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LEFSCHETZ OPERATOR AND LOCAL LANGLANDS
MOD �: THE REGULAR CASE

JEAN-FRANÇOIS DAT

To the memory of Professor Hiroshi Saito

Abstract. Let p and � be two distinct primes. The aim of this paper is to show
how, under a certain congruence hypothesis, the mod � cohomology complex of

the Lubin-Tate tower, together with a natural Lefschetz operator, provides a

geometric interpretation of Vignéras’s local Langlands correspondence modulo
� for unipotent representations.
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§1. Main theorem

Let K be a local nonarchimedean field with ring of integers O and residue

field k � Fq, with q a power of a prime p. Let � be another prime number,

and let d be an integer. As in [10], we consider the cohomology complex

RΓc(Mca
LT,Z�) ∈Db

(
Rep∞,c

Z�
(G×D× ×WK)

)
of the height d Lubin-Tate tower of K. Here G=GLd(K), D is the division

algebra which is central over K with invariant 1/d, and WK is the Weil

group of K. The category Rep∞,c
Z�

consists of Z�-representations of the triple

product which are smooth for G and D× and continuous for WK . In [9], we
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defined a Lefschetz operator

L :RΓc(Mca
LT,Z�)−→RΓc(Mca

LT,Z�)[2](1)

as the cup-product by the Chern class of the tautological invertible sheaf

on the associated Gross-Hopkins period domain.

To an irreducible F�-representation π of G, we associate its derived

π-coisotypical part

Rπ :=RHomZ�G

(
RΓc(Mca

LT,Z�), π
)
∈Db

(
Rep∞

F�
(D× ×WK)

)
,

which inherits a morphism Lπ :Rπ −→Rπ[2](1). We also denote by R∗
π the

total cohomology of Rπ, a smooth graded F�-representation of WK ×D×,
and by L∗

π :R∗
π −→R∗

π[2](1) the corresponding morphism. Our aim here is

to prove the following theorem, where we forget the grading.

Theorem. Assume that the multiplicative order of q mod � is d. Then

for any unipotent irreducible representation π of GLd(K), there is an iso-

morphism

(R∗
π,L

∗
π)

ss � |LJ(π)| ⊗
(
σss(π),L(π)

)
.

The congruence condition on q modulo � will be called the Coxeter con-

gruence relation, by analogy with the modular Deligne-Lusztig theory where

this condition arises in the context of Broué’s conjecture (see, e.g., [15]). The

term unipotent was introduced by Vignéras to denote representations that

belong to the same block as the trivial representation. Finite group theorists

would rather call them principal block representations.

Let us explain the notation of the theorem. The symbol LJ(π) stands

for the Langlands-Jacquet transfer of [11]. In general, it is a virtual F�-

representation of D×, but under the congruence hypothesis it is known to

be effective up to sign (see [11, (3.2.5)]), so we can put LJ(π) = ±|LJ(π)|
for some semisimple F�-representation of D×. The symbol (σss(π),L(π))

denotes the (transposed) Weil-Deligne F�-representation associated to π by

the Vignéras correspondence of [27, Théorème 1.8.2]. This is the Zelevinski-

like normalization of the local Langlands correspondence mod �. Therefore,

to put it in simple English, the above theorem offers a geometric interpre-

tation of the nilpotent part† of this Vignéras correspondence, at least for

those unipotent representations such that LJ(π) �= 0.

†Note that, in contrast to the �-adic setting, this nilpotent part has no obvious arith-
metic interpretation, in the sense that it cannot be related to any infinitesimal action of
the �-inertia of WK .
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Let us say a few words about the proof of the theorem. Note first that,

since LJ(π) is most often zero, we are soon reduced to the case when π

is a subquotient of the smooth representation IndGB(F�) induced from the

trivial representation of some Borel subgroup. In Section 2 we classify these

subquotients in a suitable way, thereby making explicit the corresponding

block of the decomposition matrix of G, and we compute the associated

Weil-Deligne and D× representations. In Section 3, we study the unipotent

summand of the cohomology complex. In particular, thanks to our congru-

ence hypothesis, we may split it in a nontrivial way according to weights.

Note that, in principle, all of this study can be carried out in a purely local

way, using Yoshida’s model of the tame Lubin-Tate space. However, for ref-

erence convenience, we invoke at some point Boyer’s [3] description of the

cohomology of the whole tower, the proof of which uses global arguments.

An alternative argument uses the Faltings-Fargues [16] isomorphism. Then

in Section 4 we prove the theorem by some fairly explicit computations.

One crucial ingredient is that we easily, and without any computation, get

a complete description of (R∗
π,L

∗
π) for π the trivial representation, thanks

to the properties of the Gross-Hopkins period map. The theorem above is

expected to hold true for any smooth irreducible F�-representation π under

the congruence hypothesis, but we are still missing some control on the pair

(R∗
π,L

∗
π) when π is a general Speh representation.

Remark. The theorem is also true under the wider assumption that

q has order greater than or equal to d. This wider assumption is what

we have called the regular case in the title, a terminology which comes

from the fact that in this case, the modulus character (mod �) of the Borel

subgroup is indeed regular with respect to the action of the Weyl group.

This regular case splits into the Coxeter congruence case explained above

and the banal case. The latter is not treated in this paper because the

overall strategy and all the necessary computations work exactly the same

as in the �-adic case. Note, however, that even in the banal case we are not

able to go beyond unipotent representations regarding the computation of

the Lefschetz operator.

§2. Elliptic principal series

By definition, an irreducible smooth F�-representation is called elliptic if

it is not a linear combination of proper parabolically induced representa-

tions. Note that by [11, Théorème 3.1.4], this is equivalent to LJ(π) �= 0.
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According to [11, Corollaire 3.2.2] (where unfortunately the term elliptic

has a slightly different meaning), any elliptic principal series is an unrami-

fied twist of a subquotient of the induced representation IndGB(F�) for some

Borel subgroup B. The converse is not true in general, but it is true under

the Coxeter congruence relation, as we will see below.

2.1. Parameterization and decomposition matrix

2.1.1. A reminder on the �-adic case. We denote by B the subgroup

of upper triangular matrices in G and by S the set of simple roots of the

diagonal torus T in Lie(B). The power set P(S) of S is in 1-to-1 corre-

spondence with the set of parabolic subgroups containing B. Namely, to

each subset I ⊂ S is associated the unique parabolic subgroup PI with

Lie(PI) = Lie(B) +
∑

α∈Z〈I〉Lie(G)α. In particular, we have P∅ = B and

PS =G.

Definition 2.1.1. For any ring R, we put iI(R) := IndGPI
(R), and we put

vI(R) := iI(R)
/∑

J⊃I

iJ(R).

Let δB denote the R-valued modulus character of B. We assume that

R contains a square root of q in R, and we choose such a root in order

to define δ := δ
−1/2
B as well as the normalized Jacquet functor rB along B.

Write X :=X∗(T )⊗R, so that S is naturally a subset of the dual R-vector

space of X . Following [5, section 2.2.3], we associate to each subset I ∈ P(S)

a connected component

XI :=
{
x ∈X,∀α ∈ S, εI(α)〈x,α〉> 0

}
of the complement of the union of simple root hyperplanes in X . Here, εI is

the sign function on S which takes α to −1 if and only if α ∈ I . In particular,

X∅ is the Weyl chamber associated to B, and XS is that associated to the

opposite Borel subgroup.

Fact 2.1.1 ([5], Lemme 2.3.3). If R is a field of characteristic prime to∏d
i=1(q

i − 1), then the following hold.

(i) For each I ⊆ S, the R-representation vI(R) is irreducible, and we have

rB
(
vI(R)

)
=

⊕
w(XS)⊆XI

w−1(δ).
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(ii) The multiset JH(IndGB(R)) of Jordan-Hölder factors of IndGB(R) has

multiplicity 1, hence is a set, and the map

I ∈ P(S) �→ vI(R) ∈ JH
(
IndGB(R)

)
is a bijection.

Let us label t0, t1, . . . , td−1 the diagonal entries of an element t ∈ T (start-

ing from the upper left corner). We get a labeling S = {α1, . . . , αd−1}, where
αi(t) := ti−1t

−1
i , and we get an identification of the Weyl group W of T

with the symmetric group Sd of the set {0, . . . , d − 1}. Then we see that

the condition w(XS) ⊆XI appearing in the summation of point (i) above

is equivalent to the condition

I =
{
αi ∈ S,w(i− 1)<w(i)

}
.

2.1.2. Classification under the Coxeter congruence relation. Here the

coefficient field is F� or F�, and we assume that the multiplicative order

of q modulo � is exactly d. Denote by νG the unramified character g �→
q−val(det)(g). Observe that νG is trivial on the center of G and generates a

cyclic subgroup 〈νG〉 of order d of the group of F�-valued characters of G.

