (a)

m+1(u)(2.3)

+ T (a−1)
m (u)T (a+1)

m (u) (1 ≤ a ≤ r − 2),

T (r−1)
m (u − 1)T (r−1)

m (u + 1) = T
(r−1)
m−1 (u)T (r−1)

m+1 (u) + T (r−2)
m (u)T (r)

2m(u),

T
(r)
2m

(
u − 1

2

)
T

(r)
2m

(
u +

1
2

)
= T

(r)
2m−1(u)T (r)

2m+1(u)

+ T (r−1)
m

(
u − 1

2

)
T (r−1)

m

(
u +

1
2

)
,

T
(r)
2m+1

(
u − 1

2

)
T

(r)
2m+1

(
u +

1
2

)
= T

(r)
2m(u)T (r)

2m+2(u) + T (r−1)
m (u)T (r−1)

m+1 (u).
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For Xr = Cr,

T (a)
m

(
u − 1

2

)
T (a)

m

(
u +

1
2

)
= T

(a)
m−1(u)T (a)

m+1(u)(2.4)

+ T (a−1)
m (u)T (a+1)

m (u) (1 ≤ a ≤ r − 2),

T
(r−1)
2m

(
u − 1

2

)
T

(r−1)
2m

(
u +

1
2

)
= T

(r−1)
2m−1(u)T (r−1)

2m+1(u)

+ T
(r−2)
2m (u)T (r)

m

(
u − 1

2

)
T (r)

m

(
u +

1
2

)
,

T
(r−1)
2m+1

(
u − 1

2

)
T

(r−1)
2m+1

(
u +

1
2

)
= T

(r−1)
2m (u)T (r−1)

2m+2(u)

+ T
(r−2)
2m+1(u)T (r)

m (u)T (r)
m+1(u),

T (r)
m (u − 1)T (r)

m (u + 1) = T
(r)
m−1(u)T (r)

m+1(u) + T
(r−1)
2m (u).

For Xr = F4,

T (1)
m (u − 1)T (1)

m (u + 1) = T
(1)
m−1(u)T (1)

m+1(u) + T (2)
m (u),(2.5)

T (2)
m (u − 1)T (2)

m (u + 1) = T
(2)
m−1(u)T (2)

m+1(u) + T (1)
m (u)T (3)

2m(u),

T
(3)
2m

(
u − 1

2

)
T

(3)
2m

(
u +

1
2

)
= T

(3)
2m−1(u)T (3)

2m+1(u)

+ T (2)
m

(
u − 1

2

)
T (2)

m

(
u +

1
2

)
T

(4)
2m(u),

T
(3)
2m+1

(
u − 1

2

)
T

(3)
2m+1

(
u +

1
2

)
= T

(3)
2m(u)T (3)

2m+2(u)

+ T (2)
m (u)T (2)

m+1(u)T (4)
2m+1(u),

T (4)
m

(
u − 1

2

)
T (4)

m

(
u +

1
2

)
= T

(4)
m−1(u)T (4)

m+1(u) + T (3)
m (u).

For Xr = G2,

T (1)
m (u − 1)T (1)

m (u + 1) = T
(1)
m−1(u)T (1)

m+1(u) + T
(2)
3m(u),(2.6)

T
(2)
3m

(
u − 1

3

)
T

(2)
3m

(
u +

1
3

)
= T

(2)
3m−1(u)T (2)

3m+1(u)

+ T (1)
m

(
u − 2

3

)
T (1)

m (u)T (1)
m

(
u +

2
3

)
,

T
(2)
3m+1

(
u − 1

3

)
T

(2)
3m+1

(
u +

1
3

)
= T

(2)
3m(u)T (2)

3m+2(u)
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+ T (1)
m

(
u − 1

3

)
T (1)

m

(
u +

1
3

)
T

(1)
m+1(u),

T
(2)
3m+2

(
u − 1

3

)
T

(2)
3m+2

(
u +

1
3

)
= T

(2)
3m+1(u)T (2)

3m+3(u)

+ T (1)
m (u)T (1)

m+1

(
u − 1

3

)
T

(1)
m+1

(
u +

1
3

)
.

The choice of the domain U = Cξ of the parameter u effectively imposes
an additional periodic condition:

T (a)
m (u) = T (a)

m

(
u +

2π
√

−1
ξ

)
.(2.7)

By the assumption, we have 2π
√

−1/ξ /∈ Q so that it is compatible with the
relations T(Xr).

Remark 2.2. Originally, the system T(Xr) was introduced in [KNS1]
as a family of relations in the ring of commuting transfer matrices of the
solvable lattice models. For example, for Xr = Ar, the relations in (2.2) are
the Jacobi identities among the Jacobi-Trudi–type determinantal expression
of the transfer matrices in [BR]. The T-system is a natural affinization of
the Q-system of [Ki], [KR] (see Appendix A.1), and the idea behind the
both systems was the existence of a conjectured family of exact sequences
among the Kirillov-Reshetikhin modules [KR], [CP1], [KNS1] of the Yangian
Y (g) and/or the untwisted quantum affine algebra Uq(ĝ) associated with the
complex simple Lie algebra g of type Xr [D1], [D2], [J]. The choice U = C

corresponds to the Y (g) case, while the choice U = Cξ corresponds to the
Uq(ĝ) case, as explained below. For Uq(ŝl2), the existence of such exact
sequences was known by [CP1]. Later this conjecture was proved for Uq(ĝ)
by [N3], [Her1] (see Theorem 2.8(2)).

It is useful to introduce the rings associated with T(Xr).

Definition 2.3. The unrestricted T-algebra T(Xr) of type Xr is the ring
with generators T

(a)
m (u)±1 (a ∈ I,m ∈ N, u ∈ U ) and the relations T(Xr).

(Here we also assume the relation T
(a)
m (u)T (a)

m (u)−1 = 1 implicitly. We do
not repeat this remark in the forthcoming similar definitions.) Also, we
define the ring T◦(Xr) as the subring of T(Xr) generated by T

(a)
m (u) (a ∈

I,m ∈ N, u ∈ U ).
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We write all the relations in T(Xr) in a unified manner as follows:

(2.8) T (a)
m

(
u − 1

ta

)
T (a)

m

(
u +

1
ta

)
= T

(a)
m−1(u)T (a)

m+1(u) + M (a)
m (u),

where M
(a)
m (u) is the second term of the right-hand side of each relation, and

ta is the number in (2.1). Then, define Samu(T ) ∈ Z[T ] (a ∈ I,m ∈ N, u ∈ U)
by

(2.9) Samu(T ) = T (a)
m

(
u − 1

ta

)
T (a)

m

(
u +

1
ta

)
− T

(a)
m−1(u)T (a)

m+1(u) − M (a)
m (u),

so that all the relations in T(Xr) are written in the form Samu(T ) = 0. Let
I(T(Xr)) denote the ideal of Z[T ] generated by Samu(T )’s. We consider the
natural embedding Z[T ] ⊂ Z[T ±1].

We use the following description of the ring T◦(Xr).

Lemma 2.4. (1) There is a ring isomorphism:

(2.10) T◦(Xr) � Z[T ]/
(
Z[T ±1]I(T(Xr)) ∩ Z[T ]

)
.

(2) For P (T ) ∈ Z[T ], the following conditions are equivalent:
(i) P (T ) ∈ Z[T ±1]I(T(Xr)).
(ii) There is a nonzero monomial M(T ) ∈ Z[T ] such that M(T )P (T ) ∈

I(T(Xr)).

Let us clarify the relation between the ring T◦(Xr) and the Grothendieck
ring RepUq(ĝ) of the category of the type 1 finite-dimensional Uq(ĝ)-modules
[CP2].

Choose � ∈ C \ 2π
√

−1Q arbitrarily. We set the deformation parameter q

of Uq(ĝ) as q = e� ∈ C×, so that q is not a root of unity.
Let

(2.11) χq : RepUq(ĝ) → Z[Y ±1
i,a ]i∈I,a∈C×

be the q-character map of Uq(ĝ) in [FR], [FM], which is an injective ring
homomorphism as shown in [FR]. From now on, we employ the parameter-
ization of the variables Ya,qtu (a ∈ I , u ∈ Ct�) instead of Yi,a (i ∈ I , a ∈ C×)
in [FR], [FM], where t is the number in (2.1).

The q-character ring ChUq(ĝ) of Uq(ĝ) is defined to be Imχq. Thus,
ChUq(ĝ) is an integral domain and isomorphic to RepUq(ĝ).



PERIODICITIES OF T-SYSTEMS AND Y-SYSTEMS 67

Definition 2.5. A Kirillov-Reshetikhin module W
(a)
m (u) (a ∈ I , m ∈ N,

u ∈ Ct�) of Uq(ĝ) is the irreducible finite dimensional Uq(ĝ)-module with
highest weight monomial

(2.12) m+ =
m∏

j=1

Y
a,qtuqm+1−2j

a
,

where qa = qt/ta . Especially, W
(a)
1 (u) (a ∈ I , u ∈ Ct�) is called a fundamental

module.

Remark 2.6. The above W
(a)
m (u) corresponds to W

(a)

m,qtuq−m+1
a

in [N3],
[Her1].

The following fact is well known.

Theorem 2.7. (Frenkel and Reshetikhin [FR, Corollary 2]) The ring
ChUq(ĝ) is freely generated by the fundamental characters χq(W

(a)
1 (u)) (a ∈

I,u ∈ Ct�).

Correspondingly, we choose the domain U of the parameter u for the
T-system T(Xr) as U = Ct�. Here is an alternative description of ChUq(ĝ)
by the q-characters of the Kirillov-Reshetikhin modules and the T-system
T(Xr).

Theorem 2.8. Let T̃ = {T̃
(a)
m (u) := χq(W

(a)
m (u)) | a ∈ I,m ∈ N, u ∈ Ct�}

be the family of the q-characters of the Kirillov-Reshetikhin modules of
Uq(ĝ). Then, we have the following.

(1) The family T̃ generates the ring ChUq(ĝ).
(2) (Nakajima [N3], Hernandez [Her1]) The family T̃ satisfies the T-

system T(Xr) in ChUq(ĝ) (by replacing T
(a)
m (u) in T(Xr) with T̃

(a)
m (u)).

(3) For any P (T ) ∈ Z[T ], the relation P (T̃ ) = 0 holds in ChUq(ĝ) if and
only if there is a nonzero monomial M(T ) ∈ Z[T ] such that M(T )P (T ) ∈
I(T(Xr)).

Proof. (1) This is a corollary of Theorem 2.7.
(2) This was proved by [N3, Theorem 1.1] (for simply laced case) and by

[Her1, Theorem 3.4] (including nonsimply laced case).
(3) The “if” part follows from (2) and from the fact that ChUq(ĝ) is an

integral domain. Let us show the “only if” part. To begin with, we introduce
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the height of T
(a)
m (u), htT

(a)
m (u), by

for simply laced Xr, htT (a)
m (u) = m,

for Xr = Br, htT (a)
m (u) =

{
2m − 1 a = 1, . . . , r − 1,

m a = r,

for Xr = Cr, htT (a)
m (u) =

{
m a = 1, . . . , r − 1,

2m − 1 a = r,
(2.13)

for Xr = F4, htT (a)
m (u) =

{
2m − 1 a = 1,2,

m a = 3,4,

for Xr = G2, htT (a)
m (u) =

{
3m − 2 a = 1,

m a = 2.

Then, the following facts can be easily checked by inspection:

(a) htT
(a)
m (u) = 1 if and only if m = 1;

(b) the variable T
(a)
m (u) (m ≥ 2) occurs in Sa,m−1,u(T ), and htT

(a)
m (u) is

greater than the heights of the other variables occurring in Sa,m−1,u(T ).
For a polynomial P (T ) ∈ Z[T ], we define htP (T ) by the greatest height of
all the generators T

(a)
m (u) occurring in P (T ).

Now suppose that there is a nontrivial relation P (T̃ ) = 0 in ChUq(ĝ)
for P (T ) ∈ Z[T ], and that h := htP (T ) ≥ 2. Let S be the set of all the
triplets (a,m,u) such that T

(a)
m (u) is of height h and occurs in P (T ). Let

Mh(T ) =
∏

(a,m,u)∈S T
(a)
m−2(u). Then, thanks to (a) and (b), there is some

Q(T ) ∈ Z[T ] with htQ(T ) < h such that Q(T ) ≡ Mh(T )P (T ) mod I(T(Xr)).
Furthermore, by (2), Q(T̃ ) = 0 in ChUq(ĝ). Repeat it until the relation
reduces to the form Q(T̃ ) = 0 with htQ(T ) = 1 or 0. However, the for-
mer does not occur, since it contradicts Theorem 2.7. Therefore, we have
htQ(T ) = 0, that is, Q(T ) = 0, which proves the claim.

Corollary 2.9. The ring T◦(Xr) with U = Ct� is isomorphic to
RepUq(ĝ) by the correspondence T

(a)
m (u) �→ W

(a)
m (u).

Proof. It follows from Theorem 2.8 and Lemma 2.4 that

(2.14) RepUq(ĝ) � ChUq(ĝ) � Z[T ]/
(
Z[T ±1]I(T(Xr)) ∩ Z[T ]

)
� T◦(Xr).
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It should be proved in the same way, using the character by [Kn], that
T◦(Xr) with U = C is isomorphic to RepY (g). In Appendix A.1 we give
parallel results for the ring associated with the Q-system and RepUq(g).

2.2. Unrestricted Y-systems
Definition 2.10. The unrestricted Y-system Y(Xr) of type Xr is the

following system of relations for a family of variables Y = {Y
(a)
m (u) | a ∈

I, m ∈ N, u ∈ U }, where Y
(0)
m (u) = Y

(a)
0 (u)−1 = 0 if they occur in the right-

hand sides in the following relations.
For simply laced Xr,

(2.15) Y (a)
m (u − 1)Y (a)

m (u + 1) =

∏
b∈I:Cab=−1(1 + Y

(b)
m (u))

(1 + Y
(a)
m−1(u)−1)(1 + Y

(a)
m+1(u)−1)

.

For Xr = Br,

Y (a)
m (u − 1)Y (a)

m (u + 1) =
(1 + Y

(a−1)
m (u))(1 + Y

(a+1)
m (u))

(1 + Y
(a)
m−1(u)−1)(1 + Y

(a)
m+1(u)−1)

(2.16)

(1 ≤ a ≤ r − 2),

Y (r−1)
m (u − 1)Y (r−1)

m (u + 1) =

(1 + Y
(r−2)
m (u))

× (1 + Y
(r)
2m−1(u))(1 + Y

(r)
2m+1(u))

×
(
1 + Y

(r)
2m

(
u − 1

2

))(
1 + Y

(r)
2m

(
u + 1

2

))
(1 + Y

(r−1)
m−1 (u)−1)(1 + Y

(r−1)
m+1 (u)−1)

,

Y
(r)
2m

(
u − 1

2

)
Y

(r)
2m

(
u +

1
2

)
=

1 + Y
(r−1)
m (u)

(1 + Y
(r)
2m−1(u)−1)(1 + Y

(r)
2m+1(u)−1)

,

Y
(r)
2m+1

(
u − 1

2

)
Y

(r)
2m+1

(
u +

1
2

)
=

1

(1 + Y
(r)
2m (u)−1)(1 + Y

(r)
2m+2(u)−1)

.

For Xr = Cr,

Y (a)
m

(
u − 1

2

)
Y (a)

m

(
u +

1
2

)
=

(1 + Y
(a−1)
m (u))(1 + Y

(a+1)
m (u))

(1 + Y
(a)
m−1(u)−1)(1 + Y

(a)
m+1(u)−1)

(2.17)

(1 ≤ a ≤ r − 2),

Y
(r−1)
2m

(
u − 1

2

)
Y

(r−1)
2m

(
u +

1
2

)
=

(1 + Y
(r−2)
2m (u))(1 + Y

(r)
m (u))

(1 + Y
(r−1)
2m−1 (u)−1)(1 + Y

(r−1)
2m+1 (u)−1)

,
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Y
(r−1)
2m+1

(
u − 1

2

)
Y

(r−1)
2m+1

(
u +

1
2

)
=

1 + Y
(r−2)
2m+1 (u)

(1 + Y
(r−1)
2m (u)−1)(1 + Y

(r−1)
2m+2 (u)−1)

,

Y (r)
m (u − 1)Y (r)

m (u + 1) =

(1 + Y
(r−1)
2m+1 (u))(1 + Y

(r−1)
2m−1 (u))

×
(
1 + Y

(r−1)
2m

(
u − 1

2

))(
1 + Y

(r−1)
2m

(
u + 1

2

))
(1 + Y

(r)
m−1(u)−1)(1 + Y

(r)
m+1(u)−1)

.

For Xr = F4,

Y (1)
m (u − 1)Y (1)

m (u + 1) =
1 + Y

(2)
m (u)

(1 + Y
(1)
m−1(u)−1)(1 + Y

(1)
m+1(u)−1)

,(2.18)

Y (2)
m (u − 1)Y (2)

m (u + 1) =

(1 + Y
(1)
m (u))(1 + Y

(3)
2m−1(u))

× (1 + Y
(3)
2m+1(u))

(
1 + Y

(3)
2m

(
u − 1

2

))
×
(
1 + Y

(3)
2m

(
u + 1

2

))
(1 + Y

(2)
m−1(u)−1)(1 + Y

(2)
m+1(u)−1)

,

Y
(3)
2m

(
u − 1

2

)
Y

(3)
2m

(
u +

1
2

)
=

(1 + Y
(2)
m (u))(1 + Y

(4)
2m (u))

(1 + Y
(3)
2m−1(u)−1)(1 + Y

(3)
2m+1(u)−1)

,

Y
(3)
2m+1

(
u − 1

2

)
Y

(3)
2m+1

(
u +

1
2

)
=

1 + Y
(4)
2m+1(u)

(1 + Y
(3)
2m (u)−1)(1 + Y

(3)
2m+2(u)−1)

,

Y (4)
m

(
u − 1

2

)
Y (4)

m

(
u +

1
2

)
=

1 + Y
(3)
m (u)

(1 + Y
(4)
m−1(u)−1)(1 + Y

(4)
m+1(u)−1)

.

For Xr = G2,

Y (1)
m (u − 1)Y (1)

m (u + 1) =

(1 + Y
(2)
3m−2(u))(1 + Y

(2)
3m+2(u))

×
(
1 + Y

(2)
3m−1

(
u − 1

3

))
×
(
1 + Y

(2)
3m−1

(
u + 1

3

))
×
(
1 + Y

(2)
3m+1

(
u − 1

3

))
×
(
1 + Y

(2)
3m+1

(
u + 1

3

))
×
(
1 + Y

(2)
3m

(
u − 2

3

))(
1 + Y

(2)
3m

(
u + 2

3

))
× (1 + Y

(2)
3m (u))

(1 + Y
(1)
m−1(u)−1)(1 + Y

(1)
m+1(u)−1)

,(2.19)

Y
(2)
3m

(
u − 1

3

)
Y

(2)
3m

(
u +

1
3

)
=

1 + Y
(1)
m (u)

(1 + Y
(2)
3m−1(u)−1)(1 + Y

(2)
3m+1(u)−1)

,
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Y
(2)
3m+1

(
u − 1

3

)
Y

(2)
3m+1

(
u +

1
3

)
=

1

(1 + Y
(2)
3m (u)−1)(1 + Y

(2)
3m+2(u)−1)

,

Y
(2)
3m+2

(
u − 1

3

)
Y

(2)
3m+2

(
u +

1
3

)
=

1

(1 + Y
(2)
3m+1(u)−1)(1 + Y

(2)
3m+3(u)−1)

.

The choice of the domain U = Cξ of the parameter u effectively imposes
an additional periodic condition:

(2.20) Y (a)
m (u) = Y (a)

m

(
u +

2π
√

−1
ξ

)
.

Definition 2.11. The unrestricted Y-algebra Y(Xr) of type Xr is the
ring with generators Y

(a)
m (u)±1, (1 + Y

(a)
m (u))−1 (a ∈ I,m ∈ N, u ∈ U ), and

the relations Y(Xr).

The system Y(Xr) is introduced by [KN] (see also Remark 3.7 for the
origin of the Y -systems).

Though the T-systems and Y-systems arose in different contexts with
different motivations, there is a simple and remarkable connection between
them, as described below. Recall that M

(a)
m (u) is defined in (2.8).

Theorem 2.12. (1) There is a ring homomorphism

(2.21) ϕ : Y(Xr) → T(Xr)

defined by

(2.22) Y (a)
m (u) �→ M

(a)
m (u)

T
(a)
m−1(u)T (a)

m+1(u)
,

or, equivalently, by either of

1 + Y (a)
m (u) �→

T
(a)
m

(
u − 1

ta

)
T

(a)
m

(
u + 1

ta

)
T

(a)
m−1(u)T (a)

m+1(u)
,(2.23)

1 + Y (a)
m (u)−1 �→

T
(a)
m

(
u − 1

ta

)
T

(a)
m

(
u + 1

ta

)
M

(a)
m (u)

,(2.24)

where T
(a)
0 (u) = 1.
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(2) There is a ring homomorphism

(2.25) ψ : T(Xr) → Y(Xr)

such that ψ ◦ ϕ = idY(Xr).
(3) Y(Xr) is isomorphic to a subring and a quotient ring of T(Xr).

The homomorphism ϕ is canonical, while ψ is neither unique nor canon-
ical.

Proof. Statement (3) is a corollary of (1) and (2); we prove (1) and (2).
Here, we concentrate on the case U = C. The modification of the proof for
the case U = Cξ is straightforward.

(i) The case Xr is simply laced. (1) For simplicity, let us write the image
ϕ(Y (a)

m (u)) as Y
(a)
m (u). Then, the relation (2.15) is shown as follows:

Y (a)
m (u − 1)Y (a)

m (u + 1)

=

∏
b:Cab=−1 T

(b)
m (u − 1)T (b)

m (u + 1)

T
(a)
m−1(u − 1)T (a)

m+1(u − 1)T (a)
m−1(u + 1)T (a)

m+1(u + 1)

=

∏
b:Cab=−1

(
T

(b)
m−1(u)T (b)

m+1(u) +
∏

c:Cbc=−1 T
(c)
m (u)

)
T

(a)
m−2(u)T (a)

m (u) +
∏

b:Cab=−1 T
(b)
m−1(u)

(2.26)

× 1

T
(a)
m (u)T (a)

m+2(u) +
∏

b:Cab=−1 T
(b)
m+1(u)

=

∏
b:Cab=−1(1 + Y

(b)
m (u))

(1 + Y
(a)
m−1(u)−1)(1 + Y

(a)
m+1(u)−1)

.

We remark that the above calculation is valid also at m = 1 by formally
setting T

(0)
−1 (u) = 0.

(2) Below we define the image ψ(T (a)
m (u)) (a ∈ I,m ∈ N, u ∈ C) in three

steps and then show that they satisfy T(Xr). For simplicity, we write the
image ψ(T (a)

m (u)) as T
(a)
m (u).

Step 1. We arbitrarily choose T
(a)
1 (u) ∈ Y(Xr)× (a ∈ I) for each u ∈ C in

the region −1 ≤ Reu < 1.
Step 2. We define T

(a)
1 (u) (a ∈ I) for the rest of the region −2 ≤ Reu < 2

by

(2.27) T
(a)
1 (u ± 1) = (1 + Y

(a)
1 (u)−1)

M
(a)
1 (u)

T
(a)
1 (u ∓ 1)

.
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We repeat it to define T
(a)
1 (u) (a ∈ I) for all u ∈ C.

Step 3. For each a, we recursively define T
(a)
m (u) (m ≥ 2, u ∈ C) by

(2.28) T
(a)
m+1(u) =

1

1 + Y
(a)
m (u)

T
(a)
m (u − 1)T (a)

m (u + 1)

T
(a)
m−1(u)

,

where T
(a)
0 (u) = 1.

Claim. The family T defined above satisfies the following relations in
Y(Xr):

1 + Y (a)
m (u) =

T
(a)
m (u − 1)T (a)

m (u + 1)

T
(a)
m−1(u)T (a)

m+1(u)
,(2.29)

1 + Y (a)
m (u)−1 =

T
(a)
m (u − 1)T (a)

m (u + 1)

M
(a)
m (u)

.(2.30)

The relation (2.29) clearly holds by (2.28). The relation (2.30) is shown
by the induction on m, where the m = 1 case is true by (2.27).

Now, taking the inverse sum of (2.29) and (2.30), we obtain (2.2). There-
fore, ψ is a ring homomorphism. Furthermore, taking the ratio of (2.29)
and (2.30), we obtain Y

(a)
m (u) = M

(a)
m (u)/(T (a)

m−1(u)T (a)
m+1(u)). This proves

ψ ◦ ϕ = idY(Xr).
(ii) The case Xr is nonsimply laced. (1) This can be proved one by one

with similar calculations to (2.26), though they are slightly more compli-
cated.

(2) Below we define the image ψ(T (a)
m (u)) (a ∈ I,m ∈ N, u ∈ C) in three

steps and then show that they satisfy T(Xr). For simplicity, we again write
the image ψ(T (a)

m (u)) as T
(a)
m (u).

Step 1. First, we arbitrarily choose T
(a)
1 (u) ∈ Y(Xr)× (a ∈ I) for each

u ∈ C in the region −1/ta ≤ Reu < 1/ta. Next, for each a with ta = 2 (resp.
ta = 3, which occurs only for Xr = G2 and a = 2), we define T

(a)
2 (u) (resp.

T
(a)
2 (u) and T

(a)
3 (u)) in the region −1/ta ≤ Reu < 1/ta by

T
(a)
m+1(u) =

M
(a)
m (u)

Y
(a)
m (u)T (a)

m−1(u)
(2.31)

or, more explicitly,

T
(a)
2 (u) =

T
(a−1)
1 (u)T (a+1)

1 (u)

Y
(a)
1 (u)

, T
(2)
3 (u) =

T
(1)
1

(
u − 1

3

)
T

(1)
1

(
u + 1

3

)
Y

(2)
2 (u)T (2)

1 (u)
,(2.32)
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where T
(0)
1 (u) = T

(r+1)
1 (u) = 1.

Step 2. Let t be the number in (2.1). First, we define T
(a)
1 (u) (a ∈ I) for

the rest of the region −(1/ta) − (1/t) ≤ Reu < (1/ta) + (1/t) by

T
(a)
1

(
u ± 1

ta

)
= (1 + Y

(a)
1 (u)−1)

M
(a)
1 (u)

T
(a)
1

(
u ∓ 1

ta

) .(2.33)

Next, we define T
(a)
m (u) (ta = 2,3; m = 2, . . . , ta) for the rest of the region

−(1/ta) − (1/t) ≤ Reu < (1/ta) + (1/t) by (2.31). We repeat it to define
T

(a)
m (u) (a ∈ I ; m = 1, . . . , ta) for all u ∈ C.
Step 3. For each a, we recursively define T

(a)
m (u) (m > ta, u ∈ C) by

T
(a)
m+1(u) =

1

1 + Y
(a)
m (u)

T
(a)
m

(
u − 1

ta

)
T

(a)
m

(
u + 1

ta

)
T

(a)
m−1(u)

,(2.34)

where T
(a)
0 (u) = 1.

Claim 1. The family T defined above satisfies the following relations in
Y(Xr):

1 + Y (a)
m (u) =

T
(a)
m

(
u − 1

ta

)
T

(a)
m

(
u + 1

ta

)
T

(a)
m−1(u)T (a)

m+1(u)
(2.35)

(ta = 2,3;m = 1, . . . , ta − 1),

1 + Y (a)
m (u)−1 =

T
(a)
m

(
u − 1

ta

)
T

(a)
m

(
u + 1

ta

)
M

(a)
m (u)

(2.36)

(ta = 2,3;m = 2, . . . , ta).

The relation (2.35) for m = 1 is an immediate consequence of (2.31) and
(2.33). The relation (2.36) for m = 2 is verified one by one. For ta = 3, (2.35)
for m = 2 is an immediate consequence of (2.31) and (2.36) for m = 2, and
(2.36) for m = 3 is verified by (2.31) and (2.33).

Claim 2. The family T defined above satisfies the following relations in
Y(Xr) for any (a,m,u):

1 + Y (a)
m (u) =

T
(a)
m

(
u − 1

ta

)
T

(a)
m

(
u + 1

ta

)
T

(a)
m−1(u)T (a)

m+1(u)
,(2.37)
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1 + Y (a)
m (u)−1 =

T
(a)
m

(
u − 1

ta

)
T

(a)
m

(
u + 1

ta

)
M

(a)
m (u)

.(2.38)

The relation (2.37) holds for any (a,m,u) because of (2.34) and (2.35).
The relation (2.38) holds for m = 1, . . . , ta because of (2.33) and (2.36).
Then, one can verify (2.38) by the induction on m one by one.

The rest of the argument is the same as for the simply laced case.

Remark 2.13. The transformation (2.22) first appeared in [KP] for the
simplest case Xr = A1 and was generalized in [KNS1] for general Xr. The
analogous transformation plays an important role also in the approach by
cluster algebras with coefficients [FZ4].

2.3. Regular solutions of T- and Y-systems
In application, we usually consider solutions of T(Xr) and Y(Xr) in a

particular ring.

Definition 2.14. Let R be a ring.

(i) A family T = {T
(a)
m (u) ∈ R | a ∈ I, m ∈ N, u ∈ U } satisfying T(Xr) is

called a solution of the T-system T(Xr) in R. We say a solution T of T(Xr)
in R is regular if T

(a)
m (u) ∈ R× for any (a,m,u).

(ii) A family Y = {Y
(a)
m (u) ∈ R | a ∈ I, m ∈ N, u ∈ U } satisfying Y(Xr) is

called a solution of the Y-system Y(Xr) in R. We say a solution Y of Y(Xr)
in R is regular if Y

(a)
m (u), 1 + Y

(a)
m (u) ∈ R× for any (a,m,u).

Remark 2.15. Actually, any solution of Y(Xr) is regular because, for
any Y

(a)
m (u), there is a relation among Y(Xr) such that (1 + Y

(a)
m (u)−1)−1

appears in the right-hand side. However, this is not always true for the
restricted Y-system we shall discuss in Section 3. Therefore, it is convenient
to introduce the above definition so that the unrestricted/restricted T-/Y-
systems can be treated in a unified manner.

Clearly, there is a one-to-one correspondence between the regular solu-
tions of T(Xr) (resp. Y(Xr)) in R and the ring homomorphisms f : T(Xr) →
R (resp. f : Y(Xr) → R).

As a corollary of Theorem 2.12(2), we obtain the following.

Corollary 2.16. For any ring R, the map

ϕ∗ : Hom
(
T(Xr),R

)
→ Hom

(
Y(Xr),R

)
,(2.39)
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induced from the homomorphism ϕ in (2.21), is surjective. Namely, for any
regular solution Y of Y(Xr) in R, there exists some regular solution T of
T(Xr) in R such that Y is expressed by T as

Y (a)
m (u) =

M
(a)
m (u)

T
(a)
m−1(u)T (a)

m+1(u)
.(2.40)

§3. Restricted T- and Y-systems and their periodicities

In this section we state the main claims of the paper. We first introduce
the restricted T- and Y-systems together with the associated algebras. Then,
the conjectures and the results concerning their periodicity property are
presented.

3.1. Restricted T- and Y-systems
Let ta (a ∈ I) be the numbers in (2.1).

Definition 3.1. Fix an integer � ≥ 2. The level � restricted T-system
T�(Xr) of type Xr (with the unit boundary condition) is the system of rela-
tions (2.2)–(2.6) naturally restricted to a family of variables T = {T

(a)
m (u) |

a ∈ I;m = 1, . . . , ta� − 1;u ∈ U }, where T
(0)
m (u) = T

(a)
0 (u) = 1, and further-

more, T
(a)
ta� (u) = 1 (the unit boundary condition) if they occur in the right-

hand sides in the relations.

Definition 3.2. The level � restricted T-algebra T�(Xr) of type Xr is
the ring with generators T

(a)
m (u)±1 (a ∈ I;m = 1, . . . , ta� − 1;u ∈ U ) and the

relations T�(Xr). Also, we define the ring T◦
� (Xr) as the subring of T�(Xr)

generated by T
(a)
m (u) (a ∈ I;m = 1, . . . , ta� − 1;u ∈ U ).

Remark 3.3. The notion of the level � restriction originates from a class
of solvable lattice model, called the level � restricted solid-on-solid (RSOS)
model associated with the R-matrix of Uq(ĝ) at a 2t(h∨ + �)th root of unity
[ABF], [JMO], [Pas], [BR]. The level � restricted T-system was introduced in
[KNS1], where, instead of the condition T

(a)
ta� (u) = 1 above, a slightly weaker

condition T
(a)
ta�+1(u) = 0 was imposed. We hope that no serious confusion

occurs by referring to T�(Xr) also as level � restricted T-system for simplic-
ity. We impose the unit boundary condition here to ensure the periodicity
property we are going to discuss. (Actually, this is not the only choice of
the boundary condition showing the periodicity, but we do not discuss this
point in the paper.)
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Proposition 3.4. The ring T◦
� (Xr) is isomorphic to a quotient of T◦(Xr).

Proof. First we note that the ring T◦(Xr) is freely generated by T
(a)
1 (u)

(a ∈ I,u ∈ U ). This is true for U = Ct� by Theorem 2.7, and so it is true for
any choice of U , since nontrivial relations exist only among T

(ai)
mi (ui) with

ui − uj ∈ R. So we have a ring homomorphism

π� : T◦(Xr) → T◦
� (Xr)(3.1)

uniquely determined by the condition π�(T
(a)
1 (u)) = T

(a)
1 (u) (a ∈ I,u ∈ U ).

We claim that π�(T
(a)
m (u)) = T

(a)
m (u) for any m = 1, . . . , ta� − 1, from which

the surjectivity of π� follows. The claim can be shown by the induction
on the height of T

(a)
m (u) in (2.13). Namely, suppose that the claim holds

for any T
(b)
k (v) such that htT

(b)
k (v) is smaller than htT

(a)
m (u). Let Samu(T )

be the one in (2.9). Then, Sa,m−1,u(T ) = 0 in T◦(Xr) and T◦
� (Xr); hence,

π�(Sa,m−1,u(T )) = Sa,m−1,u(T ) in T◦
� (Xr). The claim follows from this and

the induction hypothesis.

Similarly, we define the following.

Definition 3.5. Fix an integer � ≥ 2. The level � restricted Y-system
Y�(Xr) of type Xr is the system of relations (2.15)–(2.19) naturally restricted
to a family of variables Y = {Y

(a)
m (u) | a ∈ I;m = 1, . . . , ta� − 1;u ∈ U }, where

Y
(0)
m (u) = Y

(a)
0 (u)−1 = 0, and furthermore, Y

(a)
ta� (u)−1 = 0 if they occur in the

right-hand sides in the relations.

Definition 3.6. The level � restricted Y-algebra Y�(Xr) of type Xr is the
ring with generators Y

(a)
m (u)±1, (1+Y

(a)
m (u))−1 (a ∈ I;m = 1, . . . , ta� − 1;u ∈

U ) and the relations Y�(Xr).

Remark 3.7. The system Y�(Xr) was introduced by [Z] for simply laced
Xr and � = 2 to characterize the solutions of the thermodynamic Bethe
ansatz equations for the factorizable scattering theories. Then, it was
extended to the general case by [KN] based on the thermodynamic treat-
ment of [Ku] (see also [KNS1, Appendix B]). For simply laced Xr, it was
also given by [RTV] independently.

For any ring R, one can define the regular solutions of T�(Xr) and Y�(Xr)
in R in the same way as Definition 2.14. Again, they are identified with the
elements in Hom(T�(Xr),R) and Hom(Y�(Xr),R).

The restrictions of T-systems and Y-systems are partly compatible in
view of Theorem 2.12. Namely, we have the following.
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Proposition 3.8. The correspondence (2.22), with T
(a)
0 (u) = T

(a)
ta� (u) =

1, defines a ring homomorphism

ϕ� : Y�(Xr) → T�(Xr).(3.2)

Proof. Due to Theorem 2.12, we have only to check the compatibility
between the boundary conditions, T

(a)
ta� (u) = 1 and Y

(a)
ta� (u)−1 = 0. For simply

laced Xr, this can be seen by formally setting T
(a)
�+1(u) = 0 at m = � − 1 in

(2.26). The nonsimply laced case is similar.

Unfortunately, the properties (2) and (3) in Theorem 2.12 do not neces-
sarily hold for general Xr and �.

Example 3.9. (1) The case Xr = A2 and � = 2. Two systems,

T2(A2) : T
(1)
1 (u − 1)T (1)

1 (u + 1) = 1 + T
(2)
1 (u),(3.3)

T
(2)
1 (u − 1)T (2)

1 (u + 1) = 1 + T
(1)
1 (u),

Y2(A2) : Y
(1)
1 (u − 1)Y (1)

1 (u + 1) = 1 + Y
(2)
1 (u),(3.4)

Y
(2)
1 (u − 1)Y (2)

1 (u + 1) = 1 + Y
(1)
1 (u),

are identical; moreover, we have ϕ2 : Y
(1)
1 (u) �→ T

(2)
1 (u), Y

(2)
1 (u) �→ T

(1)
1 (u).

Thus, ϕ2 is bijective.
(2) The case Xr = A3 and � = 2. We have ϕ2 : Y

(1)
1 (u) �→ T

(2)
1 (u),

Y
(3)
1 (u) �→ T

(2)
1 (u). Thus, ϕ2 is not injective.

(3) The case Xr = C2 and � = 2. We have ϕ2 : Y
(1)
1 (u) �→ T

(2)
1 (u)/T (1)

2 (u),
Y

(1)
3 (u) �→ T

(2)
1 (u)/T (1)

2 (u). Thus, ϕ2 is not injective.

However, at least for Ar, one can resolve this incompatibility by modifying
the boundary condition of T�(Xr) while keeping the periodicity (Proposi-
tion 5.9).

There are some isomorphisms among the restricted T-algebras or Y-
algebras.

Example 3.10. (Level-rank duality) The rings T�(Ar−1) and Tr(A�−1)
are isomorphic under the correspondence T

(a)
m (u) ↔ T

(m)
a (u). The rings

Y�(Ar−1) and Yr(A�−1) are isomorphic under the correspondence Y
(a)
m (u) ↔

Y
(m)
a (u)−1.
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3.2. T- and Y-systems with discrete spectral parameter
So far, we assume that the spectral parameter u takes values in U = C or

Cξ. In the original context of T- and Y-systems, the analyticities of T
(a)
m (u)

and Y
(a)
m (u) with respect to u are of fundamental importance [Z], [KP],

[KN], [RTV], [KNS2].
However, from the algebraic point of view, it is possible to discretize the

parameter u by choosing U = (1/t)Z, where t is the number in (2.1). There
are at least two reasons why we are interested in such a discretization.

First, by regarding u as “discretized time,” the T- and Y-systems have
their own interests as discrete dynamical systems. For example, T(Ar) is
a discrete analogue of the Toda field equation and a particular case of
the Hirota’s bilinear difference equation [Hi1], [Hi2], [KOS], [KLWZ] (see
[KLWZ] for more information).

Second, the periodicities of the restricted T- and Y-systems, which are
the subjects of this paper, concern only the algebraic aspect of the T- and
Y-systems; therefore, it is adequate to discuss the periodicities in discretized
systems.

From here to the end of Section 8, we assume U = (1/t)Z for all the
T-systems and Y-systems.

3.3. Periodicity conjecture for restricted T- and Y-systems
For Xr, let h∨ be the dual Coxeter number of Xr as listed below:

Xr Ar Br Cr Dr E6 E7 E8 F4 G2

h∨ r + 1 2r − 1 r + 1 2r − 2 12 18 30 9 4
(3.5)

For simply laced Xr, h∨ equals the Coxeter number h of Xr.
Let ω be the involution on the set I such that ω(a) = a except for the

following cases (in our enumeration):

ω(a) = r + 1 − a (a ∈ I) Xr = Ar,

ω(r − 1) = r, ω(r) = r − 1 Xr = Dr (r: odd),(3.6)

ω(1) = 6, ω(2) = 5, ω(5) = 2, ω(6) = 1 Xr = E6.

(Caution: for Xr = Dr (r: even), ω(a) = a (a ∈ I).) The involution ω is
related to the longest element ω0 in the Weyl group of type Xr by ω0(αa) =
−αω(a) [B] (cf. [FZ3, Proposition 2.5]).

Now let us give the main claim of the paper.
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Conjecture 3.11. The following relations hold in T�(Xr):

(1) Half-periodicity: T
(a)
m (u + h∨ + �) = T

(ω(a))
ta�−m(u).

(2) Periodicity: T
(a)
m (u + 2(h∨ + �)) = T

(a)
m (u).

We may sometimes refer to (2) also as full-periodicity in contrast to (1).
Of course, the full-periodicity follows from the half-periodicity.

This is the counterpart of the (already conjectured and partially proved)
periodicity property for the restricted Y-systems in various contexts; here
we present it in a form parallel to Conjecture 3.11.

Conjecture 3.12. The following relations hold in Y�(Xr).

(1) Half-periodicity: Y
(a)
m (u + h∨ + �) = Y

(ω(a))
ta�−m(u).

(2) Periodicity: Y
(a)
m (u + 2(h∨ + �)) = Y

(a)
m (u).

Remark 3.13. One can rephrase these periodicity properties as those of
the regular solutions of the corresponding T- and Y-systems in an arbitrary
ring R. For example, suppose that Conjecture 3.11(1) is true. Then, for any
regular solution T of T�(Xr) in R, the equality T

(a)
m (u+h∨ + �) = T

(ω(a))
ta�−m(u)

holds in R. The converse is also true by setting R = T�(Xr). This remark
will be applicable to any periodicity statement in the rest of the paper as
well.

Let us summarize the known and/or related results on Conjectures 3.11
and 3.12 so far.

(i) Conjecture 3.12 was initially given by [Z] for simply laced Xr and
� = 2 and then generalized by [RTV] for simply laced Xr and � ≥ 2 (including
half-periodicity) and by [KNS1, Appendix B] for general Xr and � ≥ 2 (full-
periodicity). The points established so far are as follows:

(a) It was proved for Xr = Ar and � = 2 by Gliozzi and Tateo [GT] via
three-dimensional geometry. The same case was also proved by Frenkel
and Szenes [FS] with the explicit solution given.

(b) It was proved for simply laced Xr and � = 2 by Fomin and Zelevinsky
[FZ3] via the cluster algebra method.

(c) It was proved for Xr = Ar and � ≥ 2 by Volkov [V] via the determinant
method.

(d) The full-periodicity was proved for simply laced Xr and � > 2 by Keller
[Kel2] via the cluster algebra/category method.
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We emphasize that the nonsimply laced Y-systems treated in [FZ3], [Kel2]
are different from ours, and their nonsimply laced Y-systems are identified
with certain reductions of our Y-systems associated with the twisted quan-
tum affine algebras (see Remark 9.22). In particular, there has been no
systematic result on Conjecture 3.12 for the nonsimply laced case so far.
The same remark applies to the T-systems as well.

(ii) Conjecture 3.11 appeared in [CGT] for simply laced Xr, while the
one for nonsimply laced Xr seems new in the literature. The following
related results are already known:

(a) For simply laced Xr, we will see that the ring T◦
� (Xr) is isomorphic

to (a subring of) a certain cluster algebra. The periodicity property of
the corresponding cluster algebra is known for � = 2 (including half-
periodicity) by Fomin and Zelevinsky [FZ2], [FZ3] and for � > 2 (full-
periodicity only) by [Kel2]. A more precise account will be given in
Section 4.

(b) For Xr = Ar and � ≥ 2, Conjecture 3.11 follows from a more general
theorem by Henriques [Hen] proved by the graph theoretical method.
The same case was also proved essentially by [V] while proving Con-
jecture 3.12. We will give a detailed account of the latter method in
Section 5.

(iii) Though Conjectures 3.11 and 3.12 are tightly connected to each
other in view of the map ϕ� in Proposition 3.8, one is not the consequence of
the other, in general. However, at least for simply laced Xr, they are unified
as the periodicity property of the F -polynomials of the corresponding cluster
algebra with coefficients [FZ4].

Remark 3.14. Recall that the choice U = Cξ for the domain of the para-
meter u of the unrestricted T-algebra T(Xr) imposes the period 2π

√
−1/ξ

in (2.7), where ξ is taken from C \ 2π
√

−1Q to avoid the incompatibility
with the relations T(Xr). The level � restricted T-algebra T�(Xr) has an
additional period 2(h∨ + �). This means the choice ξ = π

√
−1/(h∨ + �) is

compatible with the relations T�(Xr). In the context of the q-character, we
made the identification ξ = t�, where q = e�. Then, the above choice corre-
sponds to q = exp(π

√
−1/t(h∨ + �)); namely, q is a primitive 2t(h∨ + �)th

root of unity. This is natural in view of the origin of the level � restriction in
Remark 3.3. We make a further remark on the implication of the periodicity
of T�(Xr) for the q-character in Section 10.
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3.4. Summary of methods and results
In the following, we will study and partially prove Conjecture 3.11 by

three independent methods. This is a good point to outline the methods
and the results.

1. Cluster algebra/category method applied to T�(Xr) with simply laced
Xr (Section 4)

This is actually more than a method to prove Conjecture 3.11, since
it includes the identification of the ring T◦

� (Xr) as a (subring of) cluster
algebra.

In the simplest case � = 2, the ring T◦
2(Xr) is isomorphic to the tensor

square of the cluster algebra AQ of type Xr (Proposition 4.3). The ring AQ is
a cluster algebra of finite type and is particularly well studied. In particular,
the periodicity property of AQ is proved in [FZ2], [FZ3] by making use of
the piecewise-linear modification of the simple reflections acting on the set
of the almost positive roots Φ≥ −1 of type Xr. The periodicity of T2(Xr) is
its immediate corollary (Corollary 4.5).

For the case � > 2, the ring T◦
� (Xr) is isomorphic to the tensor square of a

subring of the cluster algebra AQ�Q′ , where Q�Q′ is the square product of
quivers recently introduced by [Kel2], [HL] (Proposition 4.24). The cluster
algebra AQ�Q′ is not of finite type; nevertheless, it still admits the period-
icity along the bipartite belt of [FZ4]. The periodicity of AQ�Q′ is studied
in [Kel2], in a more general situation with coefficients, using the categorifi-
cation by the 2-Calabi-Yau category associated with the tensor product of
the path algebras of quivers Q and Q′. The full-periodicity of T�(Xr) is its
immediate corollary. Furthermore, this cluster categorical approach can be
adapted for the half-periodicity. Thus, we obtain the desired periodicity for
T�(Xr) (Corollary 4.29).

2. Determinant method applied to T�(Ar) and T�(Cr) (Sections 5 and 6)
The method seeks a manifestly periodic expression of T

(a)
m (u) as a minor

of a matrix M over T�(Xr) of infinitely many finite columns with periodicity.
It was introduced by [V] to prove the periodicity of the regular solutions of
Y�(Ar) in C.

Such a determinant expression (without periodicity) is known for the
unrestricted T-system T(Ar) by [KLWZ, (2.25)], where the relation (2.2)
of T(Ar) is regarded as the Hirota’s bilinear difference equation. Then, the
existence of such a determinant expression is viewed as a discrete analogue
of the well-known relation between the Hirota’s bilinear equation and the
Grassmannians [S]. Remarkably, the restriction of the T-system to T�(Ar)
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is compatible with this determinant expression by imposing the periodicity
on the matrix M (Proposition 5.8). This forces the desired periodicity for
T�(Ar) (Theorem 5.3).

Since the method takes advantage of the bilinearity of the relation of
T(Ar), it does not seem applicable to Xr other than Ar. A pleasant sur-
prise is that it is still applicable for Cr through the relation between T(Cr)
and a certain variant of T(A2r+1) [KOSY]. (Note that this is different from
the usual “folding” relation between Cr and A2r−1.) This relation is com-
patible with the restriction and induces the relation between T�(Cr) and
T̂2�(A2r+1), where T̂2�(A2r+1) is a variant of T2�(A2r+1) (Proposition 6.8).
Since T̂2�(A2r+1) admits the determinant expression, the desired periodicity
for T�(Cr) is obtained (Corollary 6.4). This is the first main result concern-
ing Conjecture 3.11 for the nonsimply laced case.

At this moment the method is applicable only for these two cases, since a
similar relation between T(Xr) and a certain variant of T(Ar′ ) is not known
for the other types Xr.

3. Direct method applied to T2(Ar), T2(Dr), and T2(Br) (Section 7)
The method seeks a manifestly periodic Laurent polynomial expression

of T
(a)
m (u) in terms of the “initial variables” by considering the T-system

as a discrete dynamical system. At least for the above three cases, we can
directly find such an expression with the aid of a computer and verify that
it indeed satisfies the T-system.

The problem to express the cluster variables in terms of the initial cluster
is a much-studied subject (e.g., [CC], [FZ4], [YZ]). The first two cases,
T2(Ar) and T2(Dr), should be obtained as the specialization of those more
general expressions. Our goal here is to prove the periodicity for T2(Br),
which is the first nontrivial result for Br. (Let us repeat that this is different
from the tensor square of the cluster algebra of type Br.)

§4. Cluster algebra/category method: T�(Xr) with simply laced Xr

In this section, we study the periodicity of T�(Xr) for simply laced Xr. We
establish the relation between the ring T◦

� (Xr) and cluster algebras [FZ1],
[FZ2]. Then, the periodicity of T�(Xr) reduces to that of the correspond-
ing cluster algebra. For � = 2, the periodicity of the corresponding cluster
algebra is known by [FZ2], [FZ3]. For � > 2, the full-periodicity of the cor-
responding cluster algebra is recently shown by [Kel2] using the cluster cat-
egorical method. We prove the half-periodicity for � > 2 as well by adapting
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this categorical method (see [Kel2] for a comprehensive review of cluster
algebras and cluster categories).

4.1. Cluster algebra
For a finite quiver Q without loops or 2-cycles with vertex set, say, I =

{1, . . . , n} and an I-tuple of variables x = {x1, . . . , xn}, we define a cluster
algebra (with trivial coefficients) AQ [FZ1], [FZ2], which is a Z-subalgebra
of the field Q(x1, . . . , xn), as follows.

(1) We start from the pair (“initial seed”) (Q,x), where Q and x are as
above.

(2) For each k = 1, . . . , n, we define another pair (“seed”) (R,y) = μk(Q,x)
of a quiver R without loops or 2-cycles with vertex set I and an I-tuple
y = {y1, . . . , yn}, yi ∈ Q(x1, . . . , xn), called the mutation of (Q,x) at k, where
y is given by the exchange relation,

yi =

{
xi i �= k,
1
xk

(∏
arrows j→k of Qxj +

∏
arrows k→j of Qxj

)
i = k,

(4.1)

while R = μk(Q) is obtained from Q by the following mutation rule.

(i) For each i → k → j of Q, create a new arrow i → j.
(ii) Replace each i → k of Q with k → i, and k → j of Q with j → k,

respectively.
(iii) Remove a maximal disjoint collection of 2-cycles of the resulting quiver

after (i) and (ii).

(3) Iterate the mutation for every new seed at every k and collect all the
(possibly infinite number of) seeds. For any seed (R,y), y is called a cluster,
and each element yi of y is called a cluster variable.

(4) The cluster algebra AQ is the Z-subalgebra of the field Q(x1, . . . , xn)
generated by all the cluster variables.

Due to the Laurent phenomenon [FZ1], AQ is a subring of Z[x±1
1 , . . . , x±1

n ].

4.2. Level 2 case
Here we study the periodicity of T2(Xr) for simply laced Xr. Since the

case Xr = A1 is trivial, we assume Xr �= A1.
Let Xr ( �= A1) be a simply laced Dynkin diagram, and let I = I+ � I− be

a bipartite decomposition of the vertex set I of Xr; namely, Cab = 0 for any
a, b ∈ I± with a �= b. We set ε(a) = ± for a ∈ I±.
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Recall that the ring T2(Xr) has the generators T = {T
(a)
1 (u)±1 | a ∈ I,u ∈

Z} and the relations T2(Xr):

T
(a)
1 (u − 1)T (a)

1 (u + 1) = 1 +
∏

b∈I:Cab=−1

T
(b)
1 (u).(4.2)

Let T◦
2(Xr)± be the subring of T◦

2(Xr) generated by T
(a)
1 (u) (a ∈ I,u ∈

Z) such that ε(a)(−1)u = ±, where we identify + and − with 1 and −1,
respectively. Since the relation (4.2) closes among those T

(a)
1 (u) with fixed

parity ε(a)(−1)u, we have

T◦
2(Xr) � T◦

2(Xr)+ ⊗Z T◦
2(Xr)−, T◦

2(Xr)+ � T◦
2(Xr)−.(4.3)

Let Q = Q(Xr) be the alternating quiver such that Xr is the underlying
graph, a ∈ I+ is a source, and a ∈ I− is a sink of Q. We introduce an I-tuple
of variables x = {xa}a∈I , and we define AQ to be the cluster algebra with
initial seed (Q,x).

Following [FZ2], [FZ3], we introduce composed mutations μ± =
∏

a∈I± μa

and μ = μ−μ+ for AQ. We set x = x(0), and we define clusters x(u) =
{xa(u)}a∈I (u ∈ Z) of AQ by the following sequence of the mutations:

· · · μ+←→
(
Qop, x(−1)

) μ−←→
(
Q,x(0)

) μ+←→
(
Qop, x(1)

)
(4.4)

μ−←→
(
Q,x(2)

) μ+←→ · · · ,

where Qop is the opposite quiver of Q, that is, the quiver obtained from Q

by reversing all the arrows. In particular,

xa(u + 1) = xa(u) if ε(a)(−1)u = −,(4.5) (
Q,x(2k)

)
= μk

(
Q,x(0)

)
(k ∈ Z),(

Qop, x(2k + 1)
)
= μ+μk

(
Q,x(0)

)
(k ∈ Z).

(4.6)

Furthermore, any cluster variable of AQ occurs in x(u) for some u ∈ Z, due
to [FZ2, Theorems 1.9 and 3.1]. (This is not true for a general finite quiver
Q.)

Lemma 4.1 ([FZ4, (8.12)]). The family {xa(u) | a ∈ I,u ∈ Z} satisfies the
T-system T2(Xr) in AQ; namely,

xa(u − 1)xa(u + 1) = 1 +
∏

b∈I:Cab=−1

xb(u).(4.7)
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Proof. For example, suppose that a ∈ I+ and that u is odd. Then,

xa(u − 1) = μ+

(
xa(u)

)
=

1
xa(u)

(
1 +

∏
b∈I:Cab=−1

xb(u)
)

(4.8)

by (4.1), and xa(u) = xa(u + 1) by (4.5). The other cases are similar.

Now let us describe the relation between the rings, T2(Xr) and AQ. Define
a ring homomorphism f : AQ → T2(Xr) as the restriction of the ring homo-
morphism Z[x±1

a ]a∈I → T2(Xr) given by

f : x±1
a �→

{
T

(a)
1 (0)±1 a ∈ I+,

T
(a)
1 (1)±1 a ∈ I−.

(4.9)

Then, we have the following (see Figure 2).

Lemma 4.2. For the above homomorphism f : AQ → T2(Xr),

f : xa(u) �→
{

T
(a)
1 (u) ε(a)(−1)u = +,

T
(a)
1 (u + 1) ε(a)(−1)u = −.

(4.10)

Proof. For u = 0, (4.10) holds by the definition of f . Then, one can prove
(4.10) by the induction on ±u with (4.2), (4.5), and (4.7).

u
0 1 2 3−1−2−3

x(0) x(1) x(2)x(−1)x(−2)x(−3)

μ−μ+μ−μ+μ−

T
(1)
1 (0) T

(1)
1 (2)T

(1)
1 (−2)

T
(2)
1 (1)T

(2)
1 (−1)T

(2)
1 (−3)

T
(3)
1 (0) T

(3)
1 (2)T

(3)
1 (−2)

T
(4)
1 (1)T

(4)
1 (−1)T

(4)
1 (−3)

Figure 2: Relation of x(u) and T
(a)
1 (u) for Xr = A4. The thick

quiver corresponds to the initial seed (Q,x(0)) of the cluster
algebra AQ, where we take I+ = {1,3}, I− = {2,4}.
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Proposition 4.3. The ring T◦
2(Xr) is isomorphic to AQ ⊗Z AQ.

Proof. It follows from Lemma 4.2 that the image f(AQ) is T◦
2(Xr)+. Fur-

thermore, the inverse correspondence g : T◦
2(Xr)+ → AQ, T

(a)
1 (u) �→ xa(u)

defines a homomorphism by Lemma 4.1 and the fact that AQ is an integral
domain. Therefore,

T◦
2(Xr)+ � AQ,(4.11)

and we obtain the assertion.

Thanks to the isomorphism, the periodicity of T2(Xr) is reduced to the
known periodicity of AQ. By the correspondence (4.10), it is easy to check
that the periodicity of T2(Xr) is translated as

half-periodicity: xa(u + h + 2) = xω(a)(u),

periodicity: xa

(
u + 2(h + 2)

)
= xa(u).

(4.12)

Recall that the Coxeter number h = h∨ of Xr is odd if and only if Xr = Ar

(r: even); furthermore, the involution ω : I → I induces a quiver isomor-
phism ω : Q → Qop if Xr = Ar (r: even) and ω : Q → Q otherwise. For a
pair of seeds (R,y) and (R′, y′), we write (R,y) ν= (R′, y′) if ν : I → I is a
bijection that induces a quiver isomorphism R → R′ and y′

ν(a) = ya for any
a ∈ R. The following periodicity of AQ is due to [FZ2, Theorems 1.9 and
3.1] and [FZ3, Propositions 2.5 and 2.6].

Theorem 4.4 (Fomin and Zelevinsky [FZ2], [FZ3]). The following equal-
ities hold for AQ (u: even).

(1) Half-periodicity:
(i) for Xr other than Ar (r: even), where h is even,

μ(h+2)/2
(
Q,x(u)

) ω=
(
Q,x(u)

)
;(4.13)

(ii) for Xr = Ar (r: even), where h is odd,

μ+μ(h+1)/2
(
Q,x(u)

) ω=
(
Q,x(u)

)
.(4.14)

(2) Periodicity: For any Xr,

μh+2
(
Q,x(u)

) id=
(
Q,x(u)

)
.(4.15)
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Corollary 4.5. The following relations hold in T2(Xr) for any simply
laced Xr.

(1) Half-periodicity: T
(a)
1 (u + h + 2) = T

(ω(a))
1 (u).

(2) Periodicity: T
(a)
1 (u + 2(h + 2)) = T

(a)
1 (u).

Proof. The relations in (4.12) immediately follow from Theorem 4.4 and
(4.6).

4.3. Alternative proof of Theorem 4.4 by cluster category
Here we present an alternative proof of Theorem 4.4 based on the cate-

gorification of AQ by the cluster category CQ, in the spirit of [Kel2]. The
definitions and results here will be also used to prove the periodicity for the
levels greater than two in Section 4.5.

Let Q be the alternating quiver whose underlying graph is simply laced
Xr other than A1 as in Section 4.2. Let K be an algebraically closed
field, and let KQ be the path algebra of Q [ARS], [ASS]. We denote by
DQ = Db(modKQ) the bounded derived category of finite dimensional KQ-
modules. Then DQ forms a K-linear triangulated category with the suspen-
sion functor [1]. We denote by D the K-dual. The autoequivalence

τ := D(KQ)[−1]
L

⊗KQ − : DQ → DQ(4.16)

is called the Auslander-Reiten translation and plays an important role in
representation theory of KQ [ARS], [ASS], [Ha].

Now we define another autoequivalence of DQ by F := τ −1 ◦ [1]. Then the
cluster category of Q [BMRRT] is defined as the orbit category

CQ := DQ/F,(4.17)

which means that CQ has the same objects with DQ, and the morphism
space is given by

HomCQ
(X,Y ) :=

⊕
i∈Z

HomDQ

(
X,F i(Y )

)
(4.18)

for any X,Y ∈ CQ. Then CQ forms a triangulated category with the sus-
pension functor [1], and the natural functor DQ → CQ is a triangle functor
[Kel1].

For a ∈ I , we denote by ea the path of length zero in Q. Define KQ-
modules by

Pa := (KQ)ea, P := KQ =
⊕
a∈I

Pa.(4.19)
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The following description of indecomposable objects in CQ follows from
Gabriel’s theorem [ASS] and from Fomin and Zelevinsky’s [FZ2] descrip-
tion of finite type cluster algebras.

Theorem 4.6. There exists a bijection

X : {indecomposable objects in CQ}/ � → {cluster variables in AQ}
(4.20)

satisfying XPa = xa(0) for any a ∈ I.

We say that an object T =
⊕

a∈I Ta ∈ CQ is cluster tilting if
(1) each Ta is indecomposable and mutually nonisomorphic, and
(2) HomCQ

(Ta, Tb[1]) = 0 holds for any a, b ∈ I .
For a cluster tilting object T ∈ CQ, we denote by QT the quiver of the
endomorphism ring EndCQ

(T ) [ARS], [ASS].
We give two important examples of cluster tilting objects.

Example 4.7. (1) The KQ-module

P =
⊕
a∈I

Pa(4.21)

gives a cluster tilting object. We have QP = Q, since EndCQ
(P ) = KQ.

(2) We define KQ-modules by

Ua :=

{
τ −1(Pa) a ∈ I+,

Pa a ∈ I−,
U :=

⊕
a∈I

Ua.(4.22)

Then U is a tilting KQ-module, so it gives a cluster tilting object in CQ.
We have QU = Qop, since EndDQ

(U) � KQop.

The mutation of cluster tilting objects is introduced in [BMRRT, Theo-
rem 5.1].