We put S̃ := S ∪ {α0}, where α0 denotes the opposite of the longest root

of T in Lie(B). Thus, if the diagonal entries of t ∈ T are t0, t1, . . . , td−1 as

above, then α0(t) = td−1t
−1
0 . Note that S̃ is stable under the action of the

Coxeter element c of W =Sd, which takes i < d− 1 to i+1 and d− 1 to 0.

In fact, S̃ is a principal homogeneous set under the cyclic subgroup 〈c〉 of

order d generated by c. Therefore, it is convenient to identify {0, . . . , d− 1}
with Z/dZ through the canonical bijection, so that we simply have

c(αi) = αi+1, ∀i ∈ Z/dZ.

We denote by P ′(S̃) the set of strict subsets of S̃. For any I ∈ P ′(S̃), we
can thus choose an i ∈ S̃ \ I . The translated subset c−i(I) is then contained

in S, so we can consider the representation ic−iI(F�)⊗ νiG.

Lemma 2.1.2. Up to semisimplification, the representation ic−iI(F�)⊗ νiG
is independent of the choice of i in S̃ \ I. We denote by [iI ] its class in the

Grothendieck group R(G,F�).

Proof. Up to translation by a power of c, we may assume that I ⊆ S, so

that we have to compare iI(F�) with ic−iI(F�)⊗ νiG (assuming that i /∈ I).
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Note that the parabolic subgroups PI and Pc−iI are associated. More pre-

cisely, any element of the normalizer of T inG which projects to ci will conju-

gate the Levi componentMc−iI toMI . Therefore, [7, lemme 4.13] shows that

in the Grothendieck group R(G,F�) we have the equality [ic−iI(1)] = [iI(γ)]

with γ = (δPI
ci(δ−1

Pc−iI
))1/2. Thus, we have to prove that γ = ν−i

G |MI
. Since

restriction to T is injective on characters of MI , we may restrict both sides

to T . Using that δPI |T = δBδ
−1
B∩MI

, we get that γ|T = (δB · ci(δ−1
B ))1/2.

For k = 0, . . . , d−1, consider the smooth character of T defined by εk(t) =

q−val(tk), where t0, . . . , td−1 are the diagonal entries of t ∈ T . Then we have

γ|T =
(∏
k<l

εkε
−1
l

∏
k<l

ε−1
k+iεl+i

)1/2
=

∏
k<i≤l

εkε
−1
l =

∏
k<i

εd−i
k

∏
i≤l

ε−i
l .

Of course, in the first equality, the indices k + i and l + i should be read

modulo d. To get the second equality, we observe that for 0≤ k < l < d, we

have k+ i > l+ i(mod d)⇔ k < d− i≤ l⇔ l+ i < i≤ k+ i. Now using the

fact that εdk = 1, we get γ|T =
∏

k ε
−i
k = (ν−i

G )|T as desired.

Remark. In the particular case I = ∅, i = 1 of the above lemma tells

us that [IndGB(F�)] = [IndGB(F�) ⊗ νG]. So the twisting action of the cyclic

group 〈νG〉 on the set of classes of irreducible representations preserves the

multiset JH(IndGB(F�)).

We now want to isolate a certain irreducible constituent of [iI ]. We follow

the Zelevinski approach via degenerate Whittaker models, as in Vignéras’s

work. First we associate a partition λI of d to I in the following way. As

in the previous proof, I determines a conjugacy class of Levi subgroups,

namely, that of Mc−iI for any i ∈ S̃ \ {i}. This conjugacy class corresponds

to a partition μI of d, and we let λI be the transpose of μI . For example,

λ∅ = (d), and λI = (1, . . . ,1) whenever |I|= d− 1.

We refer to [23, section III.1] for the basics on the theory of derivatives

and to [26, paragraph V.5] for the notion of degenerate Whittaker models.

Fact 2.1.2. For I ∈ P ′(S̃), the representation [iI ] has a unique irreducible

constituent πI admitting a λI -degenerate Whittaker model. Moreover, any

other irreducible constituent has λ-degenerate Whittaker models only for

λ < λI .

Remark. By Lemma 2.1.2, for any I ∈ P ′(S̃) we have πciI � πI ⊗ νiG. In

particular, for any i ∈ S̃, we have π
S̃\{i} = νiG. On the other hand, π∅ is the

only generic constituent of IndGB(F�).
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Before proceeding, we introduce some more notation. Similarly to the

banal case, we consider the complement in X of the union of all hyperplanes

attached to the roots in S̃. Its connected components are labeled by proper

subsets of S̃ and given by

X̃I :=
{
x ∈X,∀α ∈ S̃, εI(α)〈x,α〉> 0

}
,

where εI is the sign function attached to I as before. Note that X̃
S̃
= X̃∅ = ∅

and that X̃S =XS is again the opposite Weyl chamber to B. However, for

I a strict subset of S, we have X̃I �=XI .

Proposition 2.1.2. We have the following.

(i) The multiset JH(IndGB(F�)) is a set (multiplicity 1).

(ii) The map I ∈ P ′(S̃) �→ πI ∈ JH(IndGB(F�)) is a bijection.

(iii) For all I ∈ P ′(S̃), the following equality holds in R(G,F�):

[iI ] =
∑
J⊇I

[πJ ].

(iv) If π∅ is a cuspidal representation, and if I �= ∅, then

rB(πI) =
⊕

w(X̃S)⊂X̃I

w−1(δ).

Proof.

(i) Suppose that π is a noncuspidal irreducible subquotient of IndGB(F�).

Let P = MPUP be a parabolic subgroup such that πUP
�= 0. Since � is

banal for MP , the Mackey formula (or geometric lemma) shows that in fact

πUB
�= 0. But the congruence relation and the Mackey formula imply that

IndGB(F�)UB
has the multiplicity 1 property, as a representation of T . More

precisely, we have rB(Ind
G
B(F�)) =

⊕
w∈W w(δ), and δ = ν

(1−d)/2
G

∏d−1
i=0 ε

i
i is a

W -regular character since q has order d. Hence, π occurs with multiplicity 1

in IndGB(F�). Now any cuspidal representation is generic, so there is at most

one cuspidal subquotient of IndGB(F�).

(ii) This follows from the proof of [11, proposition 3.2.4]. However, the

latter reference rests on Vignéras’s classification [26, Theorem V.12], so in

particular on a difficult result of Ariki’s on the classification of simple mod-

ules of Hecke-Iwahori algebras at roots of unity. In fact, in our context the

latter can be avoided and replaced by the more elementary partial classifi-

cation of [24, section 2.17]. Nevertheless, for the convenience of the reader,

we sketch a complete and more direct proof.
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Let us first show the injectivity of the map. Let π be some irreducible

subquotient of IndGB(F�), and let λ= λπ be the partition of d obtained from π

by taking successive higher derivatives. Hence, λ1 is the order of the highest

nonzero derivative of π, λ2 is that of the derivative π(λ1), and so forth.

The partition λ is the greatest element in the set of all partitions λ′ such
that rλ′(π) admits a generic subquotient. Here rλ′ denotes the normalized

Jacquet functor associated to the standard parabolic subgroup Pλ′ = Uλ′Mλ′

associated to λ′. Let τ denote a generic subquotient of rλ(π). We can write

τ = γ(A1) ⊗ · · · ⊗ γ(A|λ|), where A1 � · · · � A|λ| = {0, . . . , d − 1} is a set-

theoretical partition with |Ai|= λi, and for any subset A ⊂ {0, . . . , d− 1},
γ(A) denotes the unique generic subquotient of the normalized induction

×a∈A νa−(d−1)/2 (so this is a representation of GL|A|(K)). If π = πI for

some I , then λ= λI , and a computation shows that for k = 1, . . . , |λ|,

Ak =
{
a ∈ {0, . . . , d− 1},{αa, c

−1αa, . . . , c
2−kαa} ⊂ I

}
=
{
a ∈ Z/dZ,{αa, αa−1, . . . , αa−k+2} ⊂ I

}
.

In particular, the following hold:

(a) for all k = 1, . . . , |λ| − 1, we have Ak+1 ⊂ c(Ak) =Ak + 1;

(b) I = {αi ∈ S̃, i /∈A1}.
Hence, we see that πI determines I , so that the map in point (ii) is injective.

In order to prove the surjectivity, it is enough to prove that IndGB(F�)

has at most 2d − 2 irreducible noncuspidal constituents. If π is such a con-

stituent, there is a Borel subgroup B′ such that π is the unique irreducible

quotient of the normalized induced representation iGB′(δ). However, the same

argument as in [5, section 2.5.4] shows that if both the chambers C(B′) and
C(B′′) are contained in a component X̃I , then the canonical intertwining

operator iGB′(δ) −→ iGB′′(δ) is an isomorphism. Indeed, we may assume as

in [5, section 2.5.4] that B′ and B′′ are adjacent, with wall associated to

some root r. Then the representation theory for GL2 (note that � is banal

with respect to GL2(K)) tells us that the canonical intertwining operator

is invertible unless ql(r) = q±1 in F�, where l(r) is the height of the root.