Theorem 4.8. Let T =
⊕

a∈I Ta ∈ CQ be a cluster tilting object. For any
a ∈ I, there exists a unique indecomposable object T ∗

a ∈ CQ which is not
isomorphic to Ta such that (T/Ta) ⊕ T ∗

a is a cluster tilting object.

We call the above (T/Ta) ⊕ T ∗
a the cluster tilting mutation of T at a,

and we denote it by μa(T ). We have the following key observation [BMR,
Theorem 6.1].
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Theorem 4.9. (1) We have a bijection

X̃ : {cluster tilting objects in CQ}/ � → {seeds in AQ}(4.23)

defined by

T =
⊕
a∈I

Ta �→ (QT , {XTa }a∈I).(4.24)

(2) We have X̃ ◦ μa = μa ◦ X̃ for any a ∈ I.

We have

(4.25) X̃P =
(
Q,x(0)

)
.

We number elements of I+ and I− as {a1, . . . , as} and {as+1, . . . , ar }, respec-
tively. Define composed cluster tilting mutations by

μ+ := μas · · · μa1 , μ− := μar · · · μas+1 , μ := μ−μ+.(4.26)

For a cluster tilting object T =
⊕

a∈I Ta, let [T ]a denote Ta; similarly, for
a seed (R,y) of AQ, let [(R,y)]a denote ya. By Theorem 4.9(2), we have
the following relationship between the seed mutation and the cluster tilting
mutation:

(4.27) [μk(X̃T )]a = X[μk(T )]a , [μ+μk(X̃T )]a = X[μ+μk(T )]a ,

for any cluster tilting object T ∈ CQ, k ∈ Z, and a ∈ I . The following obser-
vation is a key result.

Proposition 4.10. For any k ∈ Z and a ∈ I, the following assertions
hold.

(1) [μk(P )]a � τ −k(Pa) in CQ.
(2) [μ+μk(P )]a � τ −k(Ua) in CQ.

Proof. Since cluster tilting mutation commutes with any autoequivalence
of CQ, we have only to show the assertion for k = 1 for (1) and k = 0 for (2).

(2) We put I i := {a1, . . . , ai} and

T i :=
(⊕

a∈Ii

τ −1(Pa)
)

⊕
( ⊕

a∈I\Ii

Pa

)
.
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Then T i is a tilting KQ-module by [ASS]. Thus it is a cluster tilting
object by [BMRRT]. Since T i−1 and T i have the same indecomposable
direct summands except Pai , we have μai(T

i−1) = T i. In particular, we have
μ+(P ) = U .

(1) By a similar argument to (2), we have μ(P ) = μ−(U) = τ −1(P ).

We use the following classical periodicity result.

Proposition 4.11. (1) We have that τ −h(X) is isomorphic to X[2] for
any X ∈ DQ.

(2) We have that τ −h−2(X) is isomorphic to X for any X ∈ CQ.

Proof. (1) This follows from the structure of the Auslander-Reiten quiver
of DQ [G], [Ha] (see Figure 3).

(2) By (1), we have τ −h−2(X) � τ −2(X[2]) � F 2(X) � X .

Now we are ready to prove Theorem 4.4(2) (full-periodicity).

P1

P3

P5

P2

P4

τ −1(P1)

τ −1(P3)

τ −1(P5)

τ −1(P2)

τ −1(P4)

τ −2(P1)

τ −2(P3)

τ −2(P5)

τ −2(P2)

τ −2(P4)

P5[1]

P3[1]

P1[1]

P4[1]

P2[1]

P1

P3

P2 = U2

P4 = U4

τ −1(P1) = U1

τ −1(P3) = U3

τ −1(P2)

τ −1(P4)

τ −2(P1)

τ −2(P3)

P3[1]

P1[1]

P4[1]

P2[1]

Figure 3: The Auslander-Reiten quivers of DQ for Xr = A5

(the above) and A4 (the below)
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Theorem 4.12 (Theorem 4.4(2)).
[
μh+2(Q,x(0))

]
a

= xa(0).

Proof. We have [μh+2(P )]a
Prop.4.10(1)

= τ −h−2(Pa)
Prop.4.11(2)

= Pa for any a ∈
I . Applying X̃ , we have[

μh+2
(
Q,x(0)

)]
a

(4.25)
= [μh+2(X̃P )]a

(4.27)
= X[μh+2(P )]a = XPa = xa(0).

Next we prove Theorem 4.4(1) (half-periodicity). We divide the proof into
two cases.

Case 1: h is even.
In this case, the map ω : I → I induces the quiver automorphism ω : Q →

Q. Thus ω induces an automorphism ω : KQ → KQ of our K-algebra KQ,
and we have an autoequivalence

ω : DQ → DQ(4.28)

of categories. We have ω(Pa) = Pω(a) for any a ∈ I .
We have the following periodicity.

Proposition 4.13. (1) τ −h/2(X) � ω(X[1]) for any X ∈ DQ;
(2) τ −(h+2)/2(X) � ω(X) for any X ∈ CQ.

Proof. (1) This follows from the structure of the Auslander-Reiten quiver
of DQ [G], [Ha] (see Figure 3).

(2) By (1), we have τ −(h+2)/2(X) � τ −1
(
ω(X[1])

)
� F (ω(X)) � ω(X).

We prove the first part of Theorem 4.4(1):

Theorem 4.14 (Theorem 4.4(1-i)).
[
μ(h+2)/2(Q,x(0))

]
a

= xω(a)(0).

Proof. We have [μ(h+2)/2(P )]a
Prop.4.10(1)

= τ −(h+2)/2(Pa)
Prop.4.13(2)

= Pω(a).

Applying X̃ , we have
[
μ(h+2)/2(Q,x(0))

]
a

(4.25)
= [μ(h+2)/2(X̃P )]a

(4.27)
=

X[μ(h+2)/2(P )]a
= XPω(a)

= xω(a)(0).

Case 2: h is odd.
In this case, the map ω : I → I induces the quiver isomorphism ω : Q →

Qop. Thus ω induces an isomorphism ω : KQ → KQop of K-algebras, and
we have an equivalence

ω : DQ → DQop(4.29)
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of categories. On the other hand, the tilting KQ-module U in Example 4.7(2)
induces an equivalence

U
L

⊗KQop − : DQop → DQ.(4.30)

Composing them, we have an autoequivalence

r : DQ
ω−→ DQop

U
L

⊗KQop −
−−−−−−−→ DQ.(4.31)

We have r(Pa) = Uω(a) and r(Ua) = τ −1(Pω(a)) for any a ∈ I (see Figure 3);
hence, r2(X) � τ −1(X) for any X ∈ DQ.

We have the following periodicity.

Proposition 4.15. (1) rτ −(h−1)/2(X) � X[1] for any X ∈ DQ;
(2) τ −(h+1)/2(X) � r−1(X) for any X ∈ CQ.

Proof. (1) This follows from the structure of the Auslander-Reiten quiver
of DQ [G], [Ha] (see Figure 3).

(2) By (1), we have rτ −(h+1)/2(X) � τ −1(X[1]) � X , from which the claim
follows.

We prove the second part of Theorem 4.4(1).

Theorem 4.16 (Theorem 4.4(1-ii)).
[
μ+μ(h+1)/2(Q,x(0))

]
a
= xω(a)(0).

Proof. We have [μ+μ(h+1)/2(P )]a
Prop. 4.10(2)

= τ −(h+1)/2(Ua)
Prop. 4.15(2)

=

r−1(Ua) = Pω(a). Applying X̃ , we have
[
μ+μ(h+1)/2(Q,x(0))

]
a

(4.25)
=

[μ+μ(h+1)/2(X̃P )]a
(4.27)
= X[μ+μ(h+1)/2(P )]a

= XPω(a)
= xω(a)(0).

4.4. Level greater than two case
Here we study the periodicity of T�(Xr) for simply laced Xr and � > 2.

Since the case Xr = A1 reduces to T2(A�−1) by the level-rank duality (Exam-
ple 3.10), we continue to assume Xr �= A1.

First, let us establish a connection between the ring T◦
� (Xr) and the

cluster algebra AQ�Q′ considered in [Kel2], [HL]. In doing that, we slightly
generalize the problem and consider a pair of simply laced Dynkin diagrams
Xr, X ′

r′ ( �= A1). For Xr (resp. X ′
r′ ), let C, h, I , I±, ε, Q, ω (resp. C ′, h′,

I ′, I ′
±, ε′, Q′, ω′) be the same as Section 4.2.
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Definition 4.17. The T-system T(Xr,X
′
r′ ) of type (Xr,X

′
r′ ) is the fol-

lowing system of relations for a family of variables T = {Ta,b(u) | a ∈ I, b ∈
I ′, u ∈ Z}:

Ta,b(u − 1)Ta,b(u + 1) =
∏

k∈I′:C′
bk=−1

Ta,k(u) +
∏

k∈I:Cak=−1

Tk,b(u).(4.32)

Definition 4.18. The T-algebra T(Xr,X
′
r′ ) of type (Xr,X

′
r′ ) is the ring

with generators Ta,b(u)±1 (a ∈ I, b ∈ I ′, u ∈ Z) and the relations T(Xr,X
′
r′ ).

Also, we define the ring T◦(Xr,X
′
r′ ) as the subring of T(Xr,X

′
r′ ) generated

by Ta,b(u) (a ∈ I, b ∈ I ′, u ∈ Z).

The system T(Xr,X
′
r′ ) is the counterpart of the Y -system of [RTV] stud-

ied in [Kel2], and T�(Xr) = T(Xr,A�−1) by identifying T
(a)
m (u) with Ta,m(u).

We are going to show the following periodicity of T(Xr,X
′
r′ ):

half-periodicity: Ta,b(u + h + h′) = Tω(a),ω′(b)(u),

periodicity: Ta,b

(
u + 2(h + h′)

)
= Ta,b(u).

(4.33)

Let T◦(Xr,X
′
r′ )± be the subring of T◦(Xr,X

′
r′ ) generated by Ta,b(u) (a ∈

I, b ∈ I ′, u ∈ Z) such that ε(a)ε′(b)(−1)u = ±. Then, we have

T◦(Xr,X
′
r′ ) � T◦(Xr,X

′
r′ )+ ⊗Z T◦(Xr,X

′
r′ )−,(4.34)

T◦(Xr,X
′
r′ )+ � T◦(Xr,X

′
r′ )−.

To describe the corresponding cluster algebra to T◦(Xr,X
′
r′ ), we intro-

duce two kinds of quivers, Q�Q′ and Q ⊗ Q′.

Definition 4.19 ([Kel2]). (i) The square product Q�Q′ of Q and Q′ is
the quiver obtained from the product Q × Q′ by reversing all the arrows in
the full subquivers {a} × Q′ (a: sink of Q) and Q × {b} (b: source of Q′).

(ii) The tensor product Q ⊗ Q′ of Q and Q′ is the quiver obtained from
the product Q × Q′ by adding an arrow (a2, b2) → (a1, b1) for each pair of
arrows a1 → a2 of Q and b1 → b2 of Q′.

Example 4.20. Since a ∈ I+ is a source of Q, in our convention, the
ordinary product Q × Q′ consists of the following type of squares:

Q × Q′ :
(+−) → (−−)

↑ ↑
(++) → (−+)

,(4.35)
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where (+−), for example, represents a vertex (a, b) of Q × Q′ with a ∈ I+,
b ∈ I ′

−. Correspondingly, Q�Q′ and Q ⊗ Q′ consist of the following types
of squares:

Q�Q′ :
(+−) → (−−)

↑ ↓
(++) ← (−+)

, Q ⊗ Q′ :
(+−) → (−−)

↑ ↙ ↑
(++) → (−+)

.(4.36)

Using these diagrams, one can easily check that

Q�Q′ = Qop �Q′op,

(Q�Q′)op = Qop �Q′ = Q�Q′op,

(Q ⊗ Q′)op = Qop ⊗ Q′op.

(4.37)

We define composed mutations,

μ± ± =
∏

(a,b)∈I± ×I′
±

μa,b, μ± ∓ =
∏

(a,b)∈I± ×I′
∓

μa,b,(4.38)

where μa,b is the mutation at (a, b). Then, the following cycle of mutations
of quivers occurs (the “eyeglass diagram”):

Q ⊗ Q′op Q ⊗ Q′

μ++ μ− − μ+− μ−+

Q�Q′ (Q�Q′)op Q�Q′.
μ− − μ++ μ−+ μ+−

Qop ⊗ Q′ Qop ⊗ Q′op

(4.39)

We further define composed mutations [Kel2]

μ− = μ+−μ− −, μ+ = μ++μ−+,

μ⊗ = μ−μ+ = μ+−μ− −μ++μ−+.
(4.40)

In particular, μ⊗ preserves Q ⊗ Q′.

Remark 4.21. (1) The mutations μ± ±, μ± ∓, and μ⊗ here correspond to
μ∓,∓, μ∓,±, and the inverse of μ⊗ in [Kel2]. This is due to our convention of
the assignment of +/− for the sources/sinks of Q and Q′ and is not essential
at all.

(2) Instead of (4.40), one may set μ+ = μ+−μ++, μ− = μ− −μ−+, and
μ⊗ = μ+μ−. This is again a matter of choice.
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We introduce the (I × I ′)-tuple of variables x = {xa,b | a ∈ I, b ∈ I ′ }, and
we define AQ�Q′ to be the cluster algebras with initial seeds (Q�Q′, x).
We set x = x(0), and we define clusters x(u), z(u), z(u) (u ∈ Z) of AQ�Q′

by the following sequence of mutations (u: even):(
Q ⊗ Q′op, z(u + 1)

) (
Q ⊗ Q′, z(u + 2)

)
μ++ μ− − μ+− μ−+(

Q�Q′, x(u)
) (

(Q�Q′)op, x(u + 1)
) (

Q�Q′, x(u + 2)
)

μ− − μ++ μ−+ μ+−(
Qop ⊗ Q′, z(u + 1)

) (
Qop ⊗ Q′op, z(u + 2)

)
.(4.41)

In particular,

xa,b(u + 1) = xa,b(u) if ε(a)ε′(b)(−1)u = −,(4.42)

za,b(u) =

{
xa,b(u) a ∈ I+,

xa,b(u − 1) a ∈ I−,
(4.43)

za,b(u) =

{
xa,b(u − 1) a ∈ I+,

xa,b(u) a ∈ I−,(
Q ⊗ Q′, z(2k)

)
= μk

⊗
(
Q ⊗ Q′, z(0)

)
(k ∈ Z),(

Q ⊗ Q′op, z(2k + 1)
)

= μ+μk
⊗
(
Q ⊗ Q′, z(0)

)
(k ∈ Z).

(4.44)

Lemma 4.22. The family {xa,b(u) | a ∈ I, b ∈ I ′, u ∈ Z} satisfies the T-
system T(Xr,X

′
r′ ) in AQ�Q′ ; namely,

xa,b(u − 1)xa,b(u + 1) =
∏

k∈I′:C′
bk=−1

xa,k(u) +
∏

k∈I:Cak=−1

xk,b(u).(4.45)

Proof. The proof is the same as Lemma 4.1 by replacing μ+ (resp. μ−)
therein with μ− −μ++ (resp. μ−+μ+−).

Define a ring homomorphism f : AQ�Q′ → T(Xr,X
′
r′ ) as the restriction

of the ring homomorphism Z[x±1
a,b](a,b)∈I×I′ → T(Xr,X

′
r′ ) given by

f : x±1
a,b �→

{
Ta,b(0)±1 ε(a)ε′(b) = +,

Ta,b(1)±1 ε(a)ε′(b) = −.
(4.46)

Then, as Lemma 4.2, we have the following.
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Lemma 4.23. For the above homomorphism f : AQ�Q′ → T(Xr,X
′
r′ ),

f : xa,b(u) �→
{

Ta,b(u) ε(a)ε′(b)(−1)u = +,

Ta,b(u + 1) ε(a)ε′(b)(−1)u = −.
(4.47)

Let μ� := μ−+μ+−μ− −μ++. We define At
Q�Q′ to be the subring of AQ�Q′

generated by xa,b(u) (a ∈ I, b ∈ I ′, u ∈ 2Z), that is, the cluster variables
belonging to the seeds μk

�(Q�Q′, x(0)) (k ∈ Z). We call At
Q�Q′ the trans-

lation subalgebra of AQ�Q′ with respect to μ�. The ring At
Q�Q′ is no longer

a cluster algebra. We remark that, by (4.42), the ring At
Q�Q′ coincides with

the subring of AQ�Q′ generated by xa,b(u) (a ∈ I, b ∈ I ′, u ∈ Z), which are
the cluster variables belonging to the “bipartite belt” in [FZ4, Section 8].

Proposition 4.24. The ring T◦(Xr,X
′
r′ ) is isomorphic to At

Q�Q′ ⊗Z

At
Q�Q′ .

Proof. By Lemma 4.23, the restriction f : At
Q�Q′ → T◦(Xr,X

′
r′ )+ is sur-

jective. Furthermore, the inverse correspondence g : T◦(Xr,X
′
r′ )+ → At

Q�Q′ ,
Ta,b(u) �→ xa,b(u) defines a homomorphism by Lemma 4.22 and the fact that
At

Q�Q′ is an integral domain. Therefore,

T◦(Xr,X
′
r′ )+ � At

Q�Q′ ,(4.48)

and we obtain the assertion.

Remark 4.25. Hernandez and Leclerc [HL] also study the relation
between the cluster algebra AQ�Q′ with X ′

r′ = Ar′ and the T-system in
view of the categorification of AQ�Q′ by a subcategory of the category of
the finite-dimensional Uq(ĝ)-modules.

Now let us turn to the periodicity problem. Let AQ⊗Q′ be the cluster
algebra with initial seed (Q ⊗ Q′, z), z = {za,b | a ∈ I, b ∈ I ′ }. Two cluster
algebras AQ⊗Q′ and AQ�Q′ coincide by setting z = z(0) in (4.41). A crucial
observation made by Keller [Kel2] is that the periodicity of AQ�Q′ is more
transparent in the “⊗-picture” than in the “�-picture” from the cluster
categorical point of view. By (4.43) and (4.47), it is easy to check that the
periodicity (4.33) of T(Xr,X

′
r′ ) is translated as

half-periodicity: za,b(u + h + h′) =

{
zω(a),ω′(b)(u) h: even,

zω(a),ω′(b)(u) h: odd,

periodicity: za,b

(
u + 2(h + h′)

)
= za,b(u).

(4.49)
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The following periodicity of AQ⊗Q′ is immediately obtained from the
results in [Kel2].

Theorem 4.26 (Keller [Kel2]). The following equality holds for AQ⊗Q′

(u: even):

μh+h′
⊗

(
Q ⊗ Q′, z(u)

) id=
(
Q ⊗ Q′, z(u)

)
.(4.50)

Proof. The F -polynomials of AQ⊗Q′ relevant to the above periodicity
are expressed in terms of the triangulated category CKQ⊗KQ′ [Kel2, The-
orem 7.13(c)]; furthermore, CKQ⊗KQ′ has the desired periodicity [Kel2,
Proposition 8.5]. Therefore, the cluster variable z(u) has the same peri-
odicity by [FZ4, Corollary 6.3, Proposition 6.9].

As a refinement of Theorem 4.26, we also show the half-periodicity of
AQ⊗Q′ .

Theorem 4.27. The following equalities hold for AQ⊗Q′ (u: even).
(1) For (h,h′) = (even, even),

μ
(h+h′)/2
⊗

(
Q ⊗ Q′, z(u)

) ω×ω′
=

(
Q ⊗ Q′, z(u)

)
.(4.51)

(2) For (h,h′) = (odd,odd),

μ
(h+h′)/2
⊗

(
Q ⊗ Q′, z(u)

) ω×ω′
=

(
Qop ⊗ Q′op, z(u)

)
.(4.52)

(3) For (h,h′) = (even,odd),

μ+μ
(h+h′ −1)/2
⊗

(
Q ⊗ Q′, z(u)

) ω×ω′
=

(
Q ⊗ Q′, z(u)

)
.(4.53)

(4) For (h,h′) = (odd, even),

μ+μ
(h+h′ −1)/2
⊗

(
Q ⊗ Q′, z(u)

) ω×ω′
=

(
Qop ⊗ Q′op, z(u)

)
.(4.54)

The proof of Theorem 4.27 is given in Section 4.5.

Corollary 4.28. The following relations hold in T(Xr,X
′
r′ ):

(1) Half-periodicity: Ta,b(u + h + h′) = Tω(a),ω′(b)(u).
(2) Periodicity: Ta,b(u + 2(h + h′)) = Ta,b(u).

Proof. The relations in (4.49) immediately follow from Theorems 4.26
and 4.27 and (4.44).
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By Corollaries 4.5 and 4.28, we obtain the main result of this section,
which is as follows.

Corollary 4.29. The following relations hold in T�(Xr) for any simply
laced Xr and any � ≥ 2.

(1) Half-periodicity: T
(a)
m (u + h + �) = T

(ω(a))
�−m (u).

(2) Periodicity: T
(a)
m (u + 2(h + �)) = T

(a)
m (u).

4.5. Proof of Theorems 4.26 and 4.27 by cluster category
Here we prove Theorem 4.27 by adapting the method of [Kel2, Theo-

rem 8.2] for our situation. In the course we also include a proof of Theorem
4.26 without using the F -polynomials, for the reader’s convenience. We
present the proof as parallel as possible to the level 2 case in Section 4.3.

Let Q and Q′ continue to be the alternating quivers in Section 4.4 whose
underlying graphs are simply laced Xr and X ′

r′ other than A1, respectively.
For Q (resp. Q′), let KQ, DQ, τ : DQ → DQ (resp. KQ′, DQ′ , τ ′ : DQ′ →
DQ′ ) be the ones in Section 4.3.

We denote the tensor product ⊗K simply by ⊗, and we define a finite
dimensional K-algebra A by

A := KQ ⊗ KQ′.(4.55)

Let DA = Db(modA) be the bounded derived category of finite dimensional
A-modules, and let

τ⊗ := DA[−1]
L

⊗A − : DA → DA(4.56)

be the Auslander-Reiten translation for DA. Now we define another auto-
equivalence of DA by F := τ −1

⊗ ◦ [1]. We need the following easy observation.

Lemma 4.30. We have τ(X) ⊗ τ ′(Y ) � F −1(X ⊗ Y ) in DA for any X ∈
DQ and Y ∈ DQ′ .

Proof. We have τ(X) ⊗ τ ′(Y ) � (D(KQ)
L

⊗KQ X[−1]) ⊗ (D(KQ′)
L

⊗KQ′

Y [−1]) � (D(KQ) ⊗ D(KQ′))[−2]
L

⊗A (X ⊗ Y ) = F −1(X ⊗ Y ).

The orbit category

DA/F(4.57)
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has the same objects with DA, and the morphism space is given by

Hom(DA/F )(X,Y ) :=
⊕
i∈Z

HomDA

(
X,F i(Y )

)
(4.58)

for any X,Y ∈ DA/F . In contrast to (4.17), DA/F is no longer a triangu-
lated category in general. However, based on the works of Keller (see [Kel1],
[Kel4]), Amiot [A, Section 4] constructed a triangulated hull CA of DA/F ,
which is a 2-Calabi-Yau triangulated category with a fully faithful func-
tor DA/F → CA satisfying a certain universal property. (Here we need the
fact that the functor H0(F −) is nilpotent on modA, which follows from
Lemma 4.30.) We call CA the (generalized) cluster category of A.

We say that an object T =
⊕

(a,b)∈I×I′ Ta,b ∈ CA is cluster tilting if

(1) each Ta,b is indecomposable and mutually nonisomorphic, and
(2) addT =

{
X ∈ CA | HomCA

(T,X[1]) = 0
}
.

(To simplify our proof, we assume that the index set of direct summands of
T is I × I ′. This does not affect the definition essentially due to Example 4.31
and [DeK, Theorem 2.4].) For a cluster tilting object T ∈ CA, we denote by
QT the quiver of the endomorphism ring EndCA

(T ) [ARS], [ASS].

Example 4.31 (cf. Example 4.7). For a ∈ I and b ∈ I ′, we denote by ea

and e′
b the paths of length zero in Q and Q′, respectively. As in Example 4.7,

we define KQ-modules P , U and KQ′-modules P ′, U ′ by

Pa : = (KQ)ea, P : = KQ =
⊕
a∈I

Pa,(4.59)

Ua : =

{
τ −1(Pa) a ∈ I+,

Pa a ∈ I−,
U : =

⊕
a∈I

Ua,(4.60)

P ′
b : = (KQ′)e′

b, P ′ : = KQ′ =
⊕
b∈I′

P ′
b,(4.61)

U ′
b : =

{
τ ′ −1(P ′

b) b ∈ I ′
+,

P ′
b b ∈ I ′

−,
U ′ : =

⊕
b∈I′

U ′
b.(4.62)

Then

P ⊗ P ′ =
⊕

(a,b)∈I×I′

Pa ⊗ P ′
b(4.63)

is a cluster tilting object in CA with QP ⊗P ′ = Q ⊗ Q′ [A, Theorem 4.10].
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Again we can define the mutation of cluster tilting objects as follows [IY,
Theorem 5.3].

Theorem 4.32 (cf. Theorem 4.8). Let T =
⊕

(a,b)∈I×I′ Ta,b ∈ CA be a clus-
ter tilting object. For any (a, b) ∈ I × I ′, there exists a unique indecomposable
object T ∗

a,b ∈ CA that is not isomorphic to Ta,b such that (T/Ta,b) ⊕ T ∗
a,b is a

cluster tilting object.

We call the above (T/Ta,b) ⊕ T ∗
a,b the cluster tilting mutation of T at

(a, b), and we denote it by μa,b(T ).
We number elements of I− × I ′

+ as {c1, . . . , cs} (s := |I− × I ′
+|), and we

define a composed cluster tilting mutation μ−+ by

(4.64) μ−+ := μcs · · · μc1 .

Similarly, we define

(4.65) μ++, μ− −, μ+−

by using I+ × I ′
+, I− × I ′

−, and I+ × I ′
−, respectively. We further define

(4.66) μ⊗ := μ+−μ− −μ++μ−+, μ+ := μ++μ−+.

Thus we have a numbering {c1, . . . , crr′ } of the elements of I × I ′ such that
μ⊗ = μcrr′ · · · μc1 .

For a cluster tilting object T =
⊕

(a,b)∈I×I′ Ta,b, let [T ]a,b denote Ta,b. We
have the following key observation.

Proposition 4.33 (cf. Proposition 4.10). (1) We have a diagram

P ⊗ τ ′ −k(P ′) P ⊗ τ ′ −k(U ′) P ⊗ τ ′ −k−1(P ′)
μ−+ μ++ μ− − μ+−

V k W k

μ+− μ− − μ++ μ−+

U ⊗ τ ′ −k(U ′) U ⊗ τ ′ −k−1(P ′) U ⊗ τ ′ −k−1(U ′)

(4.67)

of composed cluster tilting mutations for any k ∈ Z, where

V k : =
( ⊕

(a,b)∈I− ×I′
+

Pa ⊗ τ ′ −k−1(P ′
b)
)

⊕
( ⊕

(a,b)/∈I− ×I′
+

Pa ⊗ τ ′ −k(P ′
b)
)
,(4.68)

W k : =
( ⊕

(a,b)/∈I+×I′
−

Pa ⊗ τ ′ −k−1(P ′
b)
)

⊕
( ⊕

(a,b)∈I+×I′
−

Pa ⊗ τ ′ −k(P ′
b)
)
.(4.69)
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(2) We have

[μk
⊗(P ⊗ P ′)]a,b = Pa ⊗ τ ′ −k(P ′

b),

[μ+μk
⊗(P ⊗ P ′)]a,b = Pa ⊗ τ ′ −k(U ′

b)
(4.70)

for any k ∈ Z and (a, b) ∈ I × I ′.

Proof. (2) is an immediate consequence of (1).
(1) We show only μ−+(P ⊗ P ′) = V 0 since other cases are shown similarly.

We put J � := {ci | 1 ≤ i ≤ �}. Define T � ∈ DA by

T � :=
( ⊕

(a,b)∈J�

Pa ⊗ τ ′ −1(P ′
b)
)

⊕
( ⊕

(a,b)∈(I×I′)\J�

Pa ⊗ P ′
b

)
for any 0 ≤ � ≤ s = |I− × I ′

+|. Clearly we have T 0 = P ⊗ P ′ and T s = V 0.
The following observation is crucial.

Proposition 4.34. (1) T � is a tilting A-module for any 0 ≤ � ≤ s.
(2) The algebra B := EndA(T �) has global dimension at most two.
(3) For any simple B-modules S and S′, we have Ext1B(S,S) = 0, and

either Ext1B(S,S′) = 0 or Ext2B(S,S′) = 0 holds.

Proof. (1) Since Q′ is not of type A1, our T � is an A-module. Clearly T �

has projective dimension at most one, and the number of indecomposable
direct summands of T � is rr′. Thus we have only to show Ext1A(T �, T �) = 0.
Fix (a, b), (c, d) ∈ I × I ′, and we shall show

HomDA
(T �

a,b, T
�
c,d[1]) = 0.(4.71)

We have a general equality

HomDA

(
X ⊗ X ′, (Y ⊗ Y ′)[i]

)
(4.72)

=
⊕

j+j′=i

HomDQ
(X,Y [j]) ⊗ HomDQ′ (X

′, Y ′[j′])

for any X,Y ∈ DQ and X ′, Y ′ ∈ DQ′ . We also have

HomDQ
(Pa, Pc[j]) = 0

(4.73)
if “j �= 0” or “j = 0, a �= c, and there is no arrow a → c in Q.”

We divide the proof of (4.71) into four cases.



PERIODICITIES OF T-SYSTEMS AND Y-SYSTEMS 103

(i) Assume (a, b), (c, d) /∈ J �. Then (4.71) follows from (4.72), (4.73), and

HomDQ′ (P
′
b, P

′
d[j

′]) = 0 if j′ �= 0.(4.74)

(ii) Assume (a, b), (c, d) ∈ J �. Then (4.71) follows from (4.72), (4.73), and

HomDQ′

(
τ ′ −1(P ′

b), τ
′ −1(P ′

d)[j
′]
)

(4.75)

� HomDQ′ (P
′
b, P

′
d[j

′]) = 0 if j′ �= 0.

(iii) Assume (a, b) ∈ J � and (c, d) /∈ J �. We have

HomDQ′

(
τ ′ −1(P ′

b), P
′
d[j

′]
)

� DHomDQ′ (P
′
d[j

′], P ′
b[1]) = 0(4.76)

if “j′ �= 1” or “j′ = 1, b �= d, and there is no arrow d → b in Q′.”

Since a ∈ I−, b ∈ I ′
+, and (a, b) �= (c, d) hold, either “a �= c and there is no

arrow a → c in Q” or “b �= d and there is no arrow d → b in Q′.” Thus (4.71)
follows from (4.72) and (4.73).

(iv) Assume (a, b) /∈ J � and (c, d) ∈ J �. Since d ∈ I ′
+ and Q′ is not type

A1, we have

HomDQ′

(
P ′

b, τ
′ −1(P ′

d)[j
′]
)

= 0 if j′ �= 0.(4.77)

Thus (4.71) follows from (4.72) and (4.73).
(2) and (3) It is enough to prove the following claim.

Claim. Every simple B-module S has a projective resolution

0 → B2 → B1 → B0 → S → 0(4.78)

such that B1 and B0 ⊕ B2 have no nonzero common direct summand.

Let (a, b) ∈ I × I ′ be such that S is the top of the indecomposable projec-
tive B-module HomA(T �, T �

a,b). We divide the proof of the claim into four
cases.

(i) Assume that a ∈ I+. Then the radical of the A-module Pa ⊗ P ′
b is⊕

d→b Pa ⊗ P ′
d, which belongs to addT �. Here the direct sum is taken over

all arrows in Q′ with target b. Thus we have a projective resolution

0 → HomA

(
T �,

⊕
d→b

Pa ⊗ P ′
d

)
→ HomA(T �, Pa ⊗ P ′

b) → S → 0,(4.79)
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and the claim follows.
(ii) Assume that (a, b) ∈ (I− × I ′

+)\J �. Then the radical of the A-module
Pa ⊗ P ′

b is
⊕

c→a Pc ⊗ P ′
b, which belongs to addT �. Thus we have a projective

resolution

0 → HomA

(
T �,

⊕
c→a

Pc ⊗ P ′
b

)
→ HomA(T �, Pa ⊗ P ′

b) → S → 0,(4.80)

and the claim follows.
(iii) Assume that (a, b) ∈ J �. Applying (Pa ⊗ −) to the Auslander-Reiten

sequence 0 → P ′
b →

⊕
b→d P ′

d → τ ′ −1(P ′
b) → 0 of KQ′-modules, we have an

exact sequence

0 → Pa ⊗ P ′
b →

⊕
b→d

Pa ⊗ P ′
d

f−→ Pa ⊗ τ ′ −1(P ′
b) → 0(4.81)

of A-modules whose middle term belongs to addT �. Clearly, any morphism
T � → Pa ⊗ τ ′ −1(P ′

b) that is not a split epimorphism factors through f .
Moreover, the left term Pa ⊗ P ′

b does not belong to addT �, but its radi-
cal

⊕
c→a Pc ⊗ P ′

b belongs to addT �. Consequently, we have a projective
resolution

0 → HomA

(
T �,

⊕
c→a

Pc ⊗ P ′
b

)
→ HomA

(
T �,

⊕
b→d

Pa ⊗ P ′
d

)
f−→ HomA

(
T �, Pa ⊗ τ ′ −1(P ′

b)
)

→ S → 0

(4.82)

and the claim follows.
(iv) Assume (a, b) ∈ I− × I ′

−. Taking a tensor product of exact sequences
0 →

⊕
c→a Pc → Pa and 0 →

⊕
d→b, (a,d)/∈J� P ′

d → P ′
b, we have an exact

sequence

0 →
⊕
c→a
d→b

(a,d)/∈J�

Pc ⊗ P ′
d

(4.83)

→
( ⊕

d→b
(a,d)/∈J�

Pa ⊗ P ′
d

)
⊕
(⊕

c→a

Pc ⊗ P ′
b

)
f−→ Pa ⊗ P ′

b

of A-modules whose terms belong to addT �. Clearly, any morphism T � →
Pa ⊗ P ′

b which is not a split epimorphism factors through f . Thus we have



PERIODICITIES OF T-SYSTEMS AND Y-SYSTEMS 105

a projective resolution

0 → HomA

(
T �,

⊕
c→a
d→b

(a,d)/∈J�

Pc ⊗ P ′
d

)

→ HomA

(
T �,

( ⊕
d→b

(a,d)/∈J�

Pa ⊗ P ′
d

)
⊕
(⊕

c→a

Pc ⊗ P ′
b

))

f−→ HomA(T �, Pa ⊗ P ′
b) → S → 0

(4.84)

and the claim follows.

By Proposition 4.34(1)–(2) together with [A, Theorem 4.10], T � is a clus-
ter tilting object in CA for any 1 ≤ � ≤ s. Since T �−1 and T � have the same
indecomposable direct summands except T �

c�
, we have μc�

(T �−1) = T �. Con-
sequently, we have μ−+(P ⊗ P ′) = μ−+(T 0) = T s = V 0.

We define a set T of cluster tilting objects by

T =
{
μci · · · μc1μ

u
⊗(P ⊗ P ′) | u ∈ Z,0 ≤ i < rr′}.

We have the following result by [Kel2, Proposition 8.3].

Proposition 4.35. The quiver QT has no loops and 2-cycles for any
T ∈ T.

Proof. This is a consequence of Proposition 4.34(3) and [A, Proposition
4.16].

The following result is crucial in our proof.

Theorem 4.36 (cf. Theorems 4.6 and 4.9). There exists a map

X : {indecomposable direct summands of objects in T}/ �

→ {cluster variables in AQ⊗Q′ }
(4.85)

such that we have a map

X̃ : T → {seeds in AQ⊗Q′ }(4.86)

defined by

T =
⊕

(a,b)∈I×I′

Ta,b �→ (QT , {XTa,b
}(a,b)∈I×I′ )(4.87)

satisfying the following conditions.
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(1) X̃P ⊗P ′ = (Q ⊗ Q′, z(0)).
(2) If T and μa,b(T ) belong to T, then X̃μa,b(T ) = μa,b(X̃T ).

Proof. The assertion follows from Proposition 4.35 [Pal, Theorem 4] and
[BIRS, Theorem I.1.6].

By Theorem 4.36, (4.41), and (4.67), we also obtain

X̃U ⊗U ′ =
(
Qop ⊗ Q′op, z(0)

)
,

X̃P ⊗U ′ =
(
Q ⊗ Q′op, z(1)

)
, X̃U ⊗P ′ =

(
Qop ⊗ Q′, z(−1)

)
.

(4.88)

Now we are ready to prove Theorem 4.26 (full-periodicity).

Proposition 4.37. We use the following periodicity result by [Kel2,
Proposition 8.5]: X ⊗ τ ′ −h−h′

(Y ) � X ⊗ Y in CA for any X ∈ DQ and
Y ∈ DQ′ .

Proof. We have X ⊗ τ ′ −h−h′
(Y ) � F −h(X ⊗ τ ′ −h−h′

(Y ))
Lem.4.30� τh(X) ⊗

τ ′ −h′
(Y )

Prop.4.11(1)
� X[−2] ⊗ Y [2] � X ⊗ Y .

For a seed (R,y) of AQ⊗Q′ , let [(R,y)]a,b denote ya,b.

Theorem 4.38 (Theorem 4.26). Now we are ready to prove Theorem 4.26
(full-periodicity): [μh+h′

⊗ (Q ⊗ Q′, z(0))]a,b = za,b(0).

Proof. We have [μh+h′
⊗ (P ⊗ P ′)]a,b

Prop.4.33(2)
= Pa ⊗ τ ′ −h−h′

(P ′
b)

Prop.4.37
=

Pa ⊗ P ′
b for any (a, b) ∈ I × I ′. Applying X̃ , we have [μh+h′

⊗ (Q ⊗ Q′,

z(0))]a,b
Thm.4.36(1)

= [μh+h′
⊗ (X̃P ⊗P ′ )]a,b

Thm.4.36(2)
= X

[μh+h′
⊗ (P ⊗P ′)]a,b

=

XPa ⊗P ′
b
= za,b(0).

Next we prove Theorem 4.27 (half-periodicity). We divide the proof into
four cases.

Recall the following facts in Section 4.3: when h is even, the map ω : I → I

induces the quiver automorphism ω : Q → Q, the K-algebra automorphism
ω : KQ → KQ, and an autoequivalence ω : DQ → DQ. We have ω(Pa) =
Pω(a) for any a ∈ I . When h is odd, the map ω : I → I induces the quiver
isomorphism ω : Q → Qop, the K-algebra isomorphism ω : KQ → KQop,
and an autoequivalence

r : DQ
ω−→ DQop

U
L

⊗KQop −
−−−−−−−→ DQ.(4.89)
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We have r(Pa) = Uω(a) for any a ∈ I , and we have r2(X) � τ −1(X) for any
X ∈ DQ.

We also define ω′ : DQ′ → DQ′ for even h′, and we define r′ : DQ′ → DQ′

for odd h′ in the same way.
Case 1: Both h and h′ are even.

Proposition 4.39. We have X ⊗ τ ′ −(h+h′)/2(Y ) � ω(X) ⊗ ω′(Y ) in CA

for any X ∈ DQ and Y ∈ DQ′ .

Proof. We have X ⊗ τ ′ −(h+h′)/2(Y ) � F −h/2(X ⊗ τ ′ −(h+h′)/2(Y ))
Lem.4.30�

τh/2(X) ⊗ τ ′ −h′/2(Y )
Prop.4.13(1)

� ω−1(X[−1]) ⊗ ω′(Y [1]) � ω(X) ⊗ ω′(Y ).

Theorem 4.40 (Theorem 4.27(1)). We have the following:[
μ

(h+h′)/2
⊗

(
Q ⊗ Q′, z(0)

)]
a,b

= zω(a),ω′(b)(0).

Proof. We have

[μ(h+h′)/2
⊗ (P ⊗ P ′)]a,b

Prop.4.33(2)
= Pa ⊗ τ ′ −(h+h′)/2(P ′

b)
Prop.4.39

= Pω(a) ⊗ P ′
ω′(b).

Applying X̃ , we have[
μ

(h+h′)/2
⊗

(
Q ⊗ Q′, z(0)

)]
a,b

Thm.4.36(1)
= [μ(h+h′)/2

⊗ (X̃P ⊗P ′ )]a,b

Thm.4.36(2)
= X

[μ
(h+h′)/2
⊗ (P ⊗P ′)]a,b

= XPω(a)⊗P ′
ω′(b)

= zω(a),ω′(b)(0).

Case 2: Both h and h′ are odd.

Proposition 4.41. We have X ⊗ τ ′ −(h+h′)/2(Y ) � r(X) ⊗ r′ (Y ) in CA

for any X ∈ DQ and Y ∈ DQ′ .

Proof. We have

X ⊗ τ ′ −(h+h′)/2(Y ) � F −(h−1)/2
(
X ⊗ τ ′ −(h+h′)/2(Y )

)
Lem.4.30� τ (h−1)/2(X) ⊗ τ ′ −1

τ ′ −(h′ −1)/2(Y )

Prop.4.15(1)
� r(X[−1]) ⊗ τ ′ −1

r′ −1(Y [1]) � r(X) ⊗ r′(Y ).



108 R. INOUE, O. IYAMA, A. KUNIBA, T. NAKANISHI, AND J. SUZUKI

Theorem 4.42 (Theorem 4.27(2)). We have[
μ

(h+h′)/2
⊗

(
Q ⊗ Q′, z(0)

)]
a,b

= zω(a),ω′(b)(0).

Proof. We have

[μ(h+h′)/2
⊗ (P ⊗ P ′)]a,b

Prop.4.33(2)
= Pa ⊗ τ ′ −(h+h′)/2(P ′

b)

Prop.4.41
= r(Pa) ⊗ r′(P ′

b) = Uω(a) ⊗ U ′
ω′(b).

Applying X̃ , we have[
μ

(h+h′)/2
⊗

(
Q ⊗ Q′, z(0)

)]
a,b

Thm.4.36(1)
= [μ(h+h′)/2

⊗ (X̃P ⊗P ′ )]a,b

Thm.4.36(2)
= X

[μ
(h+h′)/2
⊗ (P ⊗P ′)]a,b

= XUω(a)⊗U ′
ω′(b)

= zω(a),ω′(b)(0).

Case 3: h is even, and h′ is odd.

Proposition 4.43. We have X ⊗ τ ′ −(h+h′ −1)/2(Y ) � ω(X) ⊗ r′ −1(Y ) in
CA for any X ∈ DQ and Y ∈ DQ′ .

Proof. We have

X ⊗ τ ′ −(h+h′ −1)/2(Y ) � F −h/2
(
X ⊗ τ ′ −(h+h′ −1)/2(Y )

)
Lem.4.30� τh/2(X) ⊗ τ ′ −(h′ −1)/2(Y )

Prop.4.13(1),4.15(1)
� ω−1(X[−1]) ⊗ r′ −1(Y [1])

� ω(X) ⊗ r′ −1(Y ).

Theorem 4.44 (Theorem 4.27(3)). We have [μ+μ
(h+h′ −1)/2
⊗ (Q ⊗ Q′,

z(0))]a,b = zω(a),ω′(b)(0).

Proof. We have

[μ+μ
(h+h′ −1)/2
⊗ (P ⊗ P ′)]a,b

Prop.4.33(2)
= Pa ⊗ τ ′ −(h+h′ −1)/2(U ′

b)
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Prop.4.43
= Pω(a) ⊗ r′ −1(U ′

b)

= Pω(a) ⊗ P ′
ω′(b).

Applying X̃ , we have[
μ+μ

(h+h′ −1)/2
⊗

(
Q ⊗ Q′, z(0)

)]
a,b

Thm.4.36(1)
= [μ+μ

(h+h′ −1)/2
⊗ (X̃P ⊗P ′ )]a,b

Thm.4.36(2)
= X

[μ+μ
(h+h′ −1)/2
⊗ (P ⊗P ′)]a,b

= XPω(a)⊗P ′
ω′(b)

= zω(a),ω′(b)(0).

Case 4: h is odd, and h′ is even.

Proposition 4.45. We have X ⊗ τ ′ −(h+h′ −1)/2(Y ) � r(X) ⊗ ω′(Y ) in CA

for any X ∈ DQ and Y ∈ DQ′ .

Proof. We have

X ⊗ τ ′ −(h+h′ −1)/2(Y ) � F −(h−1)/2
(
X ⊗ τ ′ −(h+h′ −1)/2(Y )

)
Lem.4.30� τ (h−1)/2(X) ⊗ τ ′ −(h′/2)(Y )

Prop.4.13(1),4.15(1)
� r(X[−1]) ⊗ ω′(Y [1]) � r(X) ⊗ ω′(Y ).

Theorem 4.46 (Theorem 4.27(4)). We have [μ+μ
(h+h′ −1)/2
⊗ (Q ⊗ Q′,

z(0))]a,b = zω(a),ω′(b)(0).

Proof. We have

[μ+μ
(h+h′ −1)/2
⊗ (P ⊗ P ′)]a,b

Prop.4.33(2)
= Pa ⊗ τ ′ −(h+h′ −1)/2(U ′

b)

Prop.4.45
= r(Pa) ⊗ ω(U ′

b) = Uω(a) ⊗ U ′
ω′(b).

Applying X̃ , we have[
μ+μ

(h+h′ −1)/2
⊗

(
Q ⊗ Q′, z(0)

)]
a,b

Thm.4.36(1)
= [μ+μ

(h+h′ −1)/2
⊗ (X̃P ⊗P ′ )]a,b

Thm.4.36(2)
= X

[μ+μ
(h+h′ −1)/2
⊗ (P ⊗P ′)]a,b

= XUω(a)⊗U ′
ω′(b)

= zω(a),ω′(b)(0).
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§5. Determinant method I: T�(Ar)

Volkov [V] proved the periodicity of the regular solutions of Y�(Ar) in C

for any � ≥ 2 by constructing the manifestly periodic determinant expres-
sion. In the process of the proof, he essentially proved the periodicity of the
regular solutions of T�(Ar) in C as well. In this section, we prove the period-
icities of T�(Ar) and Y�(Ar) for any � ≥ 2 by reformulating the determinant
method in our setting to avoid the projective geometrical arguments used
in [V], with the application to the Cr case also in mind.

5.1. Level � restricted T-system with spiral boundary condition
Following [V], we introduce the level � restricted T-system of type Ar

with a more general boundary condition than the unit boundary condition
for T�(Ar) in Definition 3.1; we call it the spiral boundary condition.

Let us set

H = {(a,m,u) | a = 0, . . . , r + 1;m = 0, . . . , �;u ∈ Z},

H◦ = {(a,m,u) ∈ H | a �= 0, r + 1;m �= 0, �},

∂H = H \ H◦,

He = {(a,m,u) ∈ H | a + m + u is even},

Ho = {(a,m,u) ∈ H | a + m + u is odd}.

(5.1)

We also use the combined notations H◦
o = H◦ ∩ Ho, ∂He = ∂H ∩ He, and so

forth.

Definition 5.1. Fix an integer � ≥ 2. The level � restricted T-system
T̃�(Ar) of type Ar with the spiral boundary condition is the following system
of relations for a family of variables T = {T

(a)
m (u) | (a,m,u) ∈ H}, as follows.

(1) T-system:

T (a)
m (u − 1)T (a)

m (u + 1) = T
(a)
m−1(u)T (a)

m+1(u) + T (a−1)
m (u)T (a+1)

m (u)(5.2)

((a,m,u) ∈ H◦),
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(2) Spiral boundary condition:

T
(a)
0 (u + 1) = T

(a−1)
0 (u) (a = 1, . . . , r + 1),

T
(a)
� (u + 1) = T

(a+1)
� (u) (a = 0, . . . , r),

T (0)
m (u + 1) = T

(0)
m+1(u) (m = 0, . . . , � − 1),

T (r+1)
m (u + 1) = T

(r+1)
m−1 (u) (m = 1, . . . , �).

(5.3)

Definition 5.2. Let T̃�(Ar) be the ring with generators T
(a)
m (u)±1 ((a,m,

u) ∈ H) and the relations T̃�(Ar).

Condition (5.3) means that T
(a)
m (u) is constant along spirals on the bound-

ary ∂H . In particular, if we impose T
(a)
m (u) = 1 for any (a,m,u) ∈ ∂H , then

T̃�(Ar) reduces to T�(Ar). In other words, T�(Ar) is isomorphic to T̃�(Ar)/J ,
where J is the ideal of T̃�(Ar) generated by T

(a)
m (u) − 1 ((a,m,u) ∈ ∂H).

Recall that the dual Coxeter number of Ar is r + 1. We will prove the
following.

Theorem 5.3 (Henriques [Hen, Theorem 5]). The following relations hold
in T̃�(Ar).

(1) Half-periodicity: T
(a)
m (u + r + 1 + �) = T

(r+1−a)
�−m (u).

(2) Periodicity: T
(a)
m (u + 2(r + 1 + �)) = T

(a)
m (u).

By the paragraph that follows Definition 5.2, we obtain the following.

Corollary 5.4. The following relations hold in T�(Ar).

(1) Half-periodicity: T
(a)
m (u + r + 1 + �) = T

(r+1−a)
�−m (u).

(2) Periodicity: T
(a)
m (u + 2(r + 1 + �)) = T

(a)
m (u).

Remark 5.5. Theorem 5.3(1) is a corollary of a more general theorem
by Henriques [Hen, Theorem 5], since the spiral boundary condition ensures
that c = 1 for [Hen, (11)]. However, as we mentioned earlier, we prove The-
orem 5.3 by the determinant method of [V] to have the application to the
Cr case in mind.

5.2. Proof of Theorem 5.3
Let R be any ring. Let us take an arbitrary � × ∞ matrix M over R such

that M = [xk]k∈Z, xk ∈ R� with the following periodicity:

xk+r+1+� = (−1)�−1xk.(5.4)
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Let DM = {D
(a)
m (u) | (a,m,u) ∈ He} be a family of minors of M defined by

D(a)
m (u) = det[

m︷ ︸︸ ︷
xβxβ+1 · · ·

a︷ ︸︸ ︷
∨ · · · ∨

�−m︷ ︸︸ ︷· · ·

r+1−a︷ ︸︸ ︷
∨ · · · ∨

xβ+r+�],(5.5)

β = − a + m + u

2
∈ Z,(5.6)

where
∨
xk means the omission of xk as usual.

Proposition 5.6. The family DM = {D
(a)
m (u) | (a,m,u) ∈ He} satisfies

the following relations in the ring R.
(1) T-system:

D(a)
m (u − 1)D(a)

m (u + 1) = D
(a)
m−1(u)D(a)

m+1(u) + D(a−1)
m (u)D(a+1)

m (u)(5.7)

((a,m,u) ∈ H◦
o ),

(2) Spiral boundary condition:

D
(a)
0 (u + 1) = D

(a−1)
0 (u) (a = 1, . . . , r + 1),

D
(a)
� (u + 1) = D

(a+1)
� (u) (a = 0, . . . , r),

D(0)
m (u + 1) = D

(0)
m+1(u) (m = 0, . . . , � − 1),

D(r+1)
m (u + 1) = D

(r+1)
m−1 (u) (m = 1, . . . , �).

(5.8)

(3) Half-periodicity:

D(a)
m (u + r + 1 + �) = D

(r+1−a)
�−m (u).(5.9)

Proof. (1) They are the Plücker relations among minors.
(2) The first three relations follow from the definition of D

(a)
m (u). To show

the last relation, we also use the (anti-)periodicity (5.4) of xk.
(3) It also follows from the definition of D

(a)
m (u) and (5.4).

Remark 5.7. This determinant solution of the T-system (5.7) is regarded
as the restricted version of [KLWZ, (2.25)].

Observe that, if we divide the family of generators T = {T
(a)
m (u) | (a,m,

u) ∈ H} of T̃�(Ar) into two subfamilies, Te = {T
(a)
m (u) | (a,m,u) ∈ He} and
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To = {T
(a)
m (u) | (a,m,u) ∈ Ho}, then Te and To have no mutual relation in

T̃�(Xr). Therefore, to prove Theorem 5.3, it is enough to consider the half-
family Te of T (cf. (4.34)). Then, to prove Theorem 5.3, we have only to
show the following.

Proposition 5.8. There exists some � × ∞ matrix M = [xk]k∈Z over
T̃�(Ar) satisfying the condition (5.4) such that, for DM = {D

(a)
m (u) | (a,m,

u) ∈ He}, the following relation holds in T̃�(Ar):

T (a)
m (u) = D(a)

m (u) ((a,m,u) ∈ He).(5.10)

Proof. We define x0, . . . , xr+� ∈ (T̃�(Ar))� as follows. First, let us arbitrar-
ily choose x1, . . . , x�−1 such that

D
(0)
0 (0) = det[x0 · · · x�−1] = T

(0)
0 (0) = T

(1)
0 (1)(5.11)

holds. We define x� by

x� =
1

T
(1)
0 (1)

�−1∑
m=0

(−1)�−1−mT (1)
m (−1 − m)xm.(5.12)

Then, the following equality holds:

D(1)
m (−1 − m) = T (1)

m (−1 − m) (m = 0, . . . , � − 1).(5.13)

For example,

D
(1)
0 (−1) =det[x1 · · · x�]

=
(−1)�−1T

(1)
0 (−1)

T
(1)
0 (1)

det[x1 · · · x�−1x0] = T
(1)
0 (−1).

(5.14)

Similarly, we recursively define the rest, x�+1, . . . , xr+�, by

x�+j =
1

T
(1)
0 (1 − 2j)

�−1∑
m=0

(−1)�−1−mT (1)
m (−1 − 2j − m)xj+m(5.15)

(j = 1, . . . , r)

so that the following equality holds (including (5.13) as j = 0):
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0
u

m
�

a

r + 1

−�

−2r − 2

−2r − 2 − �

Figure 4: The prism P defined in (5.17)

D(1)
m (−1 − 2j − m) = T (1)

m (−1 − 2j − m)(5.16)

(m = 0, . . . , � − 1; j = 0, . . . , r).

Finally, we define the matrix M = [xk]k∈Z by extending the above x0, . . . ,

xr+� with (5.4).
For DM , we claim that the relation (5.10) holds in T̃�(Ar). This will

be shown inductively, based on the fact that the T-system and the spiral
boundary condition are satisfied by both Te and DM .

To proceed the induction, it is convenient to introduce a prism P , where

P =
{
(a,m,u) ∈ H

∣∣ a + m + u ≤ 0, a − m − u ≤ 2r + 2
}

(5.17)

(see Figure 4). We use the notations Pe = P ∩ He, Pe[a = 1] = {(a,m,u) ∈
Pe | a = 1}, and so forth.

First, we show that (5.10) is true for (a,m,u) ∈ Pe by the induction on
a. By (5.11), (5.16), and the spiral boundary condition, we see that (5.10)
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is true for any (a,m,u) in the set

Pe[a = 0] ∪ Pe[a = 1] ∪ Pe[m = 0] ∪ Pe[m = �].(5.18)

Assume that (5.10) is true up to a. By (5.2), we have

T (a+1)
m (u) =

1

T
(a−1)
m (u)

(
T (a)

m (u − 1)T (a)
m (u + 1) − T

(a)
m−1(u)T (a)

m+1(u)
)
.(5.19)

On the other hand, by (5.7) and the induction hypothesis, we have

D(a+1)
m (u) =

1

T
(a−1)
m (u)

(
T (a)

m (u − 1)T (a)
m (u + 1) − T

(a)
m−1(u)T (a)

m+1(u)
)
.(5.20)

Thus, the relation D
(a+1)
m (u) = T

(a+1)
m (u) is obtained. Therefore, (5.10) is

true for (a,m,u) ∈ Pe.
Next, we show that (5.10) is true for any (a,m,u) ∈ He \ Pe. We first

remark that, by the spiral boundary condition, (5.10) is now true for any
(a,m,u) ∈ ∂He. Then, using the T-system (5.2) once again as

T (a)
m (u ± 1) =

1

T
(a)
m (u ∓ 1)

(
T

(a)
m−1(u)T (a)

m+1(u) + T (a−1)
m (u)T (a+1)

m (u)
)
,(5.21)

and repeating the same argument as before, one can inductively, with respect
to ±u, conclude that (5.10) is true for any (a,m,u) ∈ He \ Pe.

This completes the proof of Theorem 5.3.

5.3. Periodicity of Y-system
The periodicity of Y�(Ar) follows from that of T̃�(Ar). This is due to

the fact that, unlike the unit boundary condition, the spiral boundary con-
dition is fully compatible with the restriction of the Y-system in view of
Theorem 2.12 (cf. Proposition 3.8). Namely, we have the following.

Proposition 5.9. (1) There is a ring homomorphism

ϕ̃� : Y�(Ar) → T̃�(Ar)(5.22)

defined by

Y (a)
m (u) �→ T

(a−1)
m (u)T (a+1)

m (u)

T
(a)
m−1(u)T (a)

m+1(u)
((a,m,u) ∈ H◦).(5.23)



116 R. INOUE, O. IYAMA, A. KUNIBA, T. NAKANISHI, AND J. SUZUKI

(2) There is a ring homomorphism

ψ� : T̃�(Ar) → Y�(Ar)(5.24)

such that ψ� ◦ ϕ̃� = idY�(Xr).

Proof. (1) It is enough to check the compatibility between the boundary
conditions of T̃�(Ar) and Y�(Ar) as Theorem 2.12 and Proposition 3.8. For
example, to see the compatibility with Y

(a)
0 (u)−1 = 0 (a �= 0), we formally

extend (5.2) to m = 0 as

T
(a)
0 (u − 1)T (a)

0 (u + 1) = T
(a)

−1 (u)T (a)
1 (u) + T

(a−1)
0 (u)T (a+1)

0 (u)

and use (5.3). Then we have T
(a)

−1 (u) = 0. The other cases are checked simi-
larly.

(2) We define the image ψ�(T
(a)
m (u)) for the half-family Te of T . The other

half, To, is completely parallel. The construction is in four steps and similar
to the one for Theorem 2.12. For simplicity, we write the image ψ�(T

(a)
m (u))

as T
(a)
m (u). Let P be the prism defined in (5.17).

Step 1. We arbitrarily choose T
(0)
0 (−2j) ∈ Y�(Ar)× (j = 0,1, . . . , r + 1).

Then, we define T
(a)
m (u) for the rest of (a,m,u) ∈ Pe[a = 0] ∪ Pe[m = 0] ∪

Pe[m = �] by (5.8).
Step 2. We arbitrarily choose T

(1)
m (−1 − m) ∈ Y�(Ar)× (m = 1, . . . , � −

1). Then, we recursively, with respect to u, define T
(a)
m (u) for the rest of

(a,m,u) ∈ Pe[a = 1] by

T (1)
m (u − 1) =

(
1 + Y (1)

m (u)
)T (1)

m−1(u)T (1)
m+1(u)

T
(1)
m (u + 1)

.(5.25)

Step 3. We recursively, with respect to a, define T
(a)
m (u) for the rest of

(a,m,u) ∈ Pe by

T (a+1)
m (u) =

1

1 + Y
(a)
m (u)−1

T
(a)
m (u − 1)T (a)

m (u + 1)

T
(a−1)
m (u)

.(5.26)

Step 4. We define T
(a)
m (u) for the rest of (a,m,u) ∈ ∂He by (5.8). Then, we

recursively, with respect to ±u, define T
(a)
m (u) for the rest of (a,m,u) ∈ He

by

T (a)
m (u ± 1) =

(
1 + Y (a)

m (u)−1
)T (a−1)

m (u)T (a+1)
m (u)

T
(a)
m (u ∓ 1)

.(5.27)
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Claim. The family {T
(a)
m (u) | (a,m,u) ∈ He} defined above satisfies the

following relations in Y�(Ar):

1 + Y (a)
m (u) =

T
(a)
m (u − 1)T (a)

m (u + 1)

T
(a)
m−1(u)T (a)

m+1(u)
((a,m,u) ∈ H◦

o ),(5.28)

1 + Y (a)
m (u)−1 =

T
(a)
m (u − 1)T (a)

m (u + 1)

T
(a−1)
m (u)T (a+1)

m (u)
((a,m,u) ∈ H◦

o ).(5.29)

The relation (5.29) clearly holds by the definition of T
(a)
m (u) in (5.26) and

(5.27). With (5.26), one can verify that (5.28) is true for any (a,m,u) ∈
P ◦

o := P ∩ H◦
o by induction with respect to a. Then, in a similar way, with

(5.27), one can prove that (5.28) is true for the rest of (a,m,u) ∈ H◦
o by

induction with respect to u. This completes the proof of the claim.
Now, taking the inverse sum of (5.28) and (5.29), we obtain (5.2). There-

fore, ψ� is a ring homomorphism. Furthermore, taking the ratio of (5.28) and
(5.29), we obtain Y

(a)
m (u) = T

(a−1)
m (u)T (a+1)

m (u)/(T (a)
m−1(u)T (a)

m+1(u)). This
proves ψ� ◦ ϕ̃� = idY�(Ar).

By Theorem 5.3 and Proposition 5.9, we obtain the following.

Corollary 5.10 (cf. Volkov [V, Theorem 1]). The following relations
hold in Y�(Ar):

(1) Half-periodicity: Y
(a)
m (u + r + 1 + �) = Y

(r+1−a)
�−m (u).

(2) Periodicity: Y
(a)
m (u + 2(r + 1 + �)) = Y

(a)
m (u).

By Proposition 5.9, we also obtain the following.