With our congruence hypothesis and the general inequality l(r) ≤ n − 1,

this implies that l(r) is 1, −1, or n− 1, which is equivalent to ±r ∈ S̃. This

gives the desired bound.

(iii) By (ii), we only have to show that if J is any other strict sub-

set of S̃, then πJ occurs in [iI ] if and only if J ⊇ I . Start with J ⊇ I ,

and choose i ∈ S̃ \ J . Then we have ic−iJ(F�)⊗ νiG ⊂ ic−iI(F�)⊗ νiG, so πJ



LEFSCHETZ OPERATOR AND LOCAL LANGLANDS MOD �: THE REGULAR CASE 9

occurs in [iI ]. Conversely, suppose that πJ occurs in [iI ]. Assume first that

J ∪ I �= S̃, and choose i ∈ S̃ \ (J ∪ I). Then we see that [πJ ⊗ ν−i
G ] occurs

in ic−iI(F�)∩ ic−iJ(F�) = ic−i(I∪J)(F�). Hence, λJ ≤ λI∪J , so λJ = λI∪J , and

finally I∪J = J , as desired. Assume now that J∪I = S̃; choose j ∈ J \I , and
set J∗ := J \ {j}. We get that [πJ ⊗ ν−j

G ] occurs in ic−jI(F�) ∩ ic−jJ∗(F�) =

ic−j(I∪J∗)(F�) = i
S̃\{0} = π

S̃\{0}. Hence, πJ = π
S̃\{j}, so J = S̃ \ {j}, which is

impossible by definition of j.

(iv) We proved in point (ii) that IndGB(F�) has exactly 2d − 2 noncus-

pidal irreducible subquotients. But we constructed 2d − 1 constituents, so

IndGB(F�) has exactly one cuspidal subquotient. We know that it is generic,

so it is, by definition, π∅. Now, fix some proper subset I of S̃. Again by the

proof of the surjectivity in point (ii), there is a unique proper subset J such

that

rB(πI) =
⊕

w(X̃S)⊂X̃J

w−1(δ).

We still have to prove that I = J . Note that the condition w(X̃S)⊂ X̃J is

equivalent to

J =
{
αj ∈ S̃,wc−1(j)<w(j)

}
.

Now, items (a) and (b) in the proof of the injectivity in (ii) show that I ⊆ J .

Since the map I �→ J is a bijection, it has to be the identity.

2.1.3. The decomposition matrix for elliptic representations. Recall that

an admissible smooth Q�-representation π of G is called �-integral if it con-

tains a G-stable Z�-lattice. Then it is known that the reduction to F� of

such a lattice depends on π only up to semisimplification (see [23, sec-

tion II.5.11.b]). We denote by r�(π) the semisimple F�-representation thus

obtained.

Proposition 2.1.3. Let I ⊆ S. Then we have

r�
(
vI(Q�)

)
= [vI(F�)] =

{
[πI ] + [πI∪{0}] if I �= S,

[πS ] if I = S.

Proof. Since parabolic induction commutes with inductive limits, we have

iI(R) � iI(Z)⊗ R for any ring R. By its definition as a quotient vI(R) =

iI(R)/
∑

J⊃I iJ(R), we also have vI(R) = vI(Z)⊗R. Now, by [21, Corollary

4.5], we know that vI(Z) is free over Z. The first equality follows.
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If I = S, we have vS(F�) = πS = F� (trivial representation), so the second

equality is clear in this case. Assume that I �= S. By [21, Proposition 6.13],

the following simplicial complex is exact:

(2.1.3.1)

0−→ iS(Z)−→ · · · −→
⊕

J⊃I,|J |=|I|+1

iJ(Z)−→ iI(Z)−→ vI(Z)−→ 0.

Since it consists of free Z-modules, it remains exact after base change to F�.

Thus, we get the equality

[vI(F�)] =
∑

S⊇J⊇I

(−1)|J\I|[iJ(F�)]

in R(G,F�). On the other hand, Proposition 2.1.2(iii) provides us with the

equality

(2.1.3.2) [πI ] =
∑

S̃⊃J⊇I

(−1)|J\I|[iJ ].

Thus, we get

[πI ]− [vI(F�)] =
∑

S̃⊃J⊇I∪{0}

(−1)|J\I|[iJ ] =−[πI∪{0}].

Alternatively, one could have used item (iv) in Proposition 2.1.2 and the

easy fact that for any I ⊂ S, we have XI = X̃I ∪ X̃I∪{0}.

2.2. Corresponding representations

2.2.1. Langlands-Jacquet transfer. We refer to [11] for the definition of

the Langlands-Jacquet transfer map LJF�
:R(G,F�)−→R(D×,F�), which is

induced by carrying Brauer characters through the usual bijection between

regular elliptic conjugacy classes of G and D×. We will need the F�-valued

unramified character νD : d �→ q−val◦Nrd(d) of D×.

Proposition 2.2.1. For any strict subset I ⊂ S̃, we have

LJF�
(πI) = (−1)|I|

∑
j∈S̃\I

[νjD].

Proof. Since the map LJF�
kills all parabolically induced representations

(see [11, Théorème 3.1.4]), equality (2.1.3.2) shows that

LJF�
(πI) = (−1)|S̃\I|+1

∑
j∈S̃\I

LJF�
(π

S̃\{j}).
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On the other hand, π
S̃\{j} = νjG = r�(vS(Q�))⊗ νjG. By compatibility of the

LJ maps with reduction modulo � (see [11, Théorème 1.2.3]) and with torsion

by characters, we get LJF�
(π

S̃\{j}) = (−1)|S|[νjD].

2.2.2. Different operations on Weil-Deligne representations. Before we

proceed to a description of the Galois-type representations attached to the

πIs, we need to make precise some formal properties of Weil-Deligne repre-

sentations.

It is convenient to work in a fairly general setting, so let C be an essen-

tially small, Artinian, Noetherian, abelian category, and let Css be the full

subcategory of semisimple objects. The Jordan-Hölder theorem yields a map

Ob(C)/∼ −→K+(C), V �→ [V ]

from the set of isomorphism classes of objects to the free monoid on simple

objects. This map induces a bijection Ob(Css)/∼
∼−→K+(C).

Assume further that C is endowed with an automorphism V �→ V (1), and

denote by V �→ V (n) its nth iteration. Consider the category N (C) with

objects all pairs (V,N) with V ∈ Ob(C) and N : V −→ V (−1) a nilpotent

morphism. With the obvious notion of morphisms, N (C) is an Artinian,

Noetherian, abelian category. The formalism of Deligne’s filtration [12, (1.6)]

yields a map

Ob
(
N (C)

)
/∼ −→K+(C)(N), (V,N) �→ [V,N ],

where the right-hand side is the set of almost zero sequences of elements in

K+(C). Namely, we put [V,N ] := ([PN
−n(V )])n∈N, where PN

i is the primitive

part of the i-graduate of Deligne’s filtration attached to N . We leave the

reader to check the following fact.

Lemma 2.2.2. The map (V,N) �→ [V,N ] induces a bijection

Ob(N (Css))/∼
∼−→K+(C)(N).

As a consequence, one gets

• a semisimplification process Ob(N (C))/∼ −→Ob(N (Css))/∼;

• a transposition process Ob(N (Css))/∼
∼−→ Ob(L(Css))/∼, where L(C)

denotes the category of pairs (V,L) with L : V −→ V (1) nilpotent;

• a map Ob(N (C′ss))/∼ −→Ob(N (Css))/∼ for any map K+(C′)−→K+(C).
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As an example of application, let C =RepF�
(WK) (resp., C′ =RepQ�

(WK))

be the category of finite-dimensional representations of WK with F� (resp.,

Q�) coefficients. In this paper, a Weil-Deligne F�-representation is an object

of N (Css). (So our convention is that the Weil part of a Weil-Deligne repre-

sentation is semisimple.) Applying the last item to the decomposition map

r� :K+(RepQ�
(WK))−→K+(RepF�

(WK)), we get a reduction process

(σss,N) �→ r�(σ
ss,N) = (r�σ

ss,N)

for Weil-Deligne representations.

2.2.3. The Zelevinski-Vignéras correspondence. According to [27, Thé-

orème 1.6], there is a unique map

π �→ σss(π), IrrF�
(G)−→{d-dimensional semisimple F�-reps of WK}/∼

which is compatible with the �-adic semisimple Langlands correspondence

via reduction modulo � in the following sense: if π is a constituent of r�(π̃)

for π̃ ∈ IrrQ�
(G), then σss(π) = r�(σ

ss(π̃)). In [10], we gave a geometric real-

ization of this map, as well as another proof of its existence.

Using her classification à la Zelevinski, Vignéras [27, section 1.8] explained

that the above semisimple Langlands correspondence extends uniquely to a

bijection,

IrrF�
(G)→{d-dimensional Weil-Deligne F�-reps of WK}/∼,

π �→ σZ(π) =
(
σss(π),NZ(π)

)
,

such that the following compatibility with the �-adic Langlands correspon-

dence via reduction modulo � holds: if π is a constituent of r�(π̃) for

π̃ ∈ IrrQ�
(G), and if λπ = λπ̃, then σZ(π) = r�

(
σ(Z(π̃))

)
.

Here, Z denotes the Zelevinski involution for Q�-representations, and

the precise meaning of r� in the context of Weil-Deligne representations

was explained in the preceding paragraph. Further, λπ is the partition of d

attached to π by taking successively higher nonzero derivatives, as in the

proof of Proposition 2.1.2(ii). Note that the mere existence of a π̃ fulfilling

the conditions above is highly nontrivial in general and rests on Ariki’s work

on cyclotomic Hecke algebras.

Our aim in this paper is to provide a (partial) geometric interpretation of

this enhanced correspondence, by means of a Lefschetz operator. Therefore,
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we focus on the transposed Weil-Deligne representation, as defined in the

preceding paragraph:(
σss(π),L(π)

)
:= t

(
σss(π),NZ(π)

)
.

We now want to compute explicitly these transposed Weil-Deligne repre-

sentations for the elliptic principal series. This will involve the F�-character

νW :w �→ q−val(Art−1
K (w)), where ArtK is the local class field homomorphism

which takes a uniformizer to a geometric Frobenius. For simplicity, we will

use the Hecke normalization of Langland’s correspondence.

Proposition 2.2.3. For any strict subset I ⊂ S̃, we have σss(πI) �⊕d−1
i=0 ν

i
W , and in a good eigenbasis, L(πI) is given by the matrix∑

αi∈I Ei−1,i

Proof. The correspondence is compatible with twisting in the sense that

σZ(π ⊗ νG) = σZ(π)⊗ νW . Since our proposed solution is also compatible

with twisting, we may assume that I ⊂ S. In this case we know that πI
appears in r�(vI(Q�)). We also know that λπI = λvI(Q�)

= λI . Therefore,

we have (σss(πI),L(πI)) = r�
(
σss(vI(Q�)),L(vI(Q�))

)
. But the latter was

computed in [9, proposition 3.2.4].

2.3. Computation of some Ext groups

This section is rather technical in nature and should be skipped at first

reading. We first check that some computations of Ext groups between the

vJ and the iI performed by Orlik in [20] remain valid in our present context,

although Orlik’s hypotheses are not satisfied. Then we proceed to compute

Ext groups between the values πJ and iI .

2.3.1. Context and notation. We fix a uniformizer � of K, and we will

consider Yoneda extensions in the category Rep∞
F�
(G/�Z) of smooth F�-

representations of G/�Z. Recall that a subset I ⊆ S determines a standard

parabolic subgroup PI , the standard Levi component of which is denoted

by MI . We also denote by WI the Weyl group of T in MI , which is also the

subgroup of W generated by reflections associated to roots in I . We define

an F�-vector space

YI :=X∗(MI/Z(G)
)
⊗Z F�,

where X∗ denotes the group of K-rational characters and Z means center.

Symbols rP and iP will stand for normalized parabolic functors along

the parabolic subgroup P , and δP will denote the modulus character of P .
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With this notation we have, for example, iI(F�) = iPI
(δ

−1/2
PI

). We will also

put δ = δ
−1/2
B . Finally, the symbol Exp(T,σ) denotes the set of characters

of T occurring as subquotients of the admissible F�T -representation σ.

Lemma 2.3.1. Let I be a strict subset of S.

(i) If π, π′ are two principal series of MI , then(
WI · Exp(T, rB∩MI

(π))∩WI · Exp(T, rB∩MI
(π′)) = ∅

)
⇒ Ext∗MI/�Z(π,π

′) = 0.

(ii) Ext∗MI/�Z(F�,F�) =
∧∗ YI .

Proof.

(i) The assumption means that π and π′ have disjoint cuspidal supports.

Since � is banal for MI , the vanishing of Ext follows from

[25, Theorem 6.1].

(ii) The argument in [20, Proposition 9] shows that Ext∗MI/�Z(F�,F�) =

Ext∗
MI/M

0
I�

Z(F�,F�), where M
0
I is the subgroup of MI generated by compact

elements. (Note that � is prime to the proindex [M0
I : [MI ,MI ]].) Since

� is also prime to the torsion in the abelian group MI/M
0
I�

Z, we know

that Ext∗
MI/M

0
I�

Z(F�,F�) =
∧∗(Homgps(MI/M

0
I�

Z,F�)) =
∧∗(Homgps(MI/

M0
I�

Z,Z)⊗ZF�). Finally, the usual map χ �→ valK ◦χ yields an isomorphism

X∗(MI/Z(G))−→Homgps(MI/M
0
I�

Z,Z).

Remark. A consequence of item (ii) of Lemma 2.3.1 and Frobenius

reciprocity is that for any representation π of G/�Z, the graded space

Ext∗G/�Z(π, iI(F�))� Ext∗MI/�Z((π)UPI
,F�) is naturally a graded right mod-

ule over the graded algebra
∧∗ YI . In particular, there is a canonical graded

map

HomG/�Z

(
π, iI(F�)

)
⊗F�

∗∧
YI −→ Ext∗G/�Z

(
π, iI(F�)

)
.

This map is clearly functorial in π. It is also functorial in I in the sense that

if J ⊂ I , we have a commutative diagram

HomG/�Z

(
π, iI(F�)

)
⊗F�

∧∗ YI Ext∗G/�Z

(
π, iI(F�)

)

HomG/�Z

(
π, iJ(F�)

)
⊗F�

∧∗ YJ Ext∗G/�Z

(
π, iJ(F�)

)
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where the vertical maps are induced by the inclusion iI(F�) ↪→ iJ(F�) and

the restriction map YI −→ YJ .

2.3.2.

Proposition 2.3.2. Let I, J be two subsets of S, with I a strict subset.

Then the canonical map

HomG/�Z

(
iJ(F�), iI(F�)

)
⊗F�

∗∧
YI −→ Ext∗G/�Z

(
iJ(F�), iI(F�)

)
is an isomorphism. In other words, we have

Ext∗G/�Z

(
iJ(F�), iI(F�)

)
�
{∧∗ YI if J ⊇ I,

0 otherwise.

Moreover, the natural map Ext∗G/�Z(iK(F�), iI(F�)) −→ Ext∗G/�Z(iJ(F�),

iI(F�)) is an isomorphism for any J ⊇K ⊇ I.

Proof. We follow [20, Proposition 15], but we avoid [20, Lemma 16], which

might fail to be true in our context. By Frobenius reciprocity, we have

Ext∗G/�Z

(
iJ(F�), iI(F�)

)
=Ext∗MI/�Z

(
rPI

◦ iPJ
(δ

−1/2
PJ

), δ
−1/2
PI

)
,

and by the geometric Mackey formula, rPI
◦ iPJ

(δ
−1/2
PJ

) has a filtration with

graded pieces of the form Qw := iMI∩w(PJ )(w(δ
−1/2
PJ∩w−1(I)

)), where w runs

over all elements in W such that w(J)⊂ Φ+ and w−1(I)⊂ Φ+. (This is a

complete set of representatives of double cosets in WI\W/WJ .) Using again

the geometric Mackey formula, we get

WI · Exp
(
T, rB∩MI

(Qw)
)
=WI · Exp

(
T, rB∩MI∩w(J)

(w(δ
−1/2
PJ∩w−1(I)

))
)

=WI ·
{
w(δ)

}
.

On the other hand, we have

WI · Exp
(
T, rB∩MI

(δ
−1/2
PI

)
)
=WI · {δ}.

Since δ is W -regular, item (i) of Lemma 2.3.1 tells us that Ext∗MI/�Z(Qw,

δ
−1/2
PI

) = 0 unless w ∈WI . In this case, we must have w = 1 so that Qw =
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Q1 = iMI∩PJ
(δ

−1/2
PI∩J

) is the top quotient of the geometric Mackey filtration

and the canonical map

Ext∗MI/�Z

(
iMI∩PJ

(δ
−1/2
PI∩J

), δ
−1/2
PI

)
−→ Ext∗G/�Z

(
iJ(F�), iI(F�)

)
is an isomorphism. Using Casselman’s reciprocity, the left-hand side identi-

fies with

Ext∗MI∩J/�Z

(
δ
−1/2
PI∩J

, rMI∩PJ
(δ

−1/2
PI

)
)
=Ext∗MI∩J/�Z

(
δ
−1/2
PI∩J

, δ
−1/2
P ′
I∩J

)
,

where PJ is the opposite parabolic subgroup to PJ with respect to MJ , and

P ′
I∩J is the semistandard parabolic subgroup with Levi component MI∩J

and unipotent radical UI(UJ ∩ MI). Let B′ be the Borel subgroup with

unipotent radical UI(UJ ∩ MI)(U∅ ∩ MI∩J). Lemma 2.3.1(i) tells us that

the right-hand side of the last displayed formula vanishes unless there is

w ∈WI∩J such that w(B) =B′. But then w(B)∩MI∩J =B′∩MI∩J ; hence,
w = 1. Thus, P ′

I∩J = PI∩J , which is possible only if J ⊇ I .