Corollary 5.11 (cf. Volkov [V, Proposition 1]). For any ring R, the
map

ϕ̃∗
� : Hom

(
T̃�(Ar),R

)
→ Hom

(
Y�(Ar),R

)
,(5.30)

induced from the homomorphism ϕ̃� in (5.22), is surjective.

§6. Determinant method II: T�(Cr)

In this section we prove the periodicity of T�(Cr) for any � ≥ 2. We do it
in three steps. First, we introduce a ring T̃�(Cr) by slightly generalizing the
unit boundary condition of T�(Cr). Second, we show T̃�(Cr) is isomorphic
to another ring T̂2�(A2r+1), which is a variant of T2�(A2r+1). Last, we apply
the determinant method to T̂2�(A2r+1).
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6.1. Level � restricted T-system with quasi-unit boundary con-
dition

For Xr = Cr, let ta (a ∈ I) be the number in (2.1), that is, ta = 2 for
a = 1, . . . , r − 1 and 1 for a = r.

We find that it is convenient to generalize the problem slightly as follows.

Definition 6.1. Fix an integer � ≥ 2. The level � restricted T-system
T̃�(Cr) of type Cr with the quasi-unit boundary condition is the following
system of relations for a family of variables T = {T

(a)
m (u) | a = 1, . . . , r;m =

1, . . . , ta� − 1;u ∈ (1/2)Z} ∪ {T
(r)
� (u) | u ∈ (1/2)Z}.

(1) T-system (2.4):

T (a)
m

(
u − 1

2

)
T (a)

m

(
u +

1
2

)
= T

(a)
m−1(u)T (a)

m+1(u)(6.1)

+ T (a−1)
m (u)T (a+1)

m (u)

(a = 1, . . . , r − 2;m = 1, . . . ,2� − 1;u ∈ 1
2Z),

T
(r−1)
2m

(
u − 1

2

)
T

(r−1)
2m

(
u +

1
2

)
= T

(r−1)
2m−1(u)T (r−1)

2m+1(u)(6.2)

+ T
(r−2)
2m (u)T (r)

m

(
u − 1

2

)
T (r)

m

(
u +

1
2

)
(m = 1, . . . , � − 1;u ∈ 1

2Z),

T
(r−1)
2m+1

(
u − 1

2

)
T

(r−1)
2m+1

(
u +

1
2

)
= T

(r−1)
2m (u)T (r−1)

2m+2(u)(6.3)

+ T
(r−2)
2m+1(u)T (r)

m (u)T (r)
m+1(u)

(m = 0, . . . , � − 1;u ∈ 1
2Z),

T (r)
m (u − 1)T (r)

m (u + 1) = T
(r)
m−1(u)T (r)

m+1(u) + T
(r−1)
2m (u)(6.4)

(m = 1, . . . , � − 1;u ∈ 1
2Z).

(2) Quasi-unit boundary condition:

T (0)
m (u) = T

(a)
0 (u) = 1,(6.5)

T
(a)
2� (u) = 1 (a = 1, . . . , r − 1),(6.6)

if they occur in the right-hand sides of the relations, and

T
(r)
� (u)2 = 1, T

(r)
� (u + 1) = T

(r)
� (u).(6.7)
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Definition 6.2. Let T̃�(Cr) be the ring with generators T
(a)
m (u)±1 (a =

1, . . . , r;m = 1, . . . , ta� − 1;u ∈ (1/2)Z), T
(r)
� (u) (u ∈ (1/2)Z) and the rela-

tions T̃�(Cr).

In (6.7), if we impose T
(r)
� (u) = 1 (u ∈ (1/2)Z), then T̃�(Cr) reduces to

T�(Cr). In other words, T�(Cr) is isomorphic to T̃�(Cr)/J , where J is the
ideal of T̃�(Cr) generated by T

(r)
� (u) − 1 (u ∈ (1/2)Z).

Recall that the dual Coxeter number of Cr is r + 1. We will prove the
following.

Theorem 6.3. The following relations hold in T̃�(Cr):

(1) Half-periodicity: T
(a)
m (u+r+1+�) =

{
T

(a)
2�−m(u) a = 1, . . . , r − 1,

T
(r)
� (u)T (r)

�−m(u) a = r.

(2) Periodicity: T
(a)
m (u + 2(r + 1 + �)) = T

(a)
m (u).

By the above remark, we obtain the following.

Corollary 6.4. The following relations hold in T�(Cr).

(1) Half-periodicity: T
(a)
m (u + r + 1 + �) = T

(a)
ta�−m(u).

(2) Periodicity: T
(a)
m (u + 2(r + 1 + �)) = T

(a)
m (u).

6.2. System T̂2�(A2r+1)
To prove Theorem 6.3, we introduce another system of relations that is

equivalent to T̃�(Cr).
Let us set

Ĥ =
{

(a,m,u)
∣∣∣ a = 0, . . . ,2r + 2;m = 0, . . . ,2�;u ∈ 1

2
Z

}
,(6.8)

Ĥ◦ =
{
(a,m,u) ∈ Ĥ | a �= 0,2r + 2;m �= 0,2�

}
,(6.9)

∂Ĥ = Ĥ \ Ĥ◦,(6.10)

Ĥe =
{
(a,m,u) ∈ Ĥ | a + m + 2u is even

}
,(6.11)

Ĥo =
{
(a,m,u) ∈ Ĥ | a + m + 2u is odd

}
.(6.12)

We again use the combined notations Ĥ◦
o = Ĥ◦ ∩ Ĥo, ∂Ĥe = ∂Ĥ ∩ Ĥe, and

so forth.

Definition 6.5. Fix an integer � ≥ 2. The level 2� restricted T-system
T̂2�(A2r+1) of type A2r+1 with the quasi-symmetric condition is the following
system of relations for a family of variables S = {S

(a)
m (u) | (a,m,u) ∈ Ĥ◦ }.
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(1) T-system:

S(a)
m

(
u − 1

2

)
S(a)

m

(
u +

1
2

)
= S

(a)
m−1(u)S(a)

m+1(u) + S(a−1)
m (u)S(a+1)

m (u).(6.13)

(2) Quasi-symmetric condition:

S(a)
m (u) = (−1)mS(2r+2−a)

m (u).(6.14)

In particular, S
(r+1)
m (u) = 0 for odd m.

(3) Quasi-symmetric unit boundary condition:

S
(a)
0 (u) = S

(a)
2� (u) = S(0)

m (u) = 1,(6.15)

S(2r+2)
m (u) = (−1)m,(6.16)

if they occur in the right-hand side of the relations.

Definition 6.6. Let T̂2�(A2r+1) be the ring with generators S
(a)
m (u)±1

((a,m,u) ∈ Ĥ◦, (a,m) �= (r + 1,odd)) and the relations T̂2�(A2r+1).

Remark 6.7. The system T̂2�(A2r+2) and the map ρ below are the
restricted versions of those considered in [KOSY, Section 4].

Proposition 6.8. There is a ring isomorphism

ρ : T̂2�(A2r+1)
∼→ T̃�(Cr)(6.17)

defined by

S(a)
m (u) �→ T (a)

m (u) (a = 1, . . . , r − 1),(6.18)

S
(r)
2m(u) �→ T (r)

m

(
u − 1

2

)
T (r)

m

(
u +

1
2

)
,(6.19)

S
(r)
2m+1(u) �→ T (r)

m (u)T (r)
m+1(u),(6.20)

S
(r+1)
2m (u) �→ T (r)

m (u)2,(6.21)

ρ
(
S(a)

m (u)
)
= (−1)mρ

(
S(2r+2−a)

m (u)
)

(a = r + 2, . . . ,2r + 1),(6.22)

where T
(r)
0 (u) = 1.
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Proof. It is easy to check that the map ρ is a ring homomorphism by sub-
stitution (cf. [KOSY, Proposition 4.3]). For simplicity, we write the image
ρ(S(a)

m (u)) as S
(a)
m (u). Then, for example, to show

S
(r)
2m

(
u − 1

2

)
S

(r)
2m

(
u +

1
2

)
= S

(r)
2m−1(u)S(r)

2m+1(u)(6.23)

+ S
(r−1)
2m (u)S(r+1)

2m (u),

multiply (6.4) by T
(r)
m (u)2, and then use (6.19)–(6.21).

Let us consider the inverse map ρ−1 : T̃�(Cr) → T̂2�(A2r+1). Looking at
(6.18) and (6.20), it should be given by the following correspondence:

T (a)
m (u) �→ S(a)

m (u) (a = 1, . . . , r − 1),(6.24)

T (r)
m (u) �→

⎧⎪⎨⎪⎩
S

(r)
2m−1(u)S

(r)
2m−5(u)· · ·S(r)

3 (u)

S
(r)
2m−3(u)S

(r)
2m−7(u)· · ·S(r)

1 (u)
(m: even),

S
(r)
2m−1(u)S

(r)
2m−5(u)· · ·S(r)

1 (u)

S
(r)
2m−3(u)S

(r)
2m−7(u)· · ·S(r)

3 (u)
(m: odd).

(6.25)

For simplicity, we write the image ρ−1(T (a)
m (u)) as T

(a)
m (u).

Claim. The family T = {T
(a)
m (u)} above satisfies the following relations

in T̂2�(A2r+1):

T (r)
m

(
u − 1

2

)
T (r)

m

(
u +

1
2

)
= S

(r)
2m(u) (m = 1, . . . , �),(6.26)

T (r)
m (u)T (r)

m+1(u) = S
(r)
2m+1(u) (m = 1, . . . , � − 1),(6.27)

T (r)
m (u)2 = S

(r+1)
2m (u) (m = 1, . . . , �),(6.28)

where S
(r)
2� (u) = S

(r+1)
2� (u) = 1.

Indeed, (6.27) follows immediately from (6.25), while (6.26) and (6.28)
are proved by the induction with respect to m.

Now, it is easy to check that ρ−1 is a ring homomorphism by substitution.
By comparing (6.18)–(6.21) with (6.24), (6.26)–(6.28), we see that ρ−1 is

the inverse of ρ.

The following theorem is an analogue of Theorem 5.3.

Theorem 6.9. The following relations hold in T̂2�(A2r+1).
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(1) Half-periodicity: S
(a)
m (u + r + 1 + �) = (−1)mS

(2r+2−a)
2�−m (u) = S

(a)
2�−m(u).

(2) Periodicity: S
(a)
m (u + 2(r + 1 + �)) = S

(a)
m (u).

A proof of Theorem 6.9 by the determinant method will be given in
Section 6.3.

Admitting Theorem 6.9, let us prove Theorem 6.3 first.

Proof of Theorem 6.3. It is enough to prove (1). For simplicity, we write
the image ρ(S(a)

m (u)) as S
(a)
m (u). By (6.18), we immediately obtain the rela-

tion for a = 1, . . . , r − 1. Let us verify the case a = r. By Proposition 6.8 and
Theorem 6.9, we have (e.g., for �,m: even)

T (r)
m (u + r + 1 + �)

=
S

(r)
2m−1(u + r + 1 + �)S(r)

2m−5(u + r + 1 + �) · · · S(r)
3 (u + r + 1 + �)

S
(r)
2m−3(u + r + 1 + �)S(r)

2m−7(u + r + 1 + �) · · · S(r)
1 (u + r + 1 + �)

=
S

(r)
2�−2m+1(u)S(r)

2�−2m+5(u) · · · S(r)
2�−3(u)

S
(r)
2�−2m+3(u)S(r)

2�−2m+7(u) · · · S(r)
2�−1(u)

= T
(r)
� (u)

S
(r)
2�−2m−1(u)S(r)

2�−2m−5(u) · · · S(r)
3 (u)

S
(r)
2�−2m−3(u)S(r)

2�−2m−7(u) · · · S(r)
1 (u)

= T
(r)
� (u)T (r)

�−m(u).

(6.29)

6.3. Proof of Theorem 6.9
The outline of the proof is the same as for Theorem 5.3, but there are some

points where extra caution is necessary due to the singularities S
(r+1)
m (u) = 0

(m: odd).
Let R be any ring. Let us take an arbitrary 2� × ∞ matrix M over R

such that M = [xk]k∈Z, xk ∈ (T̂2�(A2r+1))2� with the following periodicity:

xk+2r+2+2� = xk.(6.30)

Let DM = {D
(a)
m (u) | (a,m,u) ∈ Ĥe} be a family of minors of M defined by

D(a)
m (u) = det[

m︷ ︸︸ ︷
xβxβ+1 · · ·

a︷ ︸︸ ︷
∨ · · · ∨

2�−m︷ ︸︸ ︷· · ·

2r+2−a︷ ︸︸ ︷
∨ · · · ∨

xβ+2r+2�+1],(6.31)
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β = − a + m + 2u
2

∈ Z.(6.32)

Then, as Proposition 5.6, we have the following.

Proposition 6.10. The family DM = {D
(a)
m (u) | (a,m,u) ∈ Ĥe} satisfies

the following relations in R.
(1) T-system:

D(a)
m

(
u − 1

2

)
D(a)

m

(
u +

1
2

)
= D

(a)
m−1(u)D(a)

m+1(u)(6.33)

+ D(a−1)
m (u)D(a+1)

m (u)

((a,m,u) ∈ Ĥ◦
o ),

(2) Boundary condition:

D
(a)
0

(
u +

1
2

)
= D

(a−1)
0 (u) (a = 1, . . . ,2r + 2),

D
(a)
2�

(
u +

1
2

)
= D

(a+1)
2� (u) (a = 0, . . . ,2r + 1),

D(0)
m

(
u +

1
2

)
= D

(0)
m+1(u) (m = 0, . . . ,2� − 1),

D(2r+2)
m

(
u +

1
2

)
= (−1)D(2r+2)

m−1 (u) (m = 1, . . . ,2�).

(6.34)

(3) Half-periodicity:

D(a)
m (u + r + 1 + �) = (−1)mD

(2r+2−a)
2�−m (u).(6.35)

We consider an extended family of generators S = {S
(a)
m (u) | (a,m,u) ∈

Ĥ} of T̂2�(A2r+1), where S
(r+1)
m (u) = 0 (m: odd) and S

(a)
m (u) ((a,m,u) ∈

∂Ĥ) are given by (6.15) and (6.16). Again, we divide the family S into two
subfamilies, Se = {S

(a)
m (u) | (a,m,u) ∈ Ĥe} and So = {S

(a)
m (u) | (a,m,u) ∈

Ĥo}, and we concentrate on the half-family Se.
Theorem 6.9 follows from Proposition 6.10 and the following proposition.

Proposition 6.11. There exists some 2� × ∞ matrix M = {xk }k∈Z sat-
isfying the condition (6.30) such that, for DM = {D

(a)
m (u) | (a,m,u) ∈ Ĥe},

the following relation holds in T̂2�(A2r+1):

S(a)
m (u) = D(a)

m (u) ((a,m,u) ∈ Ĥe).(6.36)
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Proof. We define x0, . . . , x2r+2�+1 ∈ (T̂2�(A2r+1))2� as follows. First, let us
arbitrarily choose x1, . . . , x2�−1 such that

D
(0)
0 (0) := det[x0 · · · x2�−1] = 1 = S

(0)
0 (0) = S

(1)
0

(1
2

)
(6.37)

holds. Second, we recursively define the rest, x2�, . . . , x2r+2�+1, by

x2�+j =
1

S
(1)
0

(
1
2 − j

) 2�−1∑
m=0

(−1)2�−1−mS(1)
m

(
− 1 + 2j + m

2

)
xj+m(6.38)

(j = 0, . . . ,2r + 1)

so that the following equality holds:

D(1)
m

(
− 1 + 2j + m

2

)
= S(1)

m

(
− 1 + 2j + m

2

)
(6.39)

(m = 0, . . . ,2� − 1; j = 0, . . . ,2r + 1).

Last, we define the matrix M = [xk]k∈Z by extending the above x0, . . . ,

x2r+2�+1 with the condition (6.30).
For DM , we claim that the relation (6.36) holds in T̂2�(A2r+1). This will

be shown inductively, based on the fact that the T-system and the boundary
condition are satisfied by both Se and DM .

To proceed with the induction, we introduce a prism

P̂ =
{
(a,m,u) ∈ Ĥ | a + m + 2u ≤ 0, a − m − 2u ≤ 4r + 4

}
.(6.40)

We use the notations, P̂e = P̂ ∩ Ĥe, P̂e[a = 1] = {(a,m,u) ∈ P̂e | a = 1}, and
so on, once again.

First, we show that (6.36) is true for (a,m,u) ∈ P̂e by the induction on a.
By (6.37), (6.39), and (6.34), we see that (6.36) is true for any (a,m,u) in
the set

P̂e[a = 0] ∪ P̂e[a = 1] ∪ P̂e[m = 0] ∪ P̂e[m = 2�].(6.41)

Assume that (6.36) is true up to a. By the T-system (6.13), we have

S(a+1)
m (u) =

1

S
(a−1)
m (u)

(
S(a)

m

(
u − 1

2

)
S(a)

m

(
u +

1
2

)
(6.42)

− S
(a)
m−1(u)S(a)

m+1(u)
)

.



PERIODICITIES OF T-SYSTEMS AND Y-SYSTEMS 125

On the other hand, by (6.33) and the induction hypothesis, we have

D(a+1)
m (u) =

1

S
(a−1)
m (u)

(
S(a)

m

(
u − 1

2

)
S(a)

m

(
u +

1
2

)
(6.43)

− S
(a)
m−1(u)S(a)

m+1(u)
)

.

Thus, the relation S
(a+1)
m (u) = D

(a+1)
m (u) is obtained. The induction works

up to a = r +2. However, since S
(r+1)
2m+1(u) = D

(r+1)
2m+1(u) = 0 (m = 0, . . . , � − 1)

by the assumption, the relation S
(r+3)
2m+1(u) = D

(r+3)
2m+1(u) is not trivial. To

overcome the point, we have to show the following claim:

Claim 1. For (r + 3,2m + 1, u) ∈ P̂e, the following relation holds in
T̂2�(A2r+1):

D
(r+3)
2m+1(u) = −D

(r−1)
2m+1(u).(6.44)

Once the claim is verified, we have

S
(r+3)
2m+1(u) = −S

(r−1)
2m+1(u) = −D

(r−1)
2m+1(u) = D

(r+3)
2m+1(u)

so that the induction continues and completes.
Let us prove Claim 1. For simplicity, we write the ring T̂2�(A2r+1) as R.

Consider a deformation Mε = [xk + εx′
k] of the matrix M with a formal

parameter ε and some x′
k ∈ R2� (k ∈ Z, x′

k+2r+2+2� = x′
k). Let D

(a)
m (u)ε ∈

R[ε] be the corresponding minor for Mε. Fix 2m + 1 and u in (6.44). We
choose Mε so that D

(r+1)
2m+1(u)ε = εD

(r+1)
2m+1(u)′ + o(ε) with D

(r+1)
2m+1(u)′ ∈ R×.

(This is possible. For example, let x′ be the 2m+2th column for D
(r)
2m+1(u+

1
2). Then, add εx′ to M at the position of the last column for D

(r+1)
2m+1(u).

This deformation yields D
(r+1)
2m+1(u)′ = D

(r)
2m+1(u + 1

2) = T
(r)
2m+1(u + 1

2) ∈ R×.)
Now, by (6.33), we have

D
(r−1)
2m+1(u)εD

(r+1)
2m+1(u)ε = D

(r)
2m+1

(
u − 1

2

)
ε
D

(r)
2m+1

(
u +

1
2

)
ε

− D
(r)
2m(u)εD

(r)
2m+2(u)ε,

D
(r+3)
2m+1(u)εD

(r+1)
2m+1(u)ε = D

(r+2)
2m+1

(
u − 1

2

)
ε
D

(r+2)
2m+1

(
u +

1
2

)
ε

− D
(r+2)
2m (u)εD

(r+2)
2m+2(u)ε.

(6.45)
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We take the ratio of the relations in (6.45),

D
(r+3)
2m+1(u)ε

D
(r−1)
2m+1(u)ε

(6.46)

=
D

(r+2)
2m+1

(
u − 1

2

)
ε
D

(r+2)
2m+1

(
u + 1

2

)
ε

− D
(r+2)
2m (u)εD

(r+2)
2m+2(u)ε

D
(r)
2m+1

(
u − 1

2

)
ε
D

(r)
2m+1

(
u + 1

2

)
ε

− D
(r)
2m(u)εD

(r)
2m+2(u)ε

,

which is in R[[ε]]. Let us calculate the right-hand side of (6.46). Let ≡ mean
the equality in R[[ε]] modulo εR[[ε]]. By (6.33) and D

(r+1)
2m+1(u)ε ≡ 0, we have

D
(r+2)
2m (u)ε ≡ D

(r+1)
2m

(
u − 1

2

)
ε
D

(r+1)
2m

(
u +

1
2

)
ε
/D

(r)
2m(u)ε,

D
(r+2)
2m+2(u)ε ≡ D

(r+1)
2m+2

(
u − 1

2

)
ε
D

(r+1)
2m+2

(
u +

1
2

)
ε
/D

(r)
2m+2(u)ε,

(6.47)
D

(r+2)
2m+1

(
u +

1
2

)
ε

≡ −D
(r+1)
2m

(
u +

1
2

)
ε
D

(r+1)
2m+2

(
u +

1
2

)
ε
/D

(r)
2m+1

(
u +

1
2

)
ε
,

D
(r+2)
2m+1

(
u − 1

2

)
ε

≡ −D
(r+1)
2m

(
u − 1

2

)
ε
D

(r+1)
2m+2

(
u − 1

2

)
ε
/D

(r)
2m+1

(
u − 1

2

)
ε
.

Thanks to (6.47), the right-hand side of (6.46) equals, modulo εR[[ε]],

(−1)
D

(r+1)
2m

(
u − 1

2

)
D

(r+1)
2m+2

(
u − 1

2

)
D

(r+1)
2m

(
u + 1

2

)
D

(r+1)
2m+2

(
u + 1

2

)
D

(r)
2m+1

(
u − 1

2

)
D

(r)
2m+1

(
u + 1

2

)
D

(r)
2m(u)D(r)

2m+2(u)
.(6.48)

Then, using the induction hypothesis (6.36) up to a = r + 2 in P̂e and
the relations (6.13) and (6.14), one can show that (6.48) is equal to −1.
Therefore, we have D

(r+3)
2m+1(u)ε ≡ −D

(r−1)
2m+1(u)ε, which means (6.44). This

ends the proof of Claim 1.
Next, we show that (6.36) is true for any (a,m,u) ∈ Ĥe \ P̂e. We first

remark that, by (6.34), (6.36) is now true for any (a,m,u) ∈ ∂Ĥe. Then,
using the T-system (6.13) as

S(a)
m

(
u ± 1

2

)
=

1

S
(a)
m

(
u ∓ 1

2

)(S(a)
m−1(u)S(a)

m+1(u)(6.49)

+ S(a−1)
m (u)S(a+1)

m (u)
)
,

and repeating the same argument as before, one can inductively, with respect
to ±u, conclude that (6.36) is true for any (a,m,u) ∈ Ĥe \ P̂e. Once again,
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in the induction process we need the following claim, which can be verified
by a similar deformation argument as Claim 1.

Claim 2. For (r + 1,2m + 1, u) ∈ Ĥe \ P̂e, the following relation holds in
T̂2�(A2r+1):

D
(r+1)
2m+1(u) = 0.(6.50)

This ends the proof of Proposition 6.11.

Remark 6.12. The system T̃�(Cr) plays a role analogous to that of
T̃�(Ar) in the determinant method. Thus, it is natural to expect that the
analogue of Proposition 5.9 also holds. Unfortunately, this is not true. The
simplest case, C2 and � = 2, provides a counterexample by the similar reason
to Example 3.9(3).

§7. Direct method: T2(Ar), T2(Dr), and T2(Br)

In this section we give some explicit formulae of generators T
(a)
m (u) in

terms of “initial variables” for T2(Ar), T2(Dr), and T2(Br). Our goal here is
to prove the periodicity for T2(Br). The formulae for T2(Ar) and T2(Dr)
should be obtained as a specialization of the more general formulae by
Caldero and Chapoton [CC, Theorem 3.4] and/or by Yang and Zelevinsky
[YZ, Theorems 1.10, 1.12]. Nevertheless, we include these formulae as well,
since they are good examples showing how the periodicity actually happens
in the T-systems.

7.1. Explicit formula by initial variables for T2(Ar)
Throughout this subsection, I = {1, . . . , r} is the set enumerating the

diagram Ar in Figure 1. Recall that the (dual) Coxeter number of Ar is
r + 1.

Definition 7.1. For a family of variables X = {xa | a ∈ I}, we define
γ

(j)
n (X), ν

(j)
n (X) ∈ Z[X±1] (1 ≤ j ≤ r,0 ≤ n ≤ j) as follows:

γ(j)
n (X) =

1
xn

+
xn−1

xnxn+1
+

xn−1

xn+1xn+2
+ · · · +

xn−1

xj−2xj−1
,(7.1)

ν(j)
n (X) =

xn−1

xj−1
,(7.2)

where we set x−1 = 0 and x0 = 1. In particular,

γ
(j)
0 (X) = 1, ν

(j)
0 (X) = 0,(7.3)
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γ
(j)
j (X) = 0, ν

(j)
j (X) = 1.(7.4)

The following lemma is easily checked.

Lemma 7.2. The following relations hold for any 1 ≤ j ≤ r and 1 ≤ n ≤ j.

xn−1γ
(j)
n−1(X) = 1 + xn−2γ

(j)
n (X),(7.5)

xj−1γ
(j)
n−1(X) = xj−1γ

(j−1)
n−1 (X) + ν

(j−1)
n−1 (X).(7.6)

We define a family τ = {τ (a)(u;X) ∈ Z[X±1] | a ∈ I,u ∈ Z, a + u is odd}
as follows. First, we define, for a ∈ I and 0 ≤ k ≤ r + 2,

τ (a)(a − 1 + 2k;X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ
(a+k)
k (X)xa+k + ν

(a+k)
k (X)

(0 ≤ k ≤ r − a),

γ
(r)
r+1−a(X) + ν

(r)
r+1−a(X)1+xr−1

xr

(k = r − a + 1),

γ
(k−1)
a+k−(r+2)(X)xk−1 + ν

(k−1)
a+k−(r+2)(X)

(r − a + 2 ≤ k ≤ r + 1),

γ
(r)
a (X) + ν

(r)
a (X)1+xr−1

xr
(k = r + 2).

(7.7)

Then, we extend the definition by the following periodicity:

τ (a)
(
u + 2(r + 3);X

)
= τ (a)(u;X).(7.8)

By (7.3), we have

τ (a)(a − 1;X) = xa,(7.9)

τ (a)(2r + 3 − a;X) = xr+1−a.(7.10)

See Figure 5 for the fundamental domain of τ (a)(u;X) in the strip {(a,u) |
a ∈ I,u ∈ Z, a + u is odd}, which consists of four parts, corresponding to the
cases in (7.7):

D1 = {(a,a − 1 + 2k) | a ∈ I,0 ≤ k ≤ r − a},

D2 = {(a,a − 1 + 2k) | a ∈ I, k = r − a + 1},

D3 = {(a,a − 1 + 2k) | a ∈ I, r − a + 2 ≤ k ≤ r + 1},

D4 = {(a,a − 1 + 2k) | a ∈ I, k = r + 2}.

(7.11)
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Figure 5: The fundamental domain of τ (a)(u;X) for T2(Ar). The
solid circles in D1 are identified with the initial variables of

T2(Ar)+.

Proposition 7.3.The family τ satisfies the following relations in Z[X±1].

(1) Half-periodicity:

τ (a)(u + r + 3;X) = τ (r+1−a)(u;X).(7.12)

(2) T-system T2(Ar):

τ (a)(u − 1;X)τ (a)(u + 1;X) = 1 + τ (a−1)(u;X)τ (a+1)(u;X),(7.13)

where τ (0)(u;X) = τ (r+1)(u;X) = 1 if they occur in the right-hand side.

Proof. For simplicity, in this proof we write γ
(j)
k = γ

(j)
k (X), ν

(j)
k = ν

(j)
k (X),

and τ (a)(u) = τ (a)(u;X).
(1) As an equivalent claim to (7.12), we prove

τ (a)(u) = τ (r+1−a)(u + r + 3).(7.14)

Thanks to (7.8), it is enough to prove it for (a,u) ∈ D1 � D2. Suppose that
(a,u) = (a,a − 1 + 2k) ∈ D1. Then we have

τ (a)(a − 1 + 2k) = γ
(a+k)
k xa+k + ν

(a+k)
k .(7.15)

On the other hand, (r + 1 − a,u + r + 3) = (a′, a′ − 1 + 2k′) ∈ D3, where
a′ = r + 1 − a and k′ = a + k + 1. Therefore, we have

τ (r+1−a)(u + r + 3) = γ
(k′ −1)
a′+k′ −(r+2)xk′ −1 + ν

(k′ −1)
a′+k′ −(r+2)

= γ
(a+k)
k xa+k + ν

(a+k)
k .

(7.16)
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Thus the claim follows. The remaining case (a,u) ∈ D2 is similar and easier.
(2) Thanks to (1), it is enough to show (7.13) for (a,u − 1) = (a,a − 1 +

2k) ∈ D1 � D2; that is, 0 ≤ k ≤ r − a+1. It is proved by a direct calculation
using Lemma 7.2.

Like (4.3), it is enough to consider the subring T2(Ar)+ of T2(Ar) gener-
ated by T

(a)
1 (u)±1 (a ∈ I , u ∈ Z, a + u: odd). Set

T init =
{
T

(a)
1 (a − 1) | a ∈ I

}
.(7.17)

We call the elements of T init the initial variables of T2(Ar)+.
By Proposition 7.3(2), we have the following explicit formula of other

variables T
(a)
1 (u) ∈ T2(Ar)+ by Laurent polynomials in the initial variables.

Theorem 7.4. The following relation holds in T2(Ar)+:

T
(a)
1 (u) = τ (a)(u;T init),(7.18)

where we set xa = T
(a)
1 (a − 1) (a ∈ I) in the right-hand side.

Proof. In the following we simply write τ (a)(u) for τ (a)(u;T init).
We rewrite (7.18) as (n ∈ Z),

T
(a)
1 (a − 1 + 2n) = τ (a)(a − 1 + 2n),(7.19)

and we show it by induction on n. Recall that T2(Ar) becomes

T
(a)
1 (a − 1 + 2n)T (a)

1 (a + 1 + 2n)(7.20)

= 1 + T
(a−1)
1 (a + 2n)T (a+1)

1 (a + 2n).

By (7.9), the n = 0 case of (7.19), τ (a)(a − 1) = T
(a)
1 (a − 1), is satisfied.

Assume that (7.19) holds up to n (> 0). Then (7.13) with u = a+2n becomes

T
(a)
1 (a − 1 + 2n)τ (a)

(
a − 1 + 2(n + 1)

)
= 1 + τ (a−1)

(
a − 2 + 2(n + 1)

)
T

(a+1)
1 (a + 2n).