We have proved the desired vanishing when J does not contain I , and we

have proved that if J ⊇ I , the canonical map

Ext∗MI/�Z(δ
−1/2
PI

, δ
−1/2
PI

)−→ Ext∗G/�Z

(
iJ(F�), iI(F�)

)
is an isomorphism. We conclude the computation by using item (ii) of Lem-

ma 2.3.1. The last assertion follows from the functorial nature of the above

map.

2.3.3. The complex (2.1.3.1) yields a spectral sequence

Epq
1 =

⊕
K⊇J,|K\J |=p

Extq
G/�Z

(
iK(F�), iI(F�)

)
⇒ Extp+q

G/�Z

(
vJ(F�), iI(F�)

)
,

which in particular yields an edge map

(2.3.3.1) Ext∗G/�Z

(
F�, iI(F�)

)
−→ Ext

|S\J |+∗
G/�Z

(
vJ(F�), iI(F�)

)
.

Thanks to Proposition 2.3.2, the same argument as [20, Proposition 17]

gives the following expression.

Corollary 2.3.3. Let I, J be subsets of S with I a strict subset.

(i) If I ∪ J �= S, then Ext∗G/�Z(vJ(F�), iI(F�)) = 0.
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(ii) If I ∪ J = S, then the map (2.3.3.1) is an isomorphism, so we get an

isomorphism

Ext∗G/�Z

(
vJ(F�), iI(F�)

)
�

∗−|S\J |∧
YI .

Moreover, if I ′ is another strict subset of S which contains I, then

the natural map Ext∗G/�Z(vJ(F�), iI′(F�))−→ Ext∗G/�Z(vJ(F�), iI(F�)) is

induced by the natural restriction map YI′ −→ YI .

Remark. We may recast the foregoing corollary by stating that the

canonical map

Ext
|S\J |
G/�Z

(
vJ(F�), iI(F�)

)
⊗F�

∗∧
YI −→ Ext

∗+|S\J |
G/�Z

(
vJ(F�), iI(F�)

)
is an isomorphism and that Ext

|S\J |
G/�Z

(vJ(F�), iI(F�))� F� if J ∪ I = S and is

zero otherwise.

Next we turn to extensions between values πJ and iI .

Proposition 2.3.3. Let J be a strict subset of S̃, and let I be a strict

subset of S.

(i) If 0 ∈ J , then Ext∗G/�Z(πJ , iI(F�)) = 0.

(ii) Otherwise, the natural map is an isomorphism

Ext∗G/�Z

(
vJ(F�), iI(F�)

) ∼−→ Ext∗G/�Z

(
πJ , iI(F�)

)
.

Proof. Note first that (ii) follows from (i) since [vJ(F�)] = [πJ ] + [πJ∪{0}].
Now, in order to prove (i), we first use Frobenius reciprocity to get

Ext∗G/�Z

(
πJ , iI(F�)

)
=Ext∗MI/�Z

(
rPI

(πJ), δ
−1/2
PI

)
.

By Proposition 2.1.2(iv), we have Exp
(
T, rB∩MI

(rPI
(πJ))

)
= {w−1(δ),

w(X̃S)⊂ X̃J}. Since Exp(T, rB∩MI
(δ

−1/2
PI

)) = {δ}, and since δ is W -regular,

Lemma 2.3.1 shows that we are left to prove that {w ∈W,w(X̃S)⊂ X̃J} ∩
WI = ∅. Now, identifying W with Sd as in Section 2.1.1, the condition

w(X̃S) ⊂ X̃J is equivalent to the condition J = {αj ∈ S̃,wc−1(j) < w(j)},
so in particular it implies the property w(n− 1)< w(0). However, since I

is proper, this property is never satisfied by some w ∈WI .
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§3. The cohomology complex

In this section, we focus on the useful part of the cohomology complex,

namely, on that which pertains to the unipotent block of the category of

smooth Z�-representations.

3.1. The unipotent block

According to Vignéras [26, section IV.6.2], the category Rep∞
F�
(G) is a

product of indecomposable Serre subcategories called blocks. This prod-

uct of blocks corresponds to the partition of the set of irreducible F�-

representations according to the inertia class of supercuspidal support.

Among them, the unipotent block is by definition the one which contains the

trivial representation. In representation theory of finite groups, this would

instead be called the principal block. Here we want to lift this block to Z�-

representations. Note that the usual way of lifting idempotents via Hensel’s

lemma is not adapted to the p-adic case, since Hecke algebras are not finitely

generated modules over Z�. Therefore, we will exhibit a progenerator of the

desired block. In this section, no congruence assumption on the pair (q, �)

is required.

3.1.1. Unipotent blocks for a finite GLn. For a finite group of Lie type

Ḡ, we will denote by bḠ the central idempotent in the group algebra Z�[Ḡ]

which cuts out the direct sum of all blocks which contain a unipotent Q�-

representation (in the sense of Deligne and Luzstig).

Lemma 3.1.1. Let P̄ = M̄Ū be a parabolic subgroup of Ḡ, and let eŪ be

the idempotent associated to the p-group Ū . Then we have eŪbḠ = eŪbM̄ =

bM̄eŪ .

Proof. According to [4], an irreducible Q�-representation π satisfies

bḠπ �= {0} if and only if it belongs to the Deligne-Lusztig series associ-

ated to some semisimple conjugacy class in the dual group Ḡ∗ which con-

sists of �-elements. We call such a representation �-unipotent. In this case,

all irreducible subquotients of πU are �-unipotent representations of M .

Indeed, this follows by adjunction from the “dual” statement that if σ is

an �-unipotent representation of M , then all irreducible subquotients of

IndGP (σ) are �-unipotent (see [17, Corollary 6]). This shows that, denoting

by b′
Ḡ
:= 1 − bḠ the complementary idempotent, we have b′

M̄
eŪbḠ = 0

and bM̄eŪb
′
Ḡ
= 0. Then we get eŪbḠ = (b′

M̄
+ bM̄ )eŪbḠ = bM̄eŪbḠ =

bM̄eŪ (1− b′
Ḡ
) = bM̄eŪ .
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Fact 3.1.1. Assume that Ḡ=GLn(Fq). Then an irreducible F�-represen-

tation π̄ of Ḡ satisfies bḠπ̄ �= 0 if and only if it is a subquotient of IndḠB̄(F�).

Proof. Any irreducible subquotient of IndḠB̄(F�) occurs in the reduction of

a unipotent irreducible Q�-representation, and hence belongs to the category

cut out by bḠ. Conversely, fix π̄ such that bḠπ̄ �= 0. We may assume that

π̄ is cuspidal, since for P̄ = M̄Ū a parabolic subgroup such that π̄Ū �= 0

we also have bM̄ (π̄Ū ) �= 0 (as in the previous proof). But then in terms of

the Dipper-James classification, π̄ is of the form D(s,1) for some elliptic

semisimple �-element of Ḡ∗ = Ḡ (see [13, Corollary 5.23]). Thus, in terms

of the James-Dipper classification, it is also of the form D(1, (n)) (see [14,

Theorem 5.1]), which means that π̄ is the only nondegenerate subquotient

in IndGB(F�).

3.1.2. Construction of the block. Here we put Ḡ = GLd(Fq). We may

view bḠ as a central idempotent of the Z�-algebra HZ�
(GLd(O)) of locally

constant distributions on GLd(O). Then we put

Pb := indGGLd(O)

(
bḠHZ�

(GLd(O))
)
,

and we define Rep∞b (G) as the full subcategory of Rep∞Z�
(G) consisting of

all objects V that are generated by bḠV over Z�G.

We will use similar notation to denote somewhat more familiar objects;

letting eḠ be the idempotent attached to the pro-p-radical of GLd(O), we

also put

Pe := indGGLd(O)

(
eḠHZ�

(GLd(O))
)
,

and we define the category Rep∞e (G) as above. We recall the following result,

which is a special case of level decomposition (see, e.g., [7, Appendice A]).

Fact 3.1.2. The category Rep∞e (G) is a direct factor of Rep∞Z�
(G) and

is progenerated by Pe. In particular, there is an idempotent e of the cen-

ter of the category Rep∞Z�
(G) such that for any object V we have eV =∑

g∈G/GLd(O) geḠV .

Now we can state the main result of this section.

Proposition 3.1.2. The category Rep∞b (G) is a direct factor of Rep∞e (G)

and is progenerated by Pb. It consists of all objects V , all irreducible sub-

quotients of which are not annihilated by bḠ.
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Proof. From its definition, Pb clearly is a generator of the category

Rep∞b (G) and is a finitely generated projective object of Rep∞
Z�
(G).

Let us prove that Rep∞b (G) is a Serre subcategory. For this, we will apply

the general result of [18, Theorem 3.1]. For any vertex x of the semisim-

ple building of G, we denote by Gx its stabilizer, G+
x the pro-p-radical of

its stabilizer, and Ḡx := Gx/G
+
x the reductive quotient. We thus get an

idempotent bx ∈ HZ�
(Gx) by inflation from bḠx

. If g ∈G, we clearly have

bgx = gbxg
−1. Therefore, to apply [18, Theorem 3.1], we are left to check

the two following properties (see [18, Definition 2.1]):

(i) bxby = bybx for any adjacent vertices x, y;

(ii) bxbzby = bxby whenever z is adjacent to x and belongs to the convex

simplicial hull of {x, y}.
Note first that the definition of bx extends to any facet F of the building.

Further, let eF := eG+
F
denote the idempotent associated to the pro-p-group

G+
F . We know that properties (i) and (ii) are satisfied by the system (ex)x,

and more precisely, we have exey = e[x,y] whenever x and y are adjacent

vertices. Therefore, Lemma 3.1.1 shows that bxey = bxe[x,y] = b[x,y], and

thus bxby = b[x,y] = bybx. As for property (ii), starting from exey = exezey,

we get bxby = bxezby = bxbzby, as desired.

We now know that Rep∞b (G) is a Serre subcategory of the Serre sub-

category Rep∞e (G) cut out by the system (ex)x. For a vertex x, define

b′
x := ex − bx, which is lifted from the idempotent 1− bḠx

of Z�[Ḡx]. The

same argument as above shows that the system (b′
x)x satisfies properties

(i) and (ii) and therefore cuts out a Serre subcategory of Rep∞e (G), which

is easily seen to be a complement to Rep∞b (G). Therefore, the latter is a

direct factor in Rep∞e (G). The last statement of the proposition is clear.

Notation. We will denote by b the idempotent of the center of the

category Rep∞Z�
(G) which projects a representation V to its largest subobject

bV in Rep∞b (G). Concretely, we have bV =
∑

g∈GLd(K)/GLd(O) g · bḠV .

Proposition 3.1.3. A representation π ∈ IrrF�
(G) belongs to Rep∞b (G)

if and only if it is an irreducible subquotient of some IndGB(χ) with χ an

unramified character of B. In particular, Rep∞b (G)∩Rep∞
F�
(G) is Vignéras’s

unipotent block [26, section IV.6.3].

Proof. Let eḠ ∈ HZ�
(GLd(O)) be the idempotent associated to the ker-

nel of the reduction map GLd(O) −→ GLd(Fq). By the Mackey formula,
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the residual representation of Ḡ on eḠ IndGB(χ) is isomorphic to IndḠB̄(F�)

with obvious notation. Since IndGB(χ) belongs to the level zero subcategory

Rep∞e (G), so does each of its irreducible subquotients. Hence, for such a

subquotient π, eḠπ is a nonzero subquotient of IndḠB̄(F�), so that bḠπ �= 0

and π belongs to Rep∞b (G).

Conversely, let π be an irreducible F�-representation such that

bπ �= 0. Choose a parabolic subgroup P = MU and a supercuspidal F�-

representation σ of M such that π occurs as a subquotient of IndGP (σ).

As above, the Mackey formula tells us that eḠ IndGP (σ)� IndḠP̄ (eM̄σ), with

obvious notation. So by Lemma 3.1.1 we get bḠ IndGP (σ)� IndḠP̄ (bM̄σ), and

finally bM̄σ �= 0. By [23, section III.3.15], we know that σ is of the form

indMM∩GLn(O)(σ̄) for some supercuspidal F�-representation σ̄ of the Levi

subgroup M̄ of Ḡ, image of M ∩ GLn(O) by the projection to Ḡ. Here,

supercuspidal is equivalent to the fact that the semisimple elliptic class s

associated to σ̄ consists of �′-elements. However, an easy computation in

[23, lemme III.3.14] shows that bM̄ σ̄ = bM̄σ. Therefore, bM̄ σ̄ is nonzero,

and s consists of �-elements by definition. Hence, s= 1, or equivalently, M

is a torus, and σ̄ is the trivial representation of M̄ .

Remark. In terms of the Langlands correspondence, the irreducible F�-

representations π of the principal/unipotent block are those such that σ(π)ss

is a sum of unramified characters. This formulation might extend to other

p-adic groups, as suggested by the finite field picture.

3.2. The complex

In the first two paragraphs of this subsection, no congruence hypothesis

on the pair (q, �) is required. From Section 3.2.3 on, we will work under the

Coxeter congruence relation.

3.2.1. The tower and its cohomology complexes. We refer to [22] or [6,

section 3.1] for the definition of the Lubin-Tate space MLT,n of height d

and level n, which we see as a K̆-analytic space, endowed with a continuous

action of D×, an action of GLd(O/�nO), and a Weil descent datum to

K. Although in this paper we will be mainly interested in the tame level

MLT,1, the formalism used to define the complex requires the whole tower

(MLT,n)n∈N and, in particular, the action of G = GLd(K) which can be

defined on this tower. Maybe the most precise way to describe this action

is to introduce the category N(G) with set of objects N and arrows given

by Hom(n,m) := {g ∈G,gMd(O)g−1 ⊂�m−nMd(O)} and to note that the



22 J.-F. DAT

MLT,n are the image of a functor from N(G) to the category whose objects

are K̆-analytic spaces with continuous action of D× and Weil descent datum

to K, and morphisms are finite étale equivariant morphisms. This allows one

to define the complex

RΓc :=RΓc(Mca
LT,Z�) ∈Db

(
Rep∞,c

Z�
(G×D× ×WK)

)
as in [6, section 3.3.3]. Let us note that the diagonal subgroup K× of G×D×

acts trivially on the tower, hence also on the cohomology.

It is technically important to recall that the tower is induced from a

subtower denoted (M(0)
LT,n)n∈N which is stable under the subgroup

(GDW )0 :=
{
(g, δ,w) ∈G×D× ×WK , |det(g)|−1|Nr(δ)||ArtK(w)|= 1

}
.

So we have a complex RΓ
(0)
c := RΓc(Mca,(0)

LT ,Z�) ∈ Db(Rep∞,c
Z�

(GDW )0)

together with an isomorphism [6, (3.5.2)]

RΓc � IrrGDW
(GDW )0 RΓ(0)

c .

An important consequence of this is the following compatibility with twist-

ing. For any smooth character χ of K× and any representation π of G, we

have

(3.2.1.1) R(χ◦det)⊗π �
(
χ ◦ (Nr ·ArtK)

)
⊗Rπ in Db

(
RepZ�

(D× ×WK)
)
.

We need yet another variant. Let us fix a uniformizer � of K and see it as

a central element of G. Its action on the tower is free (it permutes the con-

nected components), so we may consider the quotient tower (MLT,n/�
Z)n∈N

and its cohomology complex

RΓc,� :=RΓc(Mca
LT/�

Z,Z�) ∈Db
(
Rep∞,c

Z�
(G/�Z ×D× ×W )

)
.

We then have isomorphisms (see [6, section 3.5.3])

RΓc,� �RΓc ⊗L
Z�[�Z] Z� � IrrGDW

(GDW )0�Z RΓ(0)
c .

Because of the first isomorphism, if π is a representation on which � acts

trivially, then Rπ � RHomG/�Z(RΓc,�, π). Since any irreducible represen-

tation may be twisted to achieve this condition π(�) = 1, we see that we

do not lose any generality in restricting attention to RΓc,�.
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3.2.2. The tame part. We take up the notation e, eḠ of the previous sec-

tion and denote by He the commuting algebra EndZ�G(Pe), which identifies

with the Hecke algebra of compactly supported Z�-valued (1 +�Md(O))-

bi-invariant measures on G.

The complex eḠRΓc(Mca
LT,Z�) is naturally an object of Db(Rep∞He

(D××
WK)), and we recover the direct summand eRΓc(Mca

LT,Z�) via the usual

equivalence of categories. Namely, we have, as in [6, Lemme 3.5.9],

eRΓc(Mca
LT,Z�)� Pe ⊗L

He
eḠRΓc(Mca

LT,Z�).

Now, if we restrict the action to GLd(O), we have by construction an iso-

morphism in Db(Rep∞,c
Z�

(Ḡ×D× ×WK)):

eḠRΓc(Mca
LT,Z�)

∼−→RΓc(Mca
LT,1,Z�)� IrrḠ×D××WK

Ḡ×(DW )0
RΓc(Mca,(0)

LT,1 ,Z�).

The tame Lubin-Tate space M(0)
LT,1 was studied by Yoshida [28]. He exhib-

ited in particular a certain affinoid subset N of M0
LT,1 which acquires

good reduction over K̆[�1/(qd−1)], with special fiber equivariantly isomor-

phic to the Deligne-Lusztig covering Y (c) associated to the Coxeter element

of Ḡ. In [8], we showed that the restriction map induces an isomorphism

RΓ(Mca,(0)
LT,1 ,Z�)

∼−→RΓ(N ca,Z�). Taking duals, we thus get an isomorphism

in Db(RepZ�
(Ḡ)),

(3.2.2.1) RΓc(Y (c),Z�)
∼−→RΓc(Mca,(0)

LT,1 ,Z�).