(7.21)

By setting a = 1 in (7.20) and (7.21), we obtain the relation

τ (1)
(
2(n + 1)

)
=

1 + T
(2)
1 (1 + 2n)

T
(1)
1 (2n)

= T (1)
(
2(n + 1)

)
.(7.22)
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By increasing a one by one up to r, we recursively obtain the relation

τ (a)
(
a − 1 + 2(n + 1)

)
=

1 + T
(a−1)
1 (a + 2n)T (a+1)

1 (a + 2n)

T
(a)
1 (a − 1 + 2n)

= T (a)
(
a − 1 + 2(n + 1)

)
.

(7.23)

The case of n (< 0) is similar.

In the above proof, we carefully stay inside the ring T2(Ar)+ by avoiding
the division by τ (a)(u)’s. As a corollary of Proposition 7.3(1) and Theo-
rem 7.4, we once again obtain the periodicity of T2(Ar) (Corollary 4.5 for
Xr = Ar).

7.2. Explicit formula by initial variables for T2(Dr)
The method is parallel to the Ar case, so we present only the results for

the most part. Throughout this subsection, I = {1, . . . , r} is the set enumer-
ating the diagram Dr in Figure 1. Recall that the (dual) Coxeter number
of Dr is 2r − 2.

For a family of variables X = {xa | a ∈ I}, we define γ
(j)
n (X), ν(j)

n (X) ∈
Z[X±1] (1 ≤ j ≤ r − 1,0 ≤ n ≤ j) by Definition 7.1. We set

αn = γ(r−1)
n (X), βn = ν(r−1)

n (X), z = xr−1xr.(7.24)

Note that αr−1 = β0 = 0, α0 = βr−1 = 1, and β1 = 1/xr−2.

Definition 7.5. Define Γ(j)
n (X),Π(j)

n (X),Ω(j)
n (X) ∈ Z[X±1] (0 ≤ j ≤ r −

2,0 ≤ n ≤ r − 1 − j) as

Γ(j)
n (X) = αjαj+n,(7.25)

Π(j)
n (X) = αjβj+n + βjαj+n

2 + β1

β1
,(7.26)

Ω(j)
n (X) = βjβj+n

(1 + β1

β1

)2
.(7.27)

In particular,

Γ(j)
0 (X) = α2

j , Π(j)
0 (X) = 2αjβj

1 + β1

β1
, Ω(j)

0 (X) = βj

(1 + β1

β1

)2
.

(7.28)

Note that they are independent of xr−1, xr.
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Lemma 7.6. The following relations hold:

αnβn+1 − αn+1βn = β1 (0 ≤ n ≤ r − 2),(7.29)

Γ(j)
n (X)Ω(j+1)

n (X) + Γ(j+1)
n (X)Ω(j)

n (X)
(7.30)

− Γ(j)
n+1(X)Ω(j+1)

n−1 (X) − Γ(j+1)
n−1 (X)Ω(j)

n+1(X) = (β1 + 1)2

(0 ≤ j ≤ r − 3,1 ≤ n ≤ r − 2 − j),

Π(j)
n (X)Π(j+1)

n (X) − Π(j)
n+1(X)Π(j+1)

n−1 (X) = −β1(2 + β1)(7.31)

(0 ≤ j ≤ r − 3,1 ≤ n ≤ r − 2 − j).

Proof. It is easy to check (7.29). The rest are the consequences of Defin-
ition 7.5 and (7.29).

We define a family τ = {τ (a)(u;X) ∈ Z[X±1] | a ∈ I,u ∈ Z, a + u is odd/
even if a �= r/a = r} as follows. First, we define, for 1 ≤ a ≤ r − 2 and 0 ≤
k ≤ r − 1,

τ (a)(a − 1 + 2k;X)(7.32)

=

⎧⎪⎪⎨⎪⎪⎩
γ

(a+k)
k (X)xa+k + ν

(a+k)
k (X) (0 ≤ k ≤ r − a − 2),

Γ(a+k−r+1)
r−a−1 (X)z + Π(a+k−r+1)

r−a−1 (X) + Ω
(a+k−r+1)
r−a−1 (X)

z

(r − a − 1 ≤ k ≤ r − 1),

and, for a = r − 1, r and 0 ≤ k ≤ r − 1,

τ (r−1)(r − 2 + 2k;X) =

{
αkz+βk(1+β1)/β1

xr−1
(k : odd),

αkz+βk(1+β1)/β1

xr
(k : even),

(7.33)

τ (r)(r − 2 + 2k;X) =

{
αkz+βk(1+β1)/β1

xr
(k : odd),

αkz+βk(1+β1)/β1

xr−1
(k : even).

(7.34)

Then, we extend the definition by the following half-periodicity:

τ (a)(u + 2r;X) = τ (ω(a))(u;X),(7.35)

from which the periodicity τ (a)(u + 4r;X) = τ (a)(u;X) also follows.
By (7.3), we have

τ (a)(a − 1;X) = xa (a = 1, . . . , r − 1), τ (r)(r − 2;X) = xr.(7.36)
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Figure 6: The half of the fundamental domain of τ (a)(u;X) for T2(Dr)

See Figure 6 for the half of the fundamental domain of τ (a)(u;X), which
consists of three parts. The domains D1 and D2 correspond to the two cases
of (7.32), while D3 does the cases of (7.33) and (7.34):

D1 =
{
(a,a − 1 + 2k) | a = 1, . . . , r − 2; 0 ≤ k ≤ r − a − 2

}
,

D2 =
{
(a,a − 1 + 2k) | a = 1, . . . , r − 2; r − a − 1 ≤ k ≤ r − 1

}
,

D3 =
{
(r − 1, r − 2 + 2k), (r, r − 2 + 2k) | 0 ≤ k ≤ r − 1

}
.

(7.37)

Using Lemmas 7.2 and 7.6, one can verify, case by case, the following.

Proposition 7.7. The family τ satisfies the T-system T2(Dr) in Z[X±1]:

τ (a)(u − 1;X)τ (a)(u + 1;X) = 1 +
∏

b∈I:Cab=−1

τ (b)(u;X).(7.38)

Let T2(Dr)+ be the subring of T2(Dr) generated by T
(a)
1 (u)±1 (a ∈ I ,

u ∈ Z, a + u is odd/even if a �= r/a = r). Set

T init =
{
T

(a)
1 (a − 1) (a = 1, . . . , r − 1), T (r)

1 (r − 2)
}
.(7.39)

We call the elements of T init the initial variables of T2(Dr)+.

Theorem 7.8. The following relation holds in T2(Dr)+:

T
(a)
1 (u) = τ (a)(u;T init),(7.40)
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where we set xa = T
(a)
1 (a − 1) (a �= r) and xr = T

(r)
1 (r − 2) in the right-hand

side.

As a corollary of Theorem 7.8 and (7.35), we once again obtain the peri-
odicity of T2(Dr) (Corollary 4.5 for Xr = Dr).

7.3. Explicit formula by initial variables for T2(Br)
Again, the method is parallel to the former cases, so we present only the

results for the most part. Throughout this subsection, I = {1, . . . , r} is the
set enumerating the diagram Br in Figure 1. Recall that the dual Coxeter
number of Br is 2r − 1, and the number ta in (2.1) is 2 (resp. 1) if a = r

(otherwise).
For a family of variables X = {xa, xa (a = 1, . . . , r − 1),w1,w2,w3}, we

define γ
(j)
n (X), ν(j)

n (X) ∈ Z[X±1] (1 ≤ j ≤ r − 1, 0 ≤ n ≤ j) by Definition 7.1.
We set

αn = γ(r−1)
n (X), βn = ν(r−1)

n (X), z = w1w3.(7.41)

Note that αr−1 = β0 = 0 and α0 = βr−1 = 1.
In the following, for p(X) ∈ Z[X±1], we write p(X) for what obtained from

p(X) by replacing xi with xi. Similarly, we write p̂(X) for what obtained
from p(X) by swapping w1 and w3.

Definition 7.9. We define μn(X), δn(X) ∈ Z[X±1] (0 ≤ n ≤ r) as

μn(X) =
xn−1

xr−1
, δn(X) =

{
αn + βn

xr−1
0 ≤ n ≤ r − 1,

0 n = r,
(7.42)

where we set x0 = x0 = 1, x−1 = x−1 = 0. In particular, we have μ0(X) = 0,
μr(X) = 1, δ0(X) = 1, and δr−1(X) = 1/xr−1.

Note that μn(X) and δn(X) depend on xr−1, while γ
(j)
n (X) and ν

(j)
n (X)

do not.

Definition 7.10. We define P
(j)
n (X),Q(j)

n (X),R(j)
n (X), ηn(X), ξn(X) ∈

Z[X±1] as follows. For 0 ≤ j ≤ r,0 ≤ k ≤ r,1 ≤ j + k ≤ r + 1,

P
(j)
2k (X) =

xk−1

z
δj−1+k(X),

Q
(j)
2k (X) = xk−1μj+k−1 + δj+k−1(X)xr−1

(
δk(X) +

2xk−1

z

)
,

R
(j)
2k (X) = δj−1+k(X)xk−1xr−1

(xr−1

z
+

1
xr−1

)
.

(7.43)
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For 0 ≤ j ≤ r,0 ≤ k ≤ r,0 ≤ j + k ≤ r,

P
(j)
2k+1(X) = δk(X)δj+k(X),

Q
(j)
2k+1(X) = zδj+k(X)μk(X) + δk(X)μj+k(X),

R
(j)
2k+1(X) = zxj−1+kμk(X)

(xr−1

z
+

1
xr−1

)
.

(7.44)

And,

η2k(X) = w1δk(X) +
xk−1

w3
,

ξ2k(X) = w1xk−1

(xr−1

z
+

1
xr−1

)
(0 ≤ k ≤ r),

η2k+1(X) =
δk(X)

w1
,

ξ2k+1(X) =
1
w1

(
xr−1δk(X) + zμk(X)

)
(0 ≤ k ≤ r − 1).

(7.45)

In particular, we have Q
(0)
1 (X) = R

(0)
1 (X) = P

(0)
2r+1(X) = Q

(0)
2r+1(X) = 0 and

P
(0)
1 (X) = 1.

Lemma 7.11. The following relations hold. For 1 ≤ k ≤ r,

μk−1(X)xk−1 − μk(X)xk−2 = μk−1(X)xk−1 − μk(X)xk−2 = 0,

δk−1(X)xk−1 − δk(X)xk−2 = δk−1(X)xk−1 − δk(X)xk−2 = 1.
(7.46)

For 1 ≤ j ≤ r − 1, 0 ≤ k ≤ 2r − 2, 1 ≤ j + [k/2] ≤ r,

Q
(j)
k (X)R(j)

k+2(X) + Q
(j)
k+2(X)R(j)

k (X)

− Q
(j−1)
k+2 (X)R(j+1)

k (X) − Q
(j+1)
k (X)R(j−1)

k+2 (X) = 0,

Q
(j)
k (X)P (j)

k+2(X) + Q
(j)
k+2(X)P (j)

k (X)

− Q
(j−1)
k+2 (X)P (j+1)

k (X) − Q
(j+1)
k (X)P (j−1)

k+2 (X) = 0,
(7.47)

Q
(j)
k (X)Q(j)

k+2(X) − Q
(j−1)
k+2 (X)Q(j+1)

k (X)

=

{
−zμ1(X)μ1(X) k : odd,

1 k : even,
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P
(j)
k (X)R(j)

k+2(X) + P
(j)
k+2(X)R(j)

k (X) − P
(j−1)
k+2 (X)R(j+1)

k (X)

− P
(j+1)
k (X)R(j−1)

k+2 (X) =

{
1 + zμ1(X)μ1(X) k : odd,

0 k : even.

For 1 ≤ k ≤ 2r,

Q
(0)
k (X)R(0)

k+1(X) + Q
(0)
k+1(X)R(0)

k (X)

− Q
(1)
k (X)R(1)

k−1(X) − Q
(1)
k−1(X)R(1)

k (X)

=

{
0 k : odd,

ξk(X)η̂k(X) + ξ̂k(X)ηk(X) k : even,

Q
(0)
k (X)P (0)

k+1(X) + Q
(0)
k+1(X)P (0)

k (X)

− Q
(1)
k (X)P (1)

k−1(X) − Q
(1)
k−1(X)P (1)

k (X)(7.48)

=

{
ξk(X)η̂k(X) + ξ̂k(X)ηk(X) k : odd,

0 k : even,

P
(0)
k (X)R(0)

k+1(X) + P
(0)
k+1(X)R(0)

k (X) − P
(1)
k (X)R(1)

k−1(X)

− P
(1)
k−1(X)R(1)

k (X) + Q
(0)
k (X)Q(0)

k+1(X) − Q
(1)
k+1(X)Q(1)

k (X)

=

{
ξk(X)ξ̂k(X) k : odd,

ηk(X)η̂k(X) k : even.

Proof. It is easy to check (7.46). The rest are the consequence of Defini-
tions 7.9, 7.10, and (7.46).

For a triplet (a,m,u) (a ∈ I;m = 1, . . . ,2ta − 1;u ∈ 1
2Z), we set the con-

dition,

Condition (P): u ∈
{

Z + 1
2 (a,m) = (r,1), (r,3),

Z otherwise.
(7.49)

We define a family τ = {τ
(a)
m (u;X) ∈ Z[X±1] | a ∈ I;m = 1, . . . ,2ta − 1;u ∈

(1/2)Z;Condition (P)} as follows. First, we define τ
(a)
m (u;X) in the following
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region: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
τ

(a)
1 (a − 1 + 2k;X) = γ

(a+k)
k (X)xa+k + ν

(a+k)
k (X)

(1 ≤ a ≤ r − 1, 0 ≤ k ≤ r − 1 − a),

τ
(a)
1 (a + 2k;X) = τ

(a)
1 (a − 1 + 2k;X)

(1 ≤ a ≤ r − 1, 0 ≤ k ≤ r − 1 − a),

(7.50)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ
(a)
1

(
a + 2(r − 1 − a) + k;X

)
= P

(r−a)
k (X)w2 + Q

(r−a)
k (X) + R

(r−a)
k (X)

w2

(1 ≤ a ≤ r − 1, 1 ≤ k ≤ 2a + 1),

τ
(r)
2 (r − 1 + k;X) = P

(0)
k+1(X)w2 + Q

(0)
k+1(X) +

R
(0)
k+1(X)

w2

(0 ≤ k ≤ 2r),

(7.51)

⎧⎪⎨⎪⎩
τ

(r)
1

(
r + 2k − 1

2 ;X
)

= η2k+1(X)w2 + ξ2k+1(X) (0 ≤ k ≤ r − 1),

τ
(r)
1

(
r + 2k − 3

2 ;X
)

= η2k(X) + ξ2k(X)
w2

(0 ≤ k ≤ r),

τ
(r)
3

(
r + k − 3

2 ;X
)

= τ̂
(r)
1

(
r + k − 3

2 ;X
)

(0 ≤ k ≤ 2r).

(7.52)

Then, we extend the definition by the following half-periodicity:

τ (a)
m (u + 2r + 1;X) = τ̂ (a)

m (u;X),(7.53)

from which the periodicity τ
(a)
m (u + 2(2r + 1);X) = τ

(a)
m (u;X) also follows.

By (7.3), we have

τ
(a)
1 (a − 1;X) = xa, τ

(a)
1 (a;X) = xa (a = 1, . . . , r − 1),

τ
(r)
1

(
r − 3

2
;X
)

= w1, τ
(r)
2 (r − 1;X) = w2,

τ
(r)
3

(
r − 3

2
;X
)

= w3.

(7.54)

See Figure 7 for the half of the fundamental domain of τ
(a)
m (u;X) which

consists of three parts. The domains D1, D2, and D3 correspond to the
cases (7.50), (7.51), and (7.52), respectively:

D1 =
{
(a,a − 1 + k) | 1 ≤ a ≤ r − 1; 0 ≤ k ≤ 2(r − a) − 1

}
,

D2 =
{
(a,a − 1 + k) | 1 ≤ a ≤ r − 1; 2(r − a) ≤ k ≤ 2r

}
�
{
(r2, r − 1 + k) | 0 ≤ k ≤ 2r

}
,

D3 =
{(

r1, r + k − 3
2

)
,
(
r3, r + k − 3

2

) ∣∣∣ 0 ≤ k ≤ 2r
}
,

(7.55)
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�

�

u

a

x1

x2

x3

xr−2

xr−1

w1

w3

w2

x1

x2

x3

x1

x2

x3

xr−2

xr−1

w2

w3

w1

D1 D2

D3

0 r − 2 r − 1 2r − 2 2r 2r + 1 3r − 1

r2

r1

r3

Figure 7: The half of the fundamental domain of τ
(a)
m (u;X) for T2(Br)

where the point (ri, u) corresponds to τ
(r)
i (u).

Using Lemmas 7.2 and 7.11, one can verify the following, case by case.

Proposition 7.12. The family τ satisfies the T-system T2(Br) in Z[X±1]
(by replacing T

(a)
m (u) in T2(Br) with τ

(a)
m (u;X)).

Let T2(Br)+ be the subring of T2(Br) generated by T
(a)
m (u)±1 (a ∈ I;m =

1, . . . ,2ta − 1;u ∈ (1/2)Z; Condition (P)). Set

T init =
{

T
(a)
1 (a − 1), T (a)

1 (a)(a = 1, . . . , r − 1),

T
(r)
1

(
r − 3

2

)
, T

(r)
2 (r − 1), T (r)

3

(
r − 3

2

)}
.

(7.56)

We call the elements of T init the initial variables of T2(Br)+.

Theorem 7.13. The following relation holds in T2(Br)+:

T (a)
m (u) = τ (a)

m (u;T init),(7.57)

where we set xa = T
(a)
1 (a − 1), xa = T

(a)
1 (a) (a �= r), w1 = T

(r)
1 (r − (3/2)),

w2 = T
(r)
2 (r − 1), and w3 = T

(r)
3 (r − (3/2)) in the right-hand side.

As a corollary of Theorem 7.13 and (7.53), we obtain the following.
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Corollary 7.14. The following relations hold in T2(Br):

(1) Half-periodicity: T
(a)
m (u + 2r + 1) = T

(a)
2ta −m(u).

(2) Periodicity: T
(a)
m (u + 2(2r + 1)) = T

(a)
m (u).

§8. Periodicities of restricted T- and Y-systems at levels 1 and 0

So far, we have assumed that the level � for the restriction is greater
than or equal to 2. In this section we extend the periodicity property of the
restricted T- and Y-systems at levels 1 and 0.

8.1. Periodicities of restricted T- and Y-systems at level 1
In the systems T�(Xr) and Y�(Xr), we treat the variables T

(a)
m (u) and

Y
(a)
m (u) with m = 1, . . . , ta� − 1. Thus at � = 1, these systems are void for

simply laced Xr; however, Definitions 3.1, 3.2, 3.5, and 3.6 still make sense
for nonsimply laced Xr.

The level 1 T- and Y-systems in these cases are actually equivalent to
the systems of type A. To illustrate, consider T1(F4):

T
(3)
1

(
u − 1

2

)
T

(3)
1

(
u +

1
2

)
= 1 + T

(4)
1 (u),

T
(4)
1

(
u − 1

2

)
T

(4)
1

(
u +

1
2

)
= 1 + T

(3)
1 (u),

(8.1)

where we have omitted the first three relations in (2.5), which are void at
� = 1. To be precise, let us introduce another level � restricted T-system
T′

�(Ar) for T = {T
(a)
m (u) | a = 1, . . . , r;m = 1, . . . , � − 1;u ∈ (1/�)Z} with the

relations

T (a)
m

(
u − 1

�

)
T (a)

m

(
u +

1
�

)
= T

(a)
m−1(u)T (a)

m+1(u) + T (a−1)
m (u)T (a+1)

m (u),(8.2)

where the left-hand side of (8.2) differs from (2.2) for T�(Ar). Then, the
relations in (8.1) are equivalent to T′

2(A2). In other words, T1(F4) � T′
2(A2),

where T′
�(Ar) denotes the T-algebra associated with T′

�(Ar). A similar reduc-
tion of the Y-system, Y1(F4) � Y′

2(A2), happens, where Y′
�(Ar) and Y′

�(Ar)
are defined in the same way.

In general, T1(Xr) � T′
t(Ar′ ) and Y1(Xr) � Y′

t(Ar′ ) hold for nonsimply
laced Xr, where t is the number in (2.1) and r′ equals the number of the
short simple roots of Xr.
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Let us summarize the relevant data for the periodicities of T1(Xr) and
Y1(Xr):

Xr Ar′ t h∨ + 1 (r′ + 1 + t)/t

Br A1 2 2r 2
Cr Ar−1 2 r + 2 (r + 2)/2
F4 A2 2 10 5/2
G2 A1 3 5 5/3

(8.3)

Theorem 8.1. (i) For any nonsimply laced Xr, the following relations
hold in T1(Xr):

(1) Half-periodicity: T
(a)
m (u + h∨ + 1) = T

(a)
ta−m(u).

(2) Periodicity: T
(a)
m (u + 2(h∨ + 1)) = T

(a)
m (u).

(ii) For any nonsimply laced Xr, the following relations hold in Y1(Xr):

(1) Half-periodicity: Y
(a)
m (u + h∨ + 1) = Y

(a)
ta −m(u).

(2) Periodicity: Y
(a)
m (u + 2(h∨ + 1)) = Y

(a)
m (u).

Proof. By inspecting (8.3), one can check that the half-periodicities of
T1(Xr) and Y1(Xr) follow from the half- or full-periodicities of the corre-
sponding T′

t(Ar′ ) and Y′
t(Ar′ ).

8.2. Periodicities of restricted T- and Y-systems at level 0
At level 0, one can still introduce, at least formally, a restricted T- and

Y-system for any Xr, and study their periodicity.

Definition 8.2. The level 0 restricted T-system T0(Xr) of type Xr is
the following system of relations for a family of variables T = {T (a)(u) | a ∈
I,u ∈ U }, where T (0)(u) = 1 if they occur in the right-hand sides in the
relations.

For simply laced Xr,

T (a)(u − 1)T (a)(u + 1) =
∏

b∈I:Cab=−1

T (b)(u).(8.4)

For Xr = Br,

T (a)(u − 1)T (a)(u + 1) = T (a−1)(u)T (a+1)(u) (1 ≤ a ≤ r − 2),(8.5)

T (r−1)(u − 1)T (r−1)(u + 1) = T (r−2)(u)T (r)(u),

T (r)
(
u − 1

2

)
T (r)

(
u +

1
2

)
= T (r−1)

(
u − 1

2

)
T (r−1)

(
u +

1
2

)
.



PERIODICITIES OF T-SYSTEMS AND Y-SYSTEMS 141

For Xr = Cr,

T (a)
(
u − 1

2

)
T (a)

(
u +

1
2

)
= T (a−1)(u)T (a+1)(u) (1 ≤ a ≤ r − 2),(8.6)

T (r−1)
(
u − 1

2

)
T (r−1)

(
u +

1
2

)
= T (r−2)(u)T (r)

(
u − 1

2

)
T (r)

(
u +

1
2

)
,

T (r)(u − 1)T (r)(u + 1) = T (r−1)(u).

For Xr = F4,

T (1)(u − 1)T (1)(u + 1) = T (2)(u),(8.7)

T (2)(u − 1)T (2)(u + 1) = T (1)(u)T (3)(u),

T (3)
(
u − 1

2

)
T (3)

(
u +

1
2

)
= T (2)

(
u − 1

2

)
T (2)

(
u +

1
2

)
T (4)(u),

T (4)
(
u − 1

2

)
T (4)

(
u +

1
2

)
= T (3)(u).

For Xr = G2,

T (1)(u − 1)T (1)(u + 1) = T (2)(u),(8.8)

T (2)
(
u − 1

3

)
T (2)

(
u +

1
3

)
= T (1)

(
u − 2

3

)
T (1)(u)T (1)

(
u +

2
3

)
.

Definition 8.3. The level 0 restricted T-group T0(Xr) of type Xr is
the abelian group with generators T (a)(u) (a ∈ I,u ∈ U ) and the relations
T0(Xr).

Remark 8.4. T0(Xr) is obtained from the unrestricted T-system T(Xr)
(2.2)–(2.6) by setting T

(a)
m (u) = T (a)(u) if m = 0 and T

(a)
m (u) = 0 otherwise.

It was originally introduced in [KNS2, Section 2.2] as “bulk T-system.”

Similarly, we define the following.

Definition 8.5. The level 0 restricted Y-system Y0(Xr) of type Xr is
the following system of relations for a family of variables Y = {Y (a)(u) | a ∈
I,u ∈ U }, where Y (0)(u) = 1 if they occur in the right-hand sides in the
relations.

For simply laced Xr,

Y (a)(u − 1)Y (a)(u + 1) =
∏

b∈I:Cab=−1

Y (b)(u).(8.9)
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For Xr = Br,

Y (a)(u − 1)Y (a)(u + 1) = Y (a−1)(u)Y (a+1)(u) (1 ≤ a ≤ r − 2),(8.10)

Y (r−1)(u − 1)Y (r−1)(u + 1) = Y (r−2)(u)Y (r)
(
u − 1

2

)
Y (r)

(
u +

1
2

)
,

Y (r)
(
u − 1

2

)
Y (r)

(
u +

1
2

)
= Y (r−1)(u).

For Xr = Cr,

Y (a)
(
u − 1

2

)
Y (a)

(
u +

1
2

)
= Y (a−1)(u)Y (a+1)(u) (1 ≤ a ≤ r − 2),(8.11)

Y (r−1)
(
u − 1

2

)
Y (r−1)

(
u +

1
2

)
= Y (r−2)(u)Y (r)(u),

Y (r)(u − 1)Y (r)(u + 1) = Y (r−1)
(
u − 1

2

)
Y (r−1)

(
u +

1
2

)
.

For Xr = F4,

Y (1)(u − 1)Y (1)(u + 1) = Y (2)(u),(8.12)

Y (2)(u − 1)Y (2)(u + 1) = Y (1)(u)Y (3)
(
u − 1

2

)
Y (3)

(
u +

1
2

)
,

Y (3)
(
u − 1

2

)
Y (3)

(
u +

1
2

)
= Y (2)(u)Y (4)(u),

Y (4)
(
u − 1

2

)
Y (4)

(
u +

1
2

)
= Y (3)(u).

For Xr = G2,

Y (1)(u − 1)Y (1)(u + 1) = Y (2)
(
u − 2

3

)
Y (2)(u)Y (2)

(
u +

2
3

)
,(8.13)

Y (2)
(
u − 1

3

)
Y (2)

(
u +

1
3

)
= Y (1)(u).

Definition 8.6. The level 0 restricted Y-group Y0(Xr) of type Xr is
the abelian group with generators Y (a)(u) (a ∈ I,u ∈ U ) and the relations
Y0(Xr).

Remark 8.7. Y0(Xr) is obtained from unrestricted Y-system Y(Xr)
(2.15)–(2.19) by first making the replacement (1+Y

(a)
m (u),1+Y

(a)
m (u)−1) →

(Y (a)
m (u),1) in the right-hand sides (i.e., taking a formal limit Y

(a)
m (u) → ∞),

and then setting Y
(a)
m (u) = Y (a)(u) if m = 0 and Y

(a)
m (u) = 1 otherwise.
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From (8.4) and (8.9), we see that T0(Xr) � Y0(Xr) if Xr is simply laced.
The following periodicity property justifies that we call these systems

“level 0.” Notice that the half-periodicity here contains the inverse in the
right-hand sides, in contrast with the level � ≥ 1 case.

Theorem 8.8. (i) The following relations hold in T0(Xr).

(1) Half-periodicity: T (a)(u + h∨) = T (ω(a))(u)−1.
(2) Periodicity: T (a)(u + 2h∨) = T (a)(u).

(ii) The following relations hold in Y0(Xr).

(1) Half-periodicity: Y (a)(u + h∨) = Y (ω(a))(u)−1.
(2) Periodicity: Y (a)(u + 2h∨) = Y (a)(u).

Proof. It is enough to show the half-periodicity, and it can be proved by
elementary manipulations. Especially for exceptional Xr = E6,E7,E8, F4,
and G2, it is a matter of a direct check. As an illustration we present a proof
for T0(Dr) (� Y0(Dr)) and Y0(Br) below. The cases T0(Br),T0(Cr),T0(F4),
and T0(G2) have been treated in [KNS2, Section 2.2.1 and Appendix A].

First we consider T0(Dr). From (8.4) we have

T (a)(u) =
a∏

s=1

T (1)(u − a − 1 + 2s) (1 ≤ a ≤ r − 2),(8.14)

T (r−1)(u)T (r)(u) =
r−1∏
s=1

T (1)(u − r + 2s),(8.15)

T (a)(u − 1)T (a)(u + 1) = T (r−2)(u) (a = r − 1, r).(8.16)

In (8.15) replace u by u ± 1 and take the product. Using (8.14) with a =
r − 2 and (8.16), one can express all the factors by T (1) only, leading to
T (1)(u − r + 1)T (1)(u + r − 1) = 1. In view of h∨ = 2r − 2 and (8.14), this
verifies the claim of the theorem T (a)(u)T (a)(u+h∨) = 1 except for a = r − 1
and r.

Suppose r is even. Then for a = r − 1, r we have

T (a)(u)T (a)(u + h∨) =
∏r−1

s=0 T (a)(u + 2s)∏r−2
s=1 T (a)(u + 2s)

=
∏r/2−1

s=0 T (r−2)(u + 1 + 4s)∏r/2−1
s=1 T (r−2)(u − 1 + 4s)

,

where the second equality is due to (8.16). From (8.14) with a = r − 2,
the ratio is expressed by T (1) only, which turns out to be 1 owing to
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T (1)(u)T (1)(u + h∨) = 1. If r is odd, let r = r − 1 and r − 1 = r. Then we
have

T (a)(u)T (a)(u + h∨) =

(∏r−1
s=0 T (a)(u + 2s)

)
T (a)(u + h∨)∏r−1

s=1 T (a)(u + 2s)

=
∏(r−3)/2

s=0 T (r−2)(u + 1 + 4s)∏(r−1)/2
s=1 T (r−2)(u − 1 + 4s)

× T (r−1)(u + h∨)T (r)(u + h∨),

where the second equality is due to (8.16). Again, this can be shown to be
1 from (8.14) with a = r − 2, (8.15), and T (1)(u)T (1)(u + h∨) = 1.

Next we consider Y0(Br). From (8.10) we find

Y (a)(u) =
a∏

s=1

Y (1)(u − a − 1 + 2s)(8.17)

(1 ≤ a ≤ r − 1),

Y (r−1)(u − 1)Y (r−1)(u + 1) = Y (r−2)(u)Y (r−1)(u),(8.18)

Y (r)
(
u − 1

2

)
Y (r)

(
u +

1
2

)
= Y (r−1)(u).(8.19)

Substituting (8.17) into (8.18), we get Y (r−1)(u) =
∏r

s=1 Y (1)(u − r − 1+2s).
Comparing this with expression (8.17) with a = r − 1, we have

Y (r−1)(u) = Y (r−1)(u ± 1)Y (1)(u ∓ r ± 1).(8.20)

The two relations imply Y (1)(u − r+1)Y (1)(u+r) = 1. In view of h∨ = 2r − 1
and (8.17), this verifies the claim of the theorem Y (a)(u)Y (a)(u + h∨) = 1
except for a = r. From either of the relations (8.20) and (8.17) with a =
r − 1, one can derive

∏r
s=1 Y (r−1)(u − r − 1+2s) =

∏r−1
s=1 Y (r−1)(u − r +2s).

Substitution of (8.19) into this gives Y (r)(u)Y (r)(u + h∨) = 1.

For simply laced Xr, a more intrinsic proof of Theorem 8.8 by the Coxeter
element of the Weyl group is available, following the remarkable idea by
Fomin and Zelevinsky [FZ3] used for the proof of the periodicity of Y2(Xr).

Alternative proof for simply laced Xr. Assume that Xr is simply laced.
Let I = I+ � I− be the bipartite decomposition of the index set I , and
define ε(a) by ε(a) = ± for a ∈ I±. Since T0(Xr) closes among those T (a)(u)



PERIODICITIES OF T-SYSTEMS AND Y-SYSTEMS 145

with fixed “parity” ε(a)(−1)u, it is no problem to impose an additional
relation in T0(Xr),

T (a)(u + 1) = T (a)(u)−1 whenever ε(a)(−1)u = +,(8.21)

in order to prove its periodicity. Let W be the Weyl group of type Xr with
the simple reflections sa (a ∈ I), which acts on T0(Xr) by

sb

(
T (a)(u)

)
= T (a)(u)T (b)(u)−Cba .(8.22)

Define τ± =
∏

a∈I± sa. Then, τ±τ∓ is the Coxeter element of W , and τε acts
as

τε

(
T (a)(u)

)
=

{
T (a)(u)−1 ε(a) = ε,

T (a)(u)
∏

b�=a T (b)(u)−Cba ε(a) �= ε.
(8.23)

By (8.21), (8.23), and T0(Xr) in (8.4), we have T (a)(u+1) = τ(−1)u(T (a)(u)).
The following fact is known ([B, Chapter V, 6.2], [FZ3, Lemma 2.1]):

· · · τ−τ+τ−τ+︸ ︷︷ ︸
h times

= · · · τ+τ−τ+τ−︸ ︷︷ ︸
h times

= ω0 (the longest element of W ),(8.24)

where h is the Coxeter number of Xr. Also, ω0(T (a)(u)) = T (ω(a))(u)−1 due
to the remark after (3.6). Using these results, we obtain

T (a)(u + h) = (· · · τ∓τ±τ∓τ±︸ ︷︷ ︸
h times

)
(
T (a)(u)

)
(8.25)

= ω0

(
T (a)(u)

)
= T (ω(a))(u)−1.

Remark 8.9. As for the half-periodicity of T0(Xr), a similar result has
been obtained in [KNS2, (2.8)]. Compared with Theorem 8.8 here, the result
there is weaker in that it does not cover Ar (r ≥ 2) or individual T

(a)
m (u) for

E6 and E8. Moreover, [KNS2, (2.8a)] should be corrected for Xr = Dr with
r odd and a = r − 1, r.
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§9. Periodicities of restricted T- and Y-systems for twisted quan-
tum affine algebras

The T- and Y-systems considered so far are associated with the untwisted
quantum affine algebra Uq(ĝ) (when U = Ut�) as explained in Section 2.
In this section we consider T- and Y-systems associated with the twisted
quantum affine algebra Uq(ĝσ) following [KS], [Her2]. All the basic results
presented for the untwisted case can be naturally extended to the twisted
case as well. Moreover, the periodicity property of the twisted case reduces
to that of the untwisted case.

9.1. Dynkin diagrams of twisted affine type
Throughout this section, we let XN exclusively denote a Dynkin diagram

of type AN (N ≥ 2), DN (N ≥ 4), or E6. We keep the enumeration of the
nodes of XN by the set I = {1, . . . ,N } as in Figure 1. For a pair (XN , κ) =
(AN ,2), (DN ,2), (E6,2), or (D4,3), we define the diagram automorphism
σ : I → I of XN of order κ as σ(a) = a except for the following cases (in our
enumeration):

σ(a) = N + 1 − a (a ∈ I) (XN , κ) = (AN ,2),(9.1)

σ(N − 1) = N, σ(N) = N − 1 (XN , κ) = (DN ,2),

σ(1) = 6, σ(2) = 5, σ(5) = 2, σ(6) = 1 (XN , κ) = (E6,2),

σ(1) = 3, σ(3) = 4, σ(4) = 1 (XN , κ) = (D4,3).

The map σ is the same as the involution ω : I → I in (3.6) except for
XN = DN (N : even). Let I/σ be the set of the σ-orbits of nodes of XN . We
choose, at our discretion, a complete set of representatives Iσ ⊂ I of I/σ as

Iσ =

⎧⎪⎨⎪⎩
{1,2, . . . , r} (XN , κ) = (A2r−1,2), (A2r,2), (Dr+1,2),

{1,2,3,4} (XN , κ) = (E6,2),

{1,2} (XN , κ) = (D4,3).

(9.2)

Let X
(κ)
N = A

(2)
2r−1 (r ≥ 2),A(2)

2r (r ≥ 1),D(2)
r+1 (r ≥ 3),E(2)

6 , or D
(3)
4 be a

Dynkin diagram of twisted affine type [Ka]. We enumerate the nodes of
X

(κ)
N with Iσ ∪ {0} as in Figure 8, where Iσ is the one for (XN , κ). By

this, we have established the identification of the non-zeroth nodes of the
diagram X

(κ)
N with the nodes of the diagram XN belonging to the set Iσ.
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A
(2)
2r−1

1

0

2 r − 1 r

A
(2)
2

0 1

A
(2)
2r

0 1 r − 1 r

D
(2)
r+1

0 1 r − 1 r

E
(2)
6

0 1 2 3 4
D

(3)
4

0 1 2

Figure 8: The Dynkin diagrams X
(κ)
N of twisted affine type and

their enumerations by Iσ ∪ {0}. For a solid node a, σ(a) = a

(i.e., κa = κ) holds.

For example, for E
(2)
6 , the correspondence is as follows:

E
(2)
6

0 1 2 3 4
E6

1 2 3 5 6

4

(9.3)

The solid nodes 3,4 in E
(2)
6 correspond to the fixed nodes by σ in E6. We

use this identification throughout the section. (The zeroth node of X
(κ)
N is

irrelevant in our setting here.)
We define κa (a ∈ Iσ) as

κa =

{
1 σ(a) �= a,

κ σ(a) = a.
(9.4)

Note that X
(2)
N = A

(2)
2r is the unique case in which κa = 1 for any a ∈ Iσ.

9.2. Unrestricted T-systems
Choose � ∈ C \ 2π

√
−1Q arbitrarily.

Definition 9.1. The unrestricted T-system T(X(κ)
N ) of type X

(κ)
N is the

following system of relations for a family of variables T = {T
(a)
m (u) | a ∈

Iσ,m ∈ N, u ∈ Cκa�}, where Ω = 2π
√

−1/κ�, and T
(0)
m (u) = T

(a)
0 (u) = 1 if

they occur in the right-hand sides in the relations.
For X

(κ)
N = A

(2)
2r−1,

T (a)
m (u − 1)T (a)

m (u + 1) = T
(a)
m−1(u)T (a)

m+1(u) + T (a−1)
m (u)T (a+1)

m (u)(9.5)

(1 ≤ a ≤ r − 1),



148 R. INOUE, O. IYAMA, A. KUNIBA, T. NAKANISHI, AND J. SUZUKI

T (r)
m (u − 1)T (r)

m (u + 1) = T
(r)
m−1(u)T (r)

m+1(u)

+ T (r−1)
m (u)T (r−1)

m (u + Ω).

For X
(κ)
N = A

(2)
2r ,

T (a)
m (u − 1)T (a)

m (u + 1) = T
(a)
m−1(u)T (a)

m+1(u)(9.6)

+ T (a−1)
m (u)T (a+1)

m (u) (1 ≤ a ≤ r − 1),

T (r)
m (u − 1)T (r)

m (u + 1) = T
(r)
m−1(u)T (r)

m+1(u) + T (r−1)
m (u)T (r)

m (u + Ω).

For X
(κ)
N = D

(2)
r+1,

T (a)
m (u − 1)T (a)

m (u + 1) = T
(a)
m−1(u)T (a)

m+1(u)(9.7)

+ T (a−1)
m (u)T (a+1)

m (u) (1 ≤ a ≤ r − 2),

T (r−1)
m (u − 1)T (r−1)

m (u + 1) = T
(r−1)
m−1 (u)T (r−1)

m+1 (u)

+ T (r−2)
m (u)T (r)

m (u)T (r)
m (u + Ω),

T (r)
m (u − 1)T (r)

m (u + 1) = T
(r)
m−1(u)T (r)

m+1(u) + T (r−1)
m (u).

For X
(κ)
N = E

(2)
6 ,

T (1)
m (u − 1)T (1)

m (u + 1) = T
(1)
m−1(u)T (1)

m+1(u) + T (2)
m (u),(9.8)

T (2)
m (u − 1)T (2)

m (u + 1) = T
(2)
m−1(u)T (2)

m+1(u) + T (1)
m (u)T (3)

m (u),

T (3)
m (u − 1)T (3)

m (u + 1) = T
(3)
m−1(u)T (3)

m+1(u)

+ T (2)
m (u)T (2)

m (u + Ω)T (4)
m (u),

T (4)
m (u − 1)T (4)

m (u + 1) = T
(4)
m−1(u)T (4)

m+1(u) + T (3)
m (u).

For X
(κ)
N = D

(3)
4 ,

T (1)
m (u − 1)T (1)

m (u + 1) = T
(1)
m−1(u)T (1)

m+1(u) + T (2)
m (u),(9.9)

T (2)
m (u − 1)T (2)

m (u + 1) = T
(2)
m−1(u)T (2)

m+1(u)

+ T (1)
m (u)T (1)

m (u − Ω)T (1)
m (u + Ω).
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The domain Cκa� of the parameter u effectively imposes the following
periodic condition:

T (a)
m (u) =

{
T

(a)
m (u + κΩ) σ(a) �= a,

T
(a)
m (u + Ω) σ(a) = a.

(9.10)

Definition 9.2. The unrestricted T-algebra T(X(κ)
N ) of type X

(κ)
N is the

ring with generators T
(a)
m (u)±1 (a ∈ Iσ,m ∈ N, u ∈ Cκa�) and the relations

T(X(κ)
N ). Also, we define the ring T◦(X(κ)

N ) as the subring of T(X(κ)
N ) gener-

ated by T
(a)
m (u) (a ∈ Iσ,m ∈ N, u ∈ Cκa�).

The following are some features of the T-system T(X(κ)
N ) that are specific

to the twisted case.

(i) The relations include the two basic units of the parameter u, 1 and
Ω, which are Z-linearly independent under our assumption of � /∈ 2π

√
−1Q.

(ii) The domain Cκa� of the parameter u and the resulting periodic
condition (9.10) depend on a ∈ Iσ.

(iii) We do not consider the T-system T(X(κ)
N ) whose domain U of the

parameter u is C. This is because the periodic condition (9.10) is now an
integral part of the relations T(X(κ)

N ) due to (i). This is also natural given
that no Yangian analogue of the twisted quantum affine algebra Uq(ĝσ) is
known.

(iv) The discrete version of T(X(κ)
N ) is available by taking the domain

U of the parameter u as U = Z × Zκ, where (a, b) ∈ U corresponds to u =
a + bΩ, and imposing the periodic condition (9.10).

Remark 9.3. The T-system T(X(κ)
N ) was introduced in [KS] as a family

of relations in the ring of the commuting transfer matrices for solvable lattice
models associated with the twisted quantum affine algebra Uq(ĝσ) of type
X

(κ)
N .

Remark 9.4. Unifying the untwisted and twisted cases, the T-system
T(Xr) and the Y-system Y(Xr) of type Xr in Section 2 are also said to be
of type X

(1)
r and are denoted by T(X(1)

r ) and Y(X(1)
r ). Strictly speaking,

this should be applied only when the domain U of the parameter u is Ct�.
However, as we have seen, such a distinction of U is not so essential in many
aspects of T(Xr) and Y(Xr).
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There is a simple relation between the rings T(X(κ)
N ) and T(XN ). Let

{T̂
(a)
m (u)±1 | a ∈ I,m ∈ N, u ∈ C�} be the set of generators of T(XN ). Let Jσ

be the ideal of T(XN ) generated by

T̂ (a)
m (u) − T̂ (σ(a))

m (u + Ω) (a ∈ I,m ∈ N≥1, u ∈ C�).(9.11)

Then one can choose a generating set of T(XN )/Jσ as {T̂
(a)
m (u)±1 | a ∈

Iσ,m ∈ Z≥1, u ∈ Cκa�}.

Proposition 9.5. There is a ring isomorphism

T(XN )/Jσ → T(X(κ)
N ),

T̂ (a)
m (u) �→ T (a)

m (u) (a ∈ Iσ).
(9.12)

Proof. It is easy to check that the relations of the both rings are identical
under the correspondence.

The T-system T(X(κ)
N ) plays the same role in the Grothendieck ring

RepUq(ĝσ) of the category of type 1 finite-dimensional Uq(ĝσ)-modules for
the twisted quantum affine algebra Uq(ĝσ) of type X

(κ)
N as does the untwisted

case.
For arbitrarily chosen � ∈ C \ 2π

√
−1Q, we set the deformation parameter

q of the twisted quantum affine algebras Uq(ĝ) [J], [D1], [D2] as q = e� ∈ C×,
so that q is not a root of unity.

The q-character map χσ
q of Uq(ĝσ) is defined by Hernandez [Her2] as an

injective ring homomorphism

χσ
q : RepUq(ĝσ) → Z[Z±1

i,a ]i∈Iσ ,a∈C× .(9.13)

Consult [Her2] for more information on Uq(ĝσ) and χσ
q . The enumeration of

Iσ in [Her2] is the same as the present one except for A
(2)
2r , where 1,2, . . . , r

here correspond to r − 1, . . . ,1,0 in [Her2]. To make the description uniform,
for a ∈ Iσ = {1, . . . , r} we set a = r − a for X

(κ)
N = A

(2)
2r and a = a otherwise.

(This notation a will be used only in the rest of this section.) From now on,
we employ the parameterization of the variables Za,qκau (a ∈ Iσ, u ∈ Cκa�)
instead of Zi,a (i ∈ Iσ, a ∈ C×) in [Her2]. The q-character ring ChUq(ĝσ) of
Uq(ĝσ) is defined to be Imχσ

q .
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Definition 9.6. A Kirillov-Reshetikhin module W
(a)
m (u) (a ∈ Iσ,m ∈

N, u ∈ Cκa�) of Uq(ĝσ) of type X
(κ)
N is the irreducible finite dimensional

Uq(ĝσ)-module with highest weight monomial
m∏

j=1

Za,qκa(u+m+1−2j) .(9.14)

Remark 9.7. The above W
(a)
m (u) corresponds to W

(a)

m,qκa(u−m+1) in [Her2].

The T -system T(X(κ)
N ) in Definition 9.1 agrees with the one in [Her2, Sec-

tion 4.3] under the identification T
(a)
m (u) = X

(a)

m,qκa(u−m+1) .

In the same way as (2.9), we define Samu(T ) ∈ Z[T ] (a ∈ I,m ∈ N, u ∈
Cκa�), so that all the relations in T(X(κ)

N ) are written in the form Samu(T ) =
0. Let I(T(X(κ)

N )) be the ideal of Z[T ] generated by Samu(T ).

Theorem 9.8. Let T̃ = {T̃
(a)
m (u) := χσ

q (W (a)
m (u)) | a ∈ Iσ,m ∈ N, u ∈ Cκa�}

be the family of the q-characters of the Kirillov-Reshetikhin modules of
Uq(ĝσ) of type X

(κ)
N . Then,

(1) the family T̃ generates the ring ChUq(ĝσ);
(2) (Hernandez [Her2]) the family T̃ satisfies the T-system T(X(κ)

N ) in
ChUq(ĝσ) (by replacing T

(a)
m (u) in T(X(κ)

N ) with T̃
(a)
m (u));

(3) for any P (T ) ∈ Z[T ], the relation P (T̃ ) = 0 holds in ChUq(ĝσ) if and
only if there is a nonzero monomial M(T ) ∈ Z[T ] such that M(T )P (T ) ∈
I(T(X(κ)

N )).

Proof. (1) The fundamental character χσ
q (W (a)

1 (u)) has the form

χσ
q

(
W

(a)
1 (u)

)
= Za,qκau + (lower term),(9.15)

where “lower” means lower in the weight lattice for the subalgebra Uq(gσ) of
Uq(ĝσ) [Her2]. Thus, if there is a nontrivial relation among the fundamental
characters, then it causes some nontrivial relation among Za,qκau ’s. This is
a contradiction.

(2) This was proved by [Her2, Theorem 4.2].
(3) The proof is completely parallel with Theorem 2.8(3) by setting the

height as htT
(a)
m (u) = m.

Corollary 9.9. The ring T◦(X(κ)
N ) is isomorphic to RepUq(ĝσ) by the

correspondence T
(a)
m (u) �→ W

(a)
m (u).
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In Appendix A.2 we give parallel results for the ring associated with the
Q-system and RepUq(gσ).

9.3. Unrestricted Y-systems
Definition 9.10. The unrestricted Y-system T(X(κ)

N ) of type X
(κ)
N is the

following system of relations for a family of variables Y = {Y
(a)
m (u) | a ∈

Iσ,m ∈ N, u ∈ Cκa�}, where Ω = 2π
√

−1/κ�, and Y
(0)
m (u) = Y

(a)
0 (u)−1 = 0 if

they occur in the right-hand sides in the following relations.
For X

(κ)
N = A

(2)
2r−1,

Y (a)
m (u − 1)Y (a)

m (u + 1) =
(1 + Y

(a−1)
m (u))(1 + Y

(a+1)
m (u))

(1 + Y
(a)
m−1(u)−1)(1 + Y

(a)
m+1(u)−1)

(9.16)

(1 ≤ a ≤ r − 1),

Y (r)
m (u − 1)Y (r)

m (u + 1) =
(1 + Y

(r−1)
m (u))(1 + Y

(r−1)
m (u + Ω))

(1 + Y
(r)
m−1(u)−1)(1 + Y

(r)
m+1(u)−1)

.

For X
(κ)
N = A

(2)
2r ,

Y (a)
m (u − 1)Y (a)

m (u + 1) =
(1 + Y

(a−1)
m (u))(1 + Y

(a+1)
m (u))

(1 + Y
(a)
m−1(u)−1)(1 + Y

(a)
m+1(u)−1)

(9.17)

(1 ≤ a ≤ r − 1),

Y (r)
m (u − 1)Y (r)

m (u + 1) =
(1 + Y

(r−1)
m (u))(1 + Y

(r)
m (u + Ω))

(1 + Y
(r)
m−1(u)−1)(1 + Y

(r)
m+1(u)−1)

.

For X
(κ)
N = D

(2)
r+1,

Y (a)
m (u − 1)Y (a)

m (u + 1) =
(1 + Y

(a−1)
m (u))(1 + Y

(a+1)
m (u))

(1 + Y
(a)
m−1(u)−1)(1 + Y

(a)
m+1(u)−1)

(9.18)

(1 ≤ a ≤ r − 2),

Y (r−1)
m (u − 1)Y (r−1)

m (u + 1) =

(1 + Y
(r−2)
m (u))(1 + Y

(r)
m (u))

× (1 + Y
(r)
m (u + Ω))

(1 + Y
(r−1)
m−1 (u)−1)(1 + Y

(r−1)
m+1 (u)−1)

,

Y (r)
m (u − 1)Y (r)

m (u + 1) =
1 + Y

(r−1)
m (u)

(1 + Y
(r)
m−1(u)−1)(1 + Y

(r)
m+1(u)−1)

.
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For X
(κ)
N = E

(2)
6 ,

Y (1)
m (u − 1)Y (1)

m (u + 1) =
1 + Y

(2)
m (u)

(1 + Y
(1)
m−1(u)−1)(1 + Y

(1)
m+1(u)−1)

,(9.19)

Y (2)
m (u − 1)Y (2)

m (u + 1) =
(1 + Y

(1)
m (u))(1 + Y

(3)
m (u))

(1 + Y
(2)
m−1(u)−1)(1 + Y

(2)
m+1(u)−1)

,

Y (3)
m (u − 1)Y (3)

m (u + 1) =

(1 + Y
(2)
m (u))(1 + Y

(2)
m (u + Ω))

× (1 + Y
(4)
m (u))

(1 + Y
(3)
m−1(u)−1)(1 + Y

(3)
m+1(u)−1)

,

Y (4)
m (u − 1)Y (4)

m (u + 1) =
1 + Y

(3)
m (u)

(1 + Y
(4)
m−1(u)−1)(1 + Y

(4)
m+1(u)−1)

.

For X
(κ)
N = D

(3)
4 ,

Y (1)
m (u − 1)Y (1)

m (u + 1) =
1 + Y

(2)
m (u)

(1 + Y
(1)
m−1(u)−1)(1 + Y

(1)
m+1(u)−1)

,(9.20)

Y (2)
m (u − 1)Y (2)

m (u + 1) =

(1 + Y
(1)
m (u))(1 + Y

(1)
m (u − Ω))

× (1 + Y
(1)
m (u + Ω))

(1 + Y
(2)
m−1(u)−1)(1 + Y

(2)
m+1(u)−1)

.

The domain Cκa� of the parameter u effectively imposes the following
periodic condition:

Y (a)
m (u) =

{
Y

(a)
m (u + κΩ) σ(a) �= a,

Y
(a)
m (u + Ω) σ(a) = a.

(9.21)

Definition 9.11. The unrestricted Y-algebra Y(X(κ)
N ) of type X

(κ)
N is the

ring with generators Y
(a)
m (u)±1, (1 + Y

(a)
m (u))−1 (a ∈ Iσ,m ∈ N, u ∈ Cκa�)

and the relations Y(X(κ)
N ).

Let {Ŷ
(a)
m (u)±1, (1 + Ŷ

(a)
m (u))−1 | a ∈ I,m ∈ N, u ∈ C�} be the set of gen-

erators of Y(XN ). Let Iσ be the ideal of Y(XN ) generated by

Ŷ (a)
m (u) − Ŷ (σ(a))

m (u + Ω) (a ∈ I,m ∈ N, u ∈ C�).(9.22)
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Then one can choose a generating set of Y(XN )/Iσ as {Ŷ
(a)
m (u)±1, (1 +

Ŷ
(a)
m (u))−1 | a ∈ Iσ,m ∈ N, u ∈ Cκa�}.
As Proposition 9.5, we have the following.

Proposition 9.12. There is a ring isomorphism

Y(XN )/Iσ → Y(X(κ)
N ),

Ŷ (a)
m (u) �→ Y (a)

m (u) (a ∈ Iσ).
(9.23)

The following theorem is an analogue of Theorem 2.12.

Theorem 9.13. (1) There is a ring homomorphism

ϕ : Y(X(κ)
N ) → T(X(κ)

N )(9.24)

defined by

Y (a)
m (u) �→ M

(a)
m (u)

T
(a)
m−1(u)T (a)

m+1(u)
,(9.25)

where T
(a)
0 (u) = 1.

(2) There is a ring homomorphism

ψ : T(X(κ)
N ) → Y(X(κ)

N )(9.26)

such that ψ ◦ ϕ = id
Y(X

(κ)
N )

.

Proof. We derive the theorem from the results of Theorem 2.12 and
Propositions 9.5 and 9.12.

(1) Let ϕ̂ : Y(XN ) → T(XN ) be the homomorphism in (2.21). Let Jσ

and Iσ be the ideals of T(XN ) and Y(XN ) in Propositions 9.5 and 9.12,
respectively. We claim that ϕ̂(Iσ) ⊂ Jσ. In fact,

ϕ̂
(
Ŷ (a)

m (u)
)
=

M̂
(a)
m (u)

T̂
(a)
m−1(u)T̂ (a)

m+1(u)

≡ M̂
(σ(a))
m (u + Ω)

T̂
(σ(a))
m−1 (u + Ω)T̂ (σ(a))

m+1 (u + Ω)
modJσ

= ϕ̂
(
Ŷ (σ(a))

m (u + Ω)
)
,

(9.27)
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where we also used the invariance of T(XN ) by σ in the second equality.
Then, the induced homomorphism

ϕ̂σ : Y(XN )/Iσ → T(XN )/Jσ(9.28)

gives the desired homomorphism ϕ under the isomorphisms in Propositions
9.5 and 9.12.

(2) Let ψ̂ : T(XN ) → Y(XN ) be the homomorphism in (2.25), where we
modify Step 1 of the construction of ψ̂ in the proof of Theorem 2.12 with
the following. (For simplicity, we write ψ̂(T (a)

1 (u)) as T
(a)
1 (u).)

Step 1. We arbitrarily choose T
(a)
1 (u) ∈ Y(XN )× (a ∈ I) for each u ∈ C�

in the region −1 ≤ Reu < 1 such that

T
(a)
1 (u) ≡ T

(σ(a))
1 (u + Ω) mod Iσ.(9.29)

(For example, just take T
(a)
1 (u) = 1.)

Then, one can easily show that T
(a)
m (u) ≡ T

(σ(a))
m (u + Ω)mod Iσ for any

T
(a)
m (u) constructed in Steps 2 and 3 of Theorem 2.12, again by the invari-

ance of T(XN ) by σ. Then, the induced isomorphism

ψ̂σ : T(XN )/Jσ → Y(XN )/Iσ(9.30)

gives the desired homomorphism ψ under the isomorphisms in Proposi-
tions 9.5 and 9.12. The property ψ ◦ ϕ = id

Y(X
(κ)
N )

follows from ψ̂σ ◦ ϕ̂σ =
idY(XN )/Iσ .

9.4. Restricted T- and Y-systems
Definition 9.14. Fix an integer � ≥ 2. The level � restricted T-system

T�(X
(κ)
N ) of type X

(κ)
N with the unit boundary condition is the system of rela-

tions (9.5)–(9.9) naturally restricted to a family of variables T = {T
(a)
m (u) |

a ∈ Iσ;m = 1, . . . , � − 1;u ∈ Cκa�}, where T
(0)
m (u) = T

(a)
0 (u) = 1, and fur-

thermore, T
(a)
� (u) = 1 (the unit boundary condition) if they occur in the

right-hand sides in the relations.

Definition 9.15. The level � restricted T-algebra T�(X
(κ)
N ) of type X

(κ)
N

is the ring with generators T
(a)
m (u)±1 (a ∈ Iσ;m = 1, . . . , � − 1;u ∈ Cκa�) and

the relations T�(X
(κ)
N ). Also, we define the ring T◦

� (X
(κ)
N ) as the subring of

T�(X
(κ)
N ) generated by T

(a)
m (u) (a ∈ Iσ;m = 1, . . . , � − 1;u ∈ Cκa�).
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Definition 9.16. Fix an integer � ≥ 2. The level � restricted Y-system
Y�(X

(κ)
N ) of type X

(κ)
N is the system of relations (9.16)–(9.20) naturally

restricted to a family of variables Y = {Y
(a)
m (u) | a ∈ Iσ;m = 1, . . . , � − 1;u ∈

Cκa�}, where Y
(0)
m (u) = Y

(a)
0 (u)−1 = 0, and furthermore, Y

(a)
� (u)−1 = 0 if

they occur in the right-hand sides in the relations.

Definition 9.17. The level � restricted Y-algebra Y�(X
(κ)
N ) of type X

(κ)
N

is the ring with generators Y
(a)
m (u)±1, (1+Y

(a)
m (u))−1 (a ∈ Iσ;m = 1, . . . , � −

1;u ∈ Cκa�) and the relations Y�(X
(κ)
N ).

Remark 9.18. The level restrictions of the T- and Y-systems for the
twisted case are introduced here for the first time. The former is defined such
that dropping the parameter u, namely, the formal replacement T

(a)
m (u) →

Q
(a)
m , coincides with the level � restricted Q-system introduced in [HKOTT,

(6.2)].

Propositions 9.5 and 9.12 have natural counterparts in the level restricted
situation. Let {T̂

(a)
m (u)±1 | a ∈ I,m = 1, . . . , � − 1, u ∈ C�} be the set of gen-

erators of T�(XN ). Let Jσ
� be the ideal of T�(XN ) generated by

T̂ (a)
m (u) − T̂ (σ(a))

m (u + Ω) (a ∈ I;m = 1, . . . , l − 1;u ∈ C�).(9.31)

Then one can choose a generating set of T�(XN )/Jσ
� as {T̂

(a)
m (u)±1 | a ∈

Iσ;m = 1, . . . , � − 1;u ∈ Cκa�}.
Similarly, let {Ŷ

(a)
m (u)±1, (1 + Ŷ

(a)
m (u))−1 | a ∈ I;m = 1, . . . , � − 1;u ∈ C�}

be the set of generators of Y�(XN ). Let Iσ
� be the ideal of Y�(XN ) generated

by

Ŷ (a)
m (u) − Ŷ (σ(a))

m (u + Ω) (a ∈ I;m = 1, . . . , � − 1;u ∈ C�).(9.32)

Then one can choose a generating set of Y�(XN )/Iσ
� as {Ŷ

(a)
m (u)±1, (1 +

Ŷ
(a)
m (u))−1 | a ∈ Iσ;m = 1, . . . , � − 1;u ∈ Cκa�}.

Proposition 9.19. There is a ring isomorphism

T�(XN )/Jσ
� → T�(X

(κ)
N ),

T̂ (a)
m (u) �→ T (a)

m (u) (a ∈ Iσ).
(9.33)

Similarly, there is a ring isomorphism

Y�(XN )/Iσ
� → Y�(X

(κ)
N ),

Ŷ (a)
m (u) �→ Y (a)

m (u) (a ∈ Iσ).
(9.34)
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Proof. It is compatible to set T̂
(a)
� (u) = T

(a)
� (u) = 1 in Proposition 9.5. It

is also compatible to set Ŷ
(a)
� (u)−1 = Y

(a)
� (u)−1 = 0 in Proposition 9.12.

9.5. Periodicities of restricted T- and Y-systems
Let h∨ be the dual Coxeter number of X

(κ)
N [Ka]. It is the same with the

(dual) Coxeter number of XN and the following:

X
(κ)
N A

(2)
2r−1 A

(2)
2r D

(2)
r+1 E

(2)
6 D

(3)
4

h∨ 2r 2r + 1 2r 12 6
(9.35)

The periodicity of T�(X
(κ)
N ) reduces to that of T�(XN ) proved in Corollary

4.29.