In particular, we get the following important property.

Proposition 3.2.2. The cohomology spaces of both the complexes eRΓc

and eRΓc,� are torsion-free.

Indeed, the torsion-freeness for Y (c) follows from [1, Lemma 3.9, Corol-

lary 4.3]. We emphasize the fact that no hypothesis on the pair (q, �) is

required here.

3.2.3. The unipotent part: �-adic cohomology. From this paragraph on,

we assume that the order of q in F×
� is d. We take up the notation of the

previous section, and we consider the direct summand bRΓc(Mca
LT,Z�) or,

rather, its variant bRΓc,�. There is a fairly explicit description of the Q�-

cohomology of this complex. We first recall a classical construction. Let

θ : F×
qd

−→Q
×
� be a character which is Frobq-regular. Define
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• a representation ρ(θ) := IrrD
×

O×
D�Z

(θ) of D×, where O×
D�

Z acts via the

reduction map O×
D −→ F×

qd
;

• a representation σ(θ) := indWK

IKϕdZ(θ), where IKϕdZ acts via the tame iner-

tia map IK −→ μqd−1 � Fqd−1;

• a representation π(θ) := indGGLd(O)�Z(π0
θ), where π0

θ is the cuspidal repre-

sentation of GLd(Fq) associated to θ by the Green (or Deligne-Lusztig)

correspondence.

All these representations are irreducible and depend only on the Frobq-

conjugacy class of θ. Moreover, they are associate by the Langlands and

Jacquet-Langlands correspondences.

Fact 3.2.3. Let I� := Z�[G×D× ×WK/(GDW )0�Z].

(i) For i= 1, . . . , d− 1, there is an isomorphism

Hd−1+i(bRΓc,�)⊗Q�
∼−→ v{1,...,i}(Q�)(−i)⊗ I�.

(ii) For i= 0, there is a (split) exact sequence

0−→K−→Hd−1(bRΓc,�)⊗Q� −→ v∅(Q�)⊗ I� −→ 0

and an isomorphism K ⊗Q� �
⊕

θ π(θ)⊗ ρ(θ)∨ ⊗ σ(θ)∨, where θ runs

over Frobq-conjugacy classes of Frobq-regular characters F×
qd

−→ Z
×
�

which are �-congruent to the trivial character.

Proof. The shortest argument here is to invoke Boyer’s description of the

Q�-cohomology of the whole Lubin-Tate tower in [3] (see [6, théorème 4.1.2]

for an account featuring a notation consistent with that of the present

paper), together with the characterization of irreducible objects of the unipo-

tent block in Proposition 3.1.3. We note that the maps Hd−1+i(bRΓc,�)⊗
Q� −→ v{1,...,i}(Q�)(−i) are induced by the canonical morphism

(3.2.3.1) RΓc(Mca,(0)
LT ,Z�)−→RΓc(Mca,(0)

LT ,Z�)⊗L
Z�[O×

D]
Z�.

Alternatively, if one wants to avoid Boyer’s machinery, it is possible to

derive almost everything from Yoshida’s construction in [28] via isomor-

phism (3.2.2.1). More precisely, put wi := Hd−1+i(bRΓc,� ⊗L
Z�[O×

D/�Z]
Z�).

Then, by using a similar feature of Deligne-Lusztig varieties, one can show

that the above morphism of complexes induces isomorphisms

Hd−1+i(bRΓc,�)⊗Q�
∼−→wi ⊗Q�
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for i > 0, as well as an exact sequence

K ↪→Hd−1(bRΓc,�)⊗Q� �w0 ⊗Q�.

Further, one finds an isomorphism eḠwi � eḠ(v{1,...,i}(Z�)⊗ I�). However,

what is a priori missing is enough information on Hecke operators acting

on eḠwi to recognize wi as isomorphic to v{1,...,i}(Z�) ⊗ I�. One highly

nontrivial way to get around this problem is to invoke the Faltings-Fargues

isomorphism of [16] (see [6, section 3.4] for a brief description) to move to

the so-called Drinfeld tower (see [6, section 3.2] for an overview on this

tower). Then the morphism of complexes (3.2.3.1) is carried to

(3.2.3.2) RΓc(Mca,(0)
Dr ,Z�)−→RΓc(Mca,(0)

Dr,0 ,Z�),

and the right-hand side is the Drinfeld upper half-space whose cohomology

is computed by combinatorics and shown by Schneider and Stuhler [21] to

be isomorphic to v{1,...,i}(Z�).

We let Π be a uniformizer of D such that Πd =�, and we fix a geomet-

ric Frobenius element ϕ in WK . We are going to decompose the complex

bRΓc,� in the category Db(RepZ�
(G/�Z)) according to the action of Π

and ϕ. Since K×
diag acts trivially on the tower, the action of Π on RΓc,� is

obviously killed by the polynomial Xd − 1. Further, as a corollary to the

description above and to the torsion-freeness result of Proposition 3.2.2, we

get the following.

Corollary 3.2.3. For any integer 0 ≤ i ≤ d − 1, the action of ϕ on

Hd−1+i(bRΓc,�) is killed by the polynomial Xd − qid.

3.2.4. The unipotent part: splitting. Put Pϕ(X) :=
∏d−1

i=0 (X
d − qid). By

Corollary 3.2.3 and [6, lemme A.1.4(i)], Pϕ(ϕ) acts by zero on the whole

complex bRΓc,�. The ring Aϕ := Z�[X]/Pϕ(X) is a semilocal ring, and

hence decomposes as a product Aϕ =
∏

mAϕm
of its localizations at maximal

ideals. Since q is a primitive d-root of unity in F� by our congruence hypoth-

esis, the maximal ideals of this ring are mi := (�,X − qi), i = 0, . . . , d− 1,

and we denote Aϕ =
∏d−1

i=0 Aϕ,i the associated decomposition. Accordingly,

we get a decomposition [19, Proposition 1.6.8]

bRΓc,� �
d−1⊕
i=0

(bRΓc,�)i in Db
(
Rep∞Z�

(G/�Z)
)
.
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Similarly, the ring AΠ := Z�[X]/(Xd−1) is semilocal with maximal ideals

(�,X − qj), j = 0, . . . , d− 1, and we get a sharper decomposition

bRΓc,� �
d−1⊕
i,j=0

(bRΓc,�)i,j in Db
(
Rep∞Z�

(G/�Z)
)
.

Note that each of these direct summands is preserved by the action of ϕ and

Π, but not necessarily by that of IK and O×
D. Let ζ denote the Teichmüller

lift of q, that is, the only primitive d-root of unity in Z� which is �-congruent

to q. By construction, the action of Π on (bRΓc,�)i,j is by multiplication

by ζj , while that of ϕ is killed by the polynomial
∏

k(X − qi−kζk).

Moreover, these direct summands satisfy the following properties:

(bRΓc,�)i,j � ζj valK ◦det−1

(bRΓc,�)i−j,0
(3.2.4.1)

with action of ϕ and Π twisted by ζj .

This follows indeed from (3.2.1.1).

There is a distinguished triangle

ci[0]−→ (bRΓc,�)i,0[d− 1]−→ hi(−i)[−i]
+1−→

(3.2.4.2)
with ci a cuspidal �-torsion free representation

and hi a G-invariant lattice in v{1,...,i}(Q�).

This follows from Fact 3.2.3 and Proposition 3.2.2. Note that by convention

we set {1, . . . , i}= ∅ if i= 0.

Let us put h̄i := hi ⊗ F�. By Proposition 2.1.3, we have the following

equality in the Grothendieck group:

(3.2.4.3) [h̄i] = [v{1,...,i}(F�)] = [π{1,...,i}] + [π{0,...,i}].

Remark. For i �= d − 1, it can be shown that h̄i is not isomorphic to

v{1,...,i}(F�). More precisely, v{1,...,i}(F�) is a nonsplit extension of π{0,...,i} by

π{1,...,i}, while h̄i is a nontrivial extension going the other way. The same

phenomenon appears for the Deligne-Lusztig variety (see in particular [15,

Theorem 4.1], which provides a description of the finite field analogue of

h̄i). In the present context, let us simply mention without proof that the

morphism (3.2.3.2) induces a map

(3.2.4.4) Hd−1+i
c (Mca

Dr,1,F�) = h̄i −→Hd−1+i
c (Mca

Dr,0,F�) = v{1,...,i}(F�)



LEFSCHETZ OPERATOR AND LOCAL LANGLANDS MOD �: THE REGULAR CASE 27

which is nonzero, with kernel and cokernel both isomorphic to π{0,...,i}. Of

course, this map is also induced by the morphism (3.2.3.1).

§4. Proof of the main theorem

Let π be an F�-representation of G. Recall the definition of the graded

vector space R∗
π from the introduction. For convenience, we will shift this

definition by [1− d]; that is, we consider now

R∗
π :=H∗(RHomZ�G(RΓc[d− 1], π)

)
.