Theorem 9.20. The following relations hold in T�(X
(κ)
N ):

(1) Half-periodicity:

T (a)
m (u + h∨ + �) =

{
T

(a)
�−m(u) if X

(κ)
N = D

(2)
r+1 (r + 1: even) or D

(3)
4 ,

T
(a)
�−m(u + Ω) otherwise.

(2) Periodicity: T
(a)
m (u + 2(h∨ + �)) = T

(a)
m (u).

Proof. It suffices to prove the half-periodicity (1). First consider the case
X

(κ)
N �= D

(2)
r+1 (r +1: even) and D

(3)
4 . Then we have σ = ω and κ = 2. Thanks

to the first half of Proposition 9.19, it is equivalent to showing that T̂
(a)
m (u+

h∨ + �) = T̂
(a)
�−m(u + Ω) for a ∈ Iσ in T�(XN )/Jσ

� . Both the left and the right

sides coincide with T̂
(σ(a))
�−m (u) due to the half-periodicity of XN and (9.11),

respectively.
Next consider the remaining case X

(κ)
N = D

(2)
r+1 (r+1: even) or D

(3)
4 . Then

we have ω = id. By the same reason as before, we show that T̂
(a)
m (u + h∨ +

�) = T̂
(a)
�−m(u) for a ∈ Iσ in T�(XN )/Jσ

� . Again, this is guaranteed by the
half-periodicity of XN .

Similarly, the periodicity of Y�(X
(κ)
N ) reduces to that of Y�(XN ). Recall

that Conjecture 3.12 has been proved for Y�(XN ), except for the half-
periodicity for DN and E6.

Theorem 9.21. Suppose that Conjecture 3.12(1) is also true for DN and
E6. Then, the following relations hold in Y�(X

(κ)
N ):
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(1) Half-periodicity:

Y (a)
m (u + h∨ + �) =

{
Y

(a)
�−m(u) if X

(κ)
N = D

(2)
r+1 (r + 1: even) or D

(3)
4 ,

Y
(a)
�−m(u + Ω) otherwise.

(2) Periodicity: Y
(a)
m (u + 2(h∨ + �)) = Y

(a)
m (u).

Remark 9.22. By formally setting Ω = 0 (i.e., � → ∞; q → 0, ∞) or by
imposing a further relation Y

(a)
m (u) = Y

(a)
m (u + Ω) in Y�(X

(κ)
N ) for X

(κ)
N =

A
(2)
2r−1 (resp. D

(2)
r+1, E

(2)
6 , D

(3)
4 ), one gets the Y-system of the form

Y (a)
m (u − 1)Y (a)

m (u + 1) =
∏

b∈I(1 + Y
(b)
m (u))2δab−Cab

(1 + Y
(a)
m−1(u)−1)(1 + Y

(a)
m+1(u)−1)

.(9.36)

Here, Cab = 2(αa, αb)/(αa, αa) is the Cartan matrix for Br (resp. Cr, F4,
G2) with the enumeration I in Figure 1. This is the Y-system for nonsimply
laced Xr considered in [FZ3], [Kel2]. It was proved, by [FZ3] for � = 2 and
by [Kel2] for any � ≥ 2, that the system (9.36) has the full-period 2(h + �),
where h is the Coxeter number of Br (resp. Cr, F4, G2). This completely
agrees with Theorem 9.21, since the dual Coxeter number h∨ of A

(2)
2r−1 (resp.

D
(2)
r+1, E

(2)
6 , D

(3)
4 ) equals the Coxeter number h of Br (resp. Cr, F4, G2).

By the same token, one can obtain from T�(X
(κ)
N ) the T-system of the form

T (a)
m (u − 1)T (a)

m (u + 1) = T
(a)
m−1(u)T (a)

m+1(u) +
∏
b∈I

T (b)
m (u)2δab−Cab ,(9.37)

whose periodicity is the same as (9.36).

9.6. Periodicities of restricted T- and Y-systems at level 0
Here we introduce the level 0 restricted T-system T0(X

(κ)
N ) and T-group

T0(X
(κ)
N ) of type X

(κ)
N in a manner similar to Section 3. The analogous

construction of the Y-system and Y-group leads to exactly the same objects.
Thus one should understand T0(X

(κ)
N ) � Y0(X

(κ)
N ) by T (a)(u) ↔ Y (a)(u) in

the sequel. Such a coincidence has been already encountered in the untwisted
case between T0(Xr) (8.4) and Y0(Xr) (8.9) for simply laced Xr.

Definition 9.23. The level 0 restricted T-system T0(X
(κ)
N ) of type X

(κ)
N

is the following system of relations for a family of variables T = {T (a)(u) |
a ∈ Iσ, u ∈ Cκa�}, where Ω = 2π

√
−1/κ�, and T (0)(u) = 1 if they occur in

the right-hand sides in the relations.
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For X
(κ)
N = A

(2)
2r−1,

T (a)(u − 1)T (a)(u + 1) = T (a−1)(u)T (a+1)(u) (1 ≤ a ≤ r − 1),(9.38)

T (r)(u − 1)T (r)(u + 1) = T (r−1)(u)T (r−1)(u + Ω).

For X
(κ)
N = A

(2)
2r ,

T (a)(u − 1)T (a)(u + 1) = T (a−1)(u)T (a+1)(u) (1 ≤ a ≤ r − 1),(9.39)

T (r)(u − 1)T (r)(u + 1) = T (r−1)(u)T (r)(u + Ω).

For X
(κ)
N = D

(2)
r+1,

T (a)(u − 1)T (a)(u + 1) = T (a−1)(u)T (a+1)(u) (1 ≤ a ≤ r − 2),(9.40)

T (r−1)(u − 1)T (r−1)(u + 1) = T (r−2)(u)T (r)(u)T (r)(u + Ω),

T (r)(u − 1)T (r)(u + 1) = T (r−1)(u).

For X
(κ)
N = E

(2)
6 ,

T (1)(u − 1)T (1)(u + 1) = T (2)(u),(9.41)

T (2)(u − 1)T (2)(u + 1) = T (1)(u)T (3)(u),

T (3)(u − 1)T (3)(u + 1) = T (2)(u)T (2)(u + Ω)T (4)(u),

T (4)(u − 1)T (4)(u + 1) = T (3)(u).

For X
(κ)
N = D

(3)
4 ,

T (1)(u − 1)T (1)(u + 1) = T (2)(u),(9.42)

T (2)(u − 1)T (2)(u + 1) = T (1)(u)T (1)(u − Ω)T (1)(u + Ω).

Definition 9.24. The level 0 restricted T-group T0(X
(κ)
N ) of type X

(κ)
N

is the abelian group with generators T (a)(u) (a ∈ Iσ, u ∈ Cκa�) and the rela-
tions T0(X

(κ)
N ).

Remark 9.25. T0(X
(κ)
N ) is obtained from the unrestricted T-system

T(X(κ)
N ) (9.5)–(9.9) by setting T

(a)
m (u) = T (a)(u) if m = 0 and T

(a)
m (u) = 0

otherwise.
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Let {T̂ (a)(u) | a ∈ I,u ∈ C�} be the set of generators of T0(XN ). Let Jσ
0

be the subgroup of T0(XN ) generated by

T̂ (a)(u)T̂ (σ(a))(u + Ω)−1 (a ∈ I,u ∈ C�).(9.43)

Then one can choose a generating set of T0(XN )/Jσ
0 as {T̂ (a)(u)±1 | a ∈

Iσ, u ∈ Cκa�}.

Proposition 9.26. There is a group isomorphism

T0(XN )/Jσ
0 → T0(X

(κ)
N ),

T̂ (a)(u) �→ T (a)(u) (a ∈ Iσ).
(9.44)

Proof. It is easy to check that the relations of the both rings are identical
under the correspondence.

Theorem 9.27. The following relations hold in T0(X
(κ)
N ):

(1) Half-periodicity:

T (a)(u + h∨) =

{
T (a)(u)−1 if X

(κ)
N = D

(2)
r+1 (r + 1: even) or D

(3)
4 ,

T (a)(u + Ω)−1 otherwise.

(2) Periodicity: T (a)(u + 2h∨) = T (a)(u).

Proof. It suffices to prove the half-periodicity (1). First consider the case
X

(κ)
N �= D

(2)
r+1 (r +1: even) and D

(3)
4 . Then we have σ = ω and κ = 2. Thanks

to Proposition 9.26, it is equivalent to showing T̂ (a)(u+h∨) = T̂ (a)(u+Ω)−1

for a ∈ Iσ in T0(XN )/Jσ
0 . This equality is verified by Theorem 8.8 and (9.43).

Next consider the remaining case X
(κ)
N = D

(2)
r+1 (r+1: even) or D

(3)
4 . Then

we have ω = id. By the same reason as before, we show that T̂ (a)(u + h∨) =
T̂ (a)(u) for a ∈ Iσ in T0(XN )/Jσ

0 . Again, this is guaranteed by Theorem 8.8.

§10. Remark on the periodicity of q-characters

We conclude the paper with a remark on a formal correspondence between
the periodicity of the T-system and the q-characters of Uq(ĝ) at roots of
unity.

Recall that T◦(Xr) � ChUq(ĝ) by Corollary 2.9. Let

π� : T◦(Xr) → T◦
� (Xr)(10.1)
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be the surjective ring homomorphism in (3.1). One can easily see that
T

(a)
ta� (u) − 1 and T

(a)
ta�+1(u) are in Kerπ�. Correspondingly, we define the level

� restricted q-character ring Ch� Uq(ĝ) of Uq(ĝ) by

Ch� Uq(ĝ) = ChUq(ĝ)/I�,(10.2)

where I� is the ideal of ChUq(ĝ) corresponding to Kerπ� under the isomor-
phism T◦(Xr) � ChUq(ĝ). By construction, we have an isomorphism,

Ch� Uq(ĝ) ∼→ T◦
� (Xr),

χq

(
W (a)

m (u)
)

�→ T (a)
m (u) (1 ≤ m ≤ ta� − 1),

(10.3)

and the periodicity of T�(Xr) in Conjecture 3.11 is rephrased as the following
periodicity of the q-characters. For 1 ≤ m ≤ ta� − 1,

χq

(
W (a)

m (u + 2(h∨ + �))
)

≡ χq

(
W (a)

m (u)
)

mod I�.(10.4)

In view of (2.12), this implies (but does not directly require) q2t(h∨+�) = 1,
which is natural, as mentioned in the end of Section 3.3. Let us make this
implication, still formal, but more manifest in the form of a conjecture.
Recall that ChUq(ĝ) is a subring of the ring Z[Y ±1

a,qtu ]a∈I,u∈Ct�
. Let I ′

� be the
ideal of Z[Y ±1

a,qtu ]a∈I,u∈Ct�
generated by I�.

Conjecture 10.1. The following equality holds in Z[Y ±1
a,qtu ]a∈I,u∈Ct�

:

Ya,qtu+2t(h∨+�) ≡ Ya,qtu mod I ′
�.(10.5)

Example 10.2. (1) Xr = A1. We set Wm(u) = W
(1)
m (u) and Yqu = Y1,qu ,

for simplicity. Recall that [FR, Section 4.1]

χq

(
Wm(u)

)
=
( m∏

j=1

Yqu+m+1−2j

) m∑
i=0

i∏
j=1

A−1
qu+m+2−2j ,(10.6)

Aqu := Yqu−1Yqu+1 .

Thus, we have

χq

(
W�+1(u)

)
=Yqu−�χq

(
W�(u + 1)

)
(10.7)

+ Y −1
qu−�+2Y

−1
qu−�+4 · · · Y −1

qu+�+2 .
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Meanwhile, χq(W�(u)) ≡ 1 and χq(W�+1(u)) ≡ 0. Therefore,

Yqu−�Yqu−�+2 · · · Yqu+�+2 ≡ −1,(10.8)

from which Yqu+2(2+�) ≡ Yqu follows.

(2) Xr = Ar (r ≥ 2). We remark that, in addition to T
(a)
� (u) − 1 and

T
(a)
�+1(u), T

(1)
�+2(u), . . . , T (1)

�+r(u) are also in Kerπ�. Then, generalizing the argu-
ment of (1), one can show that

Ya,quYa,qu+2 · · · Ya,qu+2(r+�) ≡ (−1)ar mod I ′
�,(10.9)

from which Ya,qu+2(r+1+�) ≡ Ya,qu follows. More detail is given in Appendix B.

It is important to establish a precise relation between the ring Ch� Uq(ĝ)
and the ring RepU res

ε (ĝ) of [FM2] for a primitive 2t(h∨ +�)th root of unity ε.
A similar remark is applicable to the twisted quantum affine algebras as well.

Appendix A. Q-systems and RepUq(g)

A.1. Q-systems for untwisted case
Here we present results parallel to Theorem 2.8 and Corollary 2.9 for the

Q-system and RepUq(g). For a Dynkin diagram Xr, let I be as in Section 2.
The following system was introduced by [Ki], [KR].

Definition A.1. The unrestricted Q-system Q(Xr) of type Xr is the
following system of relations for a family of variables Q = {Q

(a)
m | a ∈ I,m ∈

N}, where Q
(0)
m (u) = Q

(a)
0 (u) = 1 if they occur in the right-hand sides in the

following relations.
For simply laced Xr,

(Q(a)
m )2 = Q

(a)
m−1Q

(a)
m+1 +

∏
b∈I:Cab=−1

Q(b)
m .(A.1)

For Xr = Br,

(Q(a)
m )2 = Q

(a)
m−1Q

(a)
m+1 + Q(a−1)

m Q(a+1)
m (1 ≤ a ≤ r − 2),(A.2)

(Q(r−1)
m )2 = Q

(r−1)
m−1 Q

(r−1)
m+1 + Q(r−2)

m Q
(r)
2m,

(Q(r)
2m)2 = Q

(r)
2m−1(u)Q(r)

2m+1(u) + (Q(r−1)
m )2,

(Q(r)
2m+1)

2 = Q
(r)
2mQ

(r)
2m+2 + Q(r−1)

m Q
(r−1)
m+1 .



PERIODICITIES OF T-SYSTEMS AND Y-SYSTEMS 163

For Xr = Cr,

(Q(a)
m )2 = Q

(a)
m−1Q

(a)
m+1 + Q(a−1)

m Q(a+1)
m (1 ≤ a ≤ r − 2),(A.3)

(Q(r−1)
2m )2 = Q

(r−1)
2m−1Q

(r−1)
2m+1 + Q

(r−2)
2m (Q(r)

m )2,

(Q(r−1)
2m+1)

2 = Q
(r−1)
2m Q

(r−1)
2m+2 + Q

(r−2)
2m+1Q

(r)
m Q

(r)
m+1,

(Q(r)
m )2 = Q

(r)
m−1Q

(r)
m+1 + Q

(r−1)
2m .

For Xr = F4,

(Q(1)
m )2 = Q

(1)
m−1Q

(1)
m+1 + Q(2)

m ,(A.4)

(Q(2)
m )2 = Q

(2)
m−1Q

(2)
m+1 + Q(1)

m Q
(3)
2m,

(Q(3)
2m)2 = Q

(3)
2m−1Q

(3)
2m+1 + (Q(2)

m )2Q(4)
2m,

(Q(3)
2m+1)

2 = Q
(3)
2mQ

(3)
2m+2 + Q(2)

m Q
(2)
m+1Q

(4)
2m+1,

(Q(4)
m )2 = Q

(4)
m−1Q

(4)
m+1 + Q(3)

m .

For Xr = G2,

(Q(1)
m )2 = Q

(1)
m−1Q

(1)
m+1 + Q

(2)
3m,(A.5)

(Q(2)
3m)2 = Q

(2)
3m−1Q

(2)
3m+1 + (Q(1)

m )3,

(Q(2)
3m+1)

2 = Q
(2)
3mQ

(2)
3m+2 + (Q(1)

m )2Q(1)
m+1,

(Q(2)
3m+2)

2 = Q
(2)
3m+1Q

(2)
3m+3 + Q(1)

m (u)(Q(1)
m+1)

2.

Definition A.2. The unrestricted Q-algebra Q(Xr) of type Xr is the
ring with generators Q

(a)
m

±1 (a ∈ I,m ∈ N) and the relations Q(Xr). Also,
we define the ring Q◦(Xr) as the subring of Q(Xr) generated by Q

(a)
m (a ∈

I,m ∈ N).

The system Q(Xr) is obtained by T(Xr) by the reduction of the spectral
parameter u. One can also define the level � restricted Q-system Q�(Xr)
by the reduction of T�(Xr) [KNS1]. The system Q�(Xr) plays the central
role in the dilogarithm identities for the central charges of conformal field
theories (e.g., [Ki], [Ku], [KN], [KNS1], [KNS2], [RTV], [FS], [GT], etc.).

Let g be the complex simple Lie algebra of type Xr, and let Uq(g) be the
quantized universal enveloping algebra of g. Then, Uq(g) is a subalgebra of
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the untwisted quantum affine algebra Uq(ĝ). Let χ be the character map
of Uq(g); it is an injective ring homomorphism χ : RepUq(g) → Z[y±1

a ]a∈I ,
where we follow the notation of [FR]. The character ring ChUq(g) of Uq(g)
is defined to be Imχ. Thus, ChUq(g) is an integral domain and isomorphic
to RepUq(g). Let Res : RepUq(ĝ) → RepUq(g) be the restriction homomor-
phism induced from the inclusion Uq(g) → Uq(ĝ).

A Kirillov-Reshetikhin module W
(a)
m (a ∈ I , m ∈ N) of Uq(g) is the (not

necessarily irreducible) Uq(g)-module defined by W
(a)
m := Res(W (a)

m (u)),
where W

(a)
m (u) is a Kirillov-Reshetikhin module of Uq(ĝ). We remark that

W
(a)
m is independent of u.
In the same way as (2.9), we define Sam(Q) ∈ Z[Q] (a ∈ I,m ∈ N), so that

all the relations in Q(Xr) are written in the form Sam(Q) = 0. Let I(Q(Xr))
be the ideal of Z[Q] generated by Sam(Q).

From Theorem 2.8, we obtain the following.

Theorem A.3. Let Q̃ = {Q̃
(a)
m := χ(W (a)

m ) | a ∈ I,m ∈ N} be the family of
the characters of the Kirillov-Reshetikhin modules of Uq(g). Then, we have
the following.

(1) The family Q̃ generates the ring ChUq(g).
(2) ([N3], [Her1]) The family Q̃ satisfies the Q-system Q(Xr) in ChUq(g)

(by replacing Q
(a)
m in Q(Xr) with Q̃

(a)
m ).

(3) For any P (Q) ∈ Z[Q], the relation P (Q̃) = 0 holds in ChUq(g) if and
only if there is a nonzero monomial M(Q) ∈ Z[Q] such that M(Q)P (Q) ∈
I(Q(Xr)).

Corollary A.4. The ring Q◦(Xr) is isomorphic to RepUq(g) by the
correspondence Q

(a)
m �→ W

(a)
m .

By taking q → 1, one can also obtain analogous results for Repg.

A.2. Q-systems for twisted case
Here we present results parallel to Theorem 9.8 and Corollary 9.9 for the

Q-system and RepUq(gσ). For a pair (XN , κ) = (AN ,2), (DN ,2), (E6,2), or
(D4,3), let Iσ be as in Section 9.

The following system was introduced by [HKOTT].

Definition A.5. The unrestricted Q-system Q(X(κ)
N ) of type X

(κ)
N is the

following system of relations for a family of variables Q = {Q
(a)
m | a ∈ Iσ,m ∈
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N}, where Q
(0)
m (u) = Q

(a)
0 (u) = 1 if they occur in the right-hand sides in the

relations.
For X

(κ)
N = A

(2)
2r−1,

(Q(a)
m )2 = Q

(a)
m−1Q

(a)
m+1 + Q(a−1)

m Q(a+1)
m (1 ≤ a ≤ r − 1),(A.6)

(Q(r)
m )2 = Q

(r)
m−1Q

(r)
m+1 + (Q(r−1)

m )2.

For X
(κ)
N = A

(2)
2r ,

(Q(a)
m )2 = Q

(a)
m−1Q

(a)
m+1 + Q(a−1)

m Q(a+1)
m (1 ≤ a ≤ r − 1),(A.7)

(Q(r)
m )2 = Q

(r)
m−1Q

(r)
m+1 + Q(r−1)

m Q(r)
m .

For X
(κ)
N = D

(2)
r+1,

(Q(a)
m )2 = Q

(a)
m−1Q

(a)
m+1 + Q(a−1)

m Q(a+1)
m (1 ≤ a ≤ r − 2),(A.8)

(Q(r−1)
m )2 = Q

(r−1)
m−1 Q

(r−1)
m+1 + Q(r−2)

m (Q(r)
m )2,

(Q(r)
m )2 = Q

(r)
m−1Q

(r)
m+1 + Q(r−1)

m .

For X
(κ)
N = E

(2)
6 ,

(Q(1)
m )2 = Q

(1)
m−1Q

(1)
m+1 + Q(2)

m ,(A.9)

(Q(2)
m )2 = Q

(2)
m−1Q

(2)
m+1 + Q(1)

m Q(3)
m ,

(Q(3)
m )2 = Q

(3)
m−1Q

(3)
m+1 + (Q(2)

m )2Q(4)
m ,

(Q(4)
m )2 = Q

(4)
m−1Q

(4)
m+1 + Q(3)

m .

For X
(κ)
N = D

(3)
4 ,

(Q(1)
m )2 = Q

(1)
m−1Q

(1)
m+1 + Q(2)

m ,(A.10)

(Q(2)
m )2 = Q

(2)
m−1Q

(2)
m+1 + (Q(1)

m )3.

Definition A.6. The unrestricted Q-algebra Q(X(κ)
N ) of type X

(κ)
N is the

ring with generators Q
(a)
m

±1 (a ∈ Iσ,m ∈ N) and the relations Q(X(κ)
N ). Also,

we define the ring Q◦(X(κ)
N ) as the subring of Q(X(κ)

N ) generated by Q
(a)
m

(a ∈ Iσ,m ∈ N).
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The system Q(X(κ)
N ) is obtained by T(X(κ)

N ) by the reduction of the
spectral parameter u. One can also define the level � restricted Q-system
Q�(X

(κ)
N ) by the reduction of T�(X

(κ)
N ).

Let Xσ
N be the subdiagram of X

(κ)
N obtained by removing the zeroth node.

Explicitly,

X
(κ)
N A

(2)
2r−1 A

(2)
2 A

(2)
2r D

(2)
r+1 E

(2)
6 D

(3)
4

Xσ
N Cr A1 Br Br F4 G2

(A.11)

Let gσ be the complex simple Lie algebra of type Xσ
N , and let Uq(gσ) be

the quantized universal enveloping algebra of gσ. Then, Uq(gσ) is a subal-
gebra of the twisted quantum affine algebra Uq(ĝσ) of type X

(κ)
N [Her2]. Let

Resσ : RepUq(ĝσ) → RepUq(gσ) be the restriction homomorphism induced
from the inclusion Uq(gσ) → Uq(ĝσ).

We define the (not necessarily irreducible) Uq(gσ)-module Ẇ
(a)
m (a ∈ Iσ,

m ∈ N) by Ẇ
(a)
m := Resσ(W (a)

m (u)), where W
(a)
m (u) is a Kirillov-Reshetikhin

module of Uq(ĝσ). We remark that Ẇ
(a)
m is independent of u.

In the same way as (2.9), we define Sam(Q) ∈ Z[Q] (a ∈ I,m ∈ N), so
that all the relations in Q(X(κ)

N ) are written in the form Sam(Q) = 0. Let
I(Q(X(κ)

N )) be the ideal of Z[Q] generated by Sam(Q)’s.
As Theorem 9.8, we obtain the following.

Theorem A.7. Let Q̃ = {Q̃
(a)
m := χ(Ẇ (a)

m ) | a ∈ Iσ,m ∈ N} be the family
of the characters of Ẇ

(a)
m (u)’s. Then, we have the following:

(1) The family Q̃ generates the ring ChUq(gσ).
(2) ([Her2]) The family Q̃ satisfies the Q-system Q(X(κ)

N ) in ChUq(gσ)
(by replacing Q

(a)
m in Q(X(κ)

N ) with Q̃
(a)
m ).

(3) For any P (Q) ∈ Z[Q], the relation P (Q̃) = 0 holds in ChUq(gσ) if and
only if there is a nonzero monomial M(Q) ∈ Z[Q] such that M(Q)P (Q) ∈
I(Q(X(κ)

N )).

Corollary A.8. The ring Q◦(X(κ)
N ) is isomorphic to RepUq(gσ) by the

correspondence Q
(a)
m �→ Ẇ

(a)
m .

By taking q → 1, one can also obtain analogous results for Repgσ.
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Appendix B. Proof of (10.9) in Example 10.2(2)

First we show that T
(1)
�+2(u), . . . , T (1)

�+r(u) are in Kerπ�. Let S
(a)
m (u) :=

π�(T
(a)
m (u)). Then, we have

r+1∑
a=0

(−1)aT
(a)
1 (u + a)T (1)

m−a(u + m + a) = δm,0,(B.1)

m∑
j=0

(−1)jS
(m−j)
�−1 (u + j)S(1)

�−j(u + j − m) = δm,0,(B.2)

k−1∑
a=0

(−1)aS
(a)
1 (u + a)S(1)

�+k−a(u + � + k + a) = 0 (1 ≤ k ≤ r),(B.3)

where T
(0)
m (u) = T

(r+1)
m (u) = S

(0)
m (u) = S

(r+1)
m (u) = 1 (m ≥ 0) and T

(a)
m (u) =

S
(a)
m (u) = 0 (m < 0). We obtain (B.1) from the Jacobi-Trudi–type determi-

nant formula in [KNS1, (2.21)], (B.2) from a similar determinant formula in
T◦

� (Ar), and (B.3) from (B.1), (B.2), and the half-periodicity S
(a)
1 (u + � +

r + 1) = S
(r+1−a)
�−1 (u) in T◦

� (Ar). It follows from (B.3) that S
(1)
�+2(u) = · · · =

S
(1)
�+r(u) = 0.
Next we prove the following statement in Example 10.2(2).

Proposition B.1.The following relations mod I ′
� hold in Z[Y ±1

a,qu ]a∈I,u∈C�
:

(1) Ya,quYa,qu+2 · · · Ya,qu+2�+2r ≡ (−1)ar,
(2) Ya,qu ≡ Ya,qu+2(r+1+�) .

Let

a u =
Ya,qu+a−1

Ya−1,qu+a

(1 ≤ a ≤ r + 1),(B.4)

where Y0,qu = Yr+1,qu = 1. We introduce the notation

a
u

m︷ ︸︸ ︷
b
v =

∑
a1 u

a2 u+2
· · · am v

,(B.5)

where v = u + 2m − 2, and the sum extends over all the integers a1, . . . , am

such that a ≤ a1 ≤ · · · ≤ am ≤ b. The array of boxes in the right-hand side is
to be understood as the product of the monomials (B.4). By the definition,
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we have the following identities:

a
u

m︷ ︸︸ ︷
b
v = a u

a
u+2

m−1︷ ︸︸ ︷
b
v + a+1

u

m︷ ︸︸ ︷
b
v,(B.6)

a
u

m︷ ︸︸ ︷
b
v = a

u

m−1︷ ︸︸ ︷
b
v−2 b v + a

u

m︷ ︸︸ ︷
b−1
v .(B.7)

It is well known that the q-character of W
(1)
m (u) is given by

χq

(
W (1)

m (u)
)
= 1

u−m+1

m︷ ︸︸ ︷
r+1
u+m−1.(B.8)

Lemma B.2. Let 1 ≤ s ≤ r and 1 ≤ a ≤ b ≤ r + 1. Then, the following
relation mod I ′

� holds in Z[Y ±1
a,qu ]a∈I,u∈C�

:

a
u

�+s︷ ︸︸ ︷
b
v(B.9)

≡
{

(−1)s
u a−1, . . . ,2,1 r+1, r, . . . , b+1 v if s = r − b + a,

0 if s > r − b + a.

Here v = u + 2(� + s − 1) and the right-hand side of the first case stands for

(−1)s
a−1∏
α=1

α u+2a−2−2α

r+1∏
β=b+1

β
v+2b+2−2β

.

Proof. We employ the induction on s. Suppose s = 1. Then s > r − b + a

happens only if (a, b) = (1, r+1); therefore, (B.9) is just χq(W
(1)
�+1(u

′)) ≡ 0 for
some u′. On the other hand, 1 = s = r − b+a is satisfied for (a, b) = (2, r+1)
and (1, r). Thus we show that

2
u

�+1︷ ︸︸ ︷
r+1
v ≡ − 1 u, 1

u

�+1︷ ︸︸ ︷
r
v ≡ − r + 1

v
.

These relations follow from (B.6) and (B.7) by setting (a, b) = (1, r+1),m =
� + 1 and using χq(W

(1)
� (u)) ≡ 1 and χq(W

(1)
�+1(u)) ≡ 0.

Now suppose that (B.9) is valid up to s − 1. First we consider the case
b − a > r − s in (B.9). Setting u′ = u + � + s − 1 and using (B.6) repeatedly,
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we have

0 ≡ χq

(
W

(1)
�+s(u

′)
)
=

a−1∑
α=1

α u
α

u+2

�+s−1︷ ︸︸ ︷
r+1
v + a

u

�+s︷ ︸︸ ︷
r+1
v .(B.10)

Each term in the α sum is zero mod I ′
� due to the induction assumption.

Applying (B.7) similarly to the resulting relation, we find

0 ≡ a
u

�+s︷ ︸︸ ︷
r+1
v =

r+1∑
β=b+1

a
u

�+s−1︷ ︸︸ ︷
β
v−2 β

v
+ a

u

�+s︷ ︸︸ ︷
b
v.(B.11)

Again, each summand in the β sum vanishes mod I ′
� by the induction as-

sumption, proving the latter case of (B.9).
Next we treat the former case of (B.9); namely, assume that b − a = r − s.

If b ≤ r, the same argument (B.10)–(B.11) as above goes through except
that the β = b + 1 term in (B.11) is nonvanishing, leading to

0 ≡ a
u

�+s−1︷ ︸︸ ︷
b+1
v−2 b+1

v
+ a

u

�+s︷ ︸︸ ︷
b
v.

Applying the induction assumption to the first term, we obtain the sought
expression for the second term. If b = r + 1, then a = b − r + s = s + 1 and
the α sum in (B.10) contains nonzero summand at α = a − 1, leading to

0 ≡ a−1
u

a−1
u+2

�+s−1︷ ︸︸ ︷
b
v + a

u

�+s︷ ︸︸ ︷
b
v.

Again, rewriting the first term by using the induction assumption yields the
sought expression for the second term.

Proof of Proposition B.1. Item (2) is a corollary of (1). To show (1), set
a = b and s = r in (B.9). Substituting (B.4) into the resulting relation, we
find

Ya,qu+1Ya,qu+3 · · · Ya,qu+2�+2r+1

Ya−1,quYa−1,qu+2 · · · Ya−1,qu+2�+2r

≡ (−1)r (1 ≤ a ≤ r + 1)

for any u ∈ Z. From Y0,qu = 1, the assertion follows.
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