This is a graded smooth F�-representation of D× ×WK , whose grading is

supported in the range [1− d, d− 1] by [10, Proposition 2.1.3].

In this entire section, we work under the Coxeter congruence hypothesis;

that is, we assume that the order of q in F×
� is d.

4.1. Computation of R∗
π for π an elliptic principal series

4.1.1. Preliminaries. Assume now that π belongs to the unipotent block

and that its central character is trivial on �. Then we have R∗
π =

H∗(RHomZ�(G/�Z)(RΓc,�[1−d], π)), and according to Section 3.2.4, we may

decompose it as

R∗
π =

d−1⊕
i,j=0

(R∗
π)i,j , where (R∗

π)i,j :=H∗(RHomZ�(G/�Z)((bRΓc,�)i,j , π)
)
.

Concretely, (R∗
π)i,j is the intersection of the generalized q−i-eigenspace

of ϕ with the generalized q−j-eigenspace of Π. As already mentioned, these

summands need not be stable under the action of IK and O×
D. However,

the description of the �-adic cohomology of bRΓc,� in Section 3.2.3, together

with the �-torsion freeness of its integral cohomology, shows that both

IK and O×
D act trivially on the D× × WK semisimplifications

Hk(bRΓc,�
⊗L

Z�
F�)

ss, k ∈ N. Therefore, the same is true for R∗,ss
π . As a

consequence, letting IK and O×
D act trivially on each (R∗

π)
ss
i,j , we get the

following equality in R(D× ×WK ,F�):

(4.1.1.1) R∗,ss
π �

d−1⊕
i,j=0

(R∗
π)

ss
i,j =

d−1⊕
i,j=0

(νj
D
⊗ νi

W
)
dim

F�
(R∗

π)i,j .

Recall also from property (3.2.1.1) that we have R∗
ν
G
π � (νD ⊗ νW )⊗R∗

π.

Therefore, we get isomorphisms

(4.1.1.2) (R∗
ν
G
π)i,j � (R∗

π)i−1,j−1.
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The aim of this section is to prove Theorem 4.1.3 below, which describes

explicitly each (R∗
πI
)i,j , that is, which computes the dimension of each

(R∗
πI
)i,j . We first introduce some notation.

4.1.2. For an integer k between 0 and d− 1 and a subset I of S, we put

∂I(k) := k− δ(k, I), where δ(k, I) := |I ∪ {1, . . . , k}| − |I ∩ {1, . . . , k}|.

These functions already appear in [5] (see, esp., [5, Lemma 4.4.1]). The

following property is elementary.

Fact 4.1.2. The map k ∈ {0, . . . , d − 1} �→ ∂I(k) ∈ Z is nondecreasing,

with image {−|I|,−|I| + 2, . . . , |I| − 2, |I|}. More precisely, writing I =

{i1, . . . , i|I|} and putting i0 := 0 and i|I|+1 := d, we have ∂−1
I (−|I|+ 2j) =

{ij , . . . , ij+1 − 1}.

In the next statement, we extend the function ∂I to Z by making it

d-periodic.

4.1.3.

Theorem 4.1.3. Let I be a strict subset of S̃, and let i, j be integers

between 0 and d− 1. We have

(R∗
πI
)i,j �

{
F�[∂c−jI(i− j)] if j /∈ I,

0 if j ∈ I.

Since πI � νj
G
πc−jI , we see that the statement above is compatible with

the twisting property (4.1.1.2). Therefore, we only have to prove it when

j = 0. We will treat separately the vanishing statement (when 0 ∈ I) and

the nonzero cases (when 0 /∈ I), and we start with a special case.

4.1.4. The case |I|= d− 1. Here we prove Theorem 4.1.3 for characters,

that is, for |I| = d − 1. By the above remark on the effect of twisting by

νG , we may assume that I = S, so that πI = F� is the trivial representation

of G. In this case, we have

R∗
F�

=H∗(RHomF�
(F� ⊗L

F�G
RΓc,F�)[1− d]

)
.

By [10, paragraph A.1.1, second lemma], we have

H∗(F� ⊗L
F�G

RΓc)�H∗(Pd−1,ca,F�) =
d−1⊕
i=0

F�[−2i](−i),
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where the action of D× is trivial and that of WK is described by the Tate

twists. Forgetting about technicalities, this merely expresses the fact that G

acts freely on the tower (MLT,n)n∈N and that the quotient is the so-called

Gross-Hopkins period space, which is isomorphic to the projective space

Pd−1 over K̂nr. It follows that

R∗
F�

=

d−1⊕
i=0

(ν0
D
⊗ νi

W
)[1− d+ 2i].

Since ∂S(i) = 1− d+ 2i, we have proved Theorem 4.1.3 for I = S and thus

for any I ⊂ S̃ of cardinality d− 1.

4.1.5. Vanishing when j ∈ I. As already mentioned, we may assume

that j = 0. Fix a strict subset I of S̃ which contains 0. We will prove in this

section that

(4.1.5.1) for all i= 0, . . . , d− 1, we have (R∗
πI
)i,0 = 0.

We argue by decreasing induction on |I|. The case |I|= d− 1 was treated

in Section 4.1.4, so let us assume that |I|< d− 1. Recall from Lemma 2.1.2

and Proposition 2.1.2(iii) that for any k ∈ S̃ \ I , we have c−kI ⊂ S and

[νk
G
⊗ ic−kI(F�)] = [iI ] =

∑
J⊇I

[πJ ].

Therefore, using the induction hypothesis, it is enough to find a k ∈ S̃ \ I
such that

RHomZ�(G/�Z)

(
(bRΓc,�)i,0, ν

k
G
⊗ ic−kI(F�)

)
= 0.

Let us start with a random k in S̃ \I . By (3.2.4.2) and Frobenius reciprocity,

we have an isomorphism

H∗(RHomZ�(G/�Z)((bRΓc,�)i,0, ν
k
G
⊗ ic−kI(F�))

)
� Ext∗+i

F�(G/�Z)

(
ν−k
G

⊗ h̄i, ic−kI(F�)
)
.

Further, by (3.2.4.3) we have [ν−k
G

⊗ h̄i] = [πc−k{0,...,i}] + [πc−k{1,...,i}]. There-
fore, applying Proposition 2.3.4(i), we get

(4.1.5.2) Ext∗G/�Z

(
ν−k
G

⊗ h̄i, ic−kI(F�)
)
= 0 whenever k ∈ {1, . . . , i}.
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In other words, if k ∈ {1, . . . , i}, we are done. Let us thus assume that k /∈
{1, . . . , i}. In this case, Proposition 2.3.4(ii) and Corollary 2.3.3(i) tell us

that

Ext∗G/�Z

(
ν−k
G

⊗ h̄i, ic−kI(F�)
)
= 0 whenever c−k{1, . . . , i} ∪ c−kI �= S.

This means that if I ∪{1, . . . , i} �= S̃ \{k}, we are done. In particular, if i= 0

(in which case {1, . . . , i}= ∅ by convention), we are done, because |I|< d−1.

Now let us assume the contrary, that is, that I ∪ {1, . . . , i}= S̃ \ {k} (and

therefore i ≥ 1). Again, because of |I| < d − 1, this means that {1, . . . , i}
contains an element k′ which does not belong to I . Applying (4.1.5.2) to

this k′, we get

Ext∗G/�Z

(
ν−k′

G
⊗ h̄i, ic−k′I(F�)

)
= 0,

and this finishes the proof of (4.1.5.1).

4.1.6. Computation when j /∈ I. Again we may assume that j = 0 and

hence that I ⊂ S. The vanishing property of Section 4.1.5 shows that the

map πI ↪→ vI := vI(F�) induces isomorphisms

(4.1.6.1) (R∗
πI
)i,0

∼−→ (R∗
vI
)i,0 for i= 0, . . . , d− 1

because the cokernel vI/πI is isomorphic to πI∪{0}.
Now, we will use the exact sequence (2.1.3.1) in order to compute (R∗

vI
)i,0.

It provides us with a spectral sequence

Epq
1 =

⊕
S⊇J⊇I

|J\I|=−p

(Rq
iJ
)i,0 ⇒ (Rp+q

vI
)i,0,

where we have abbreviated iJ := iJ(F�). A priori, this spectral sequence

vanishes outside the range −|S \ I| ≤ p ≤ 0 and q ≥ −i. Its differential d1
has degree (1,0) and is given by the natural maps (R∗

iJ′ )i,0 −→ (R∗
iJ
)i,0 with

signs associated to the simplicial set of subsets of S \ I .
The graded space R∗

iJ
is already known for J = S by Section 4.1.4: we

have R∗
iS

= F�[1−d+2i]. Let us thus fix J � S. Using Frobenius reciprocity

and (3.2.4.2), we then have isomorphisms

Ext∗+i
G/�Z

(h̄i, iJ)
∼−→ (R∗

iJ
)i,0
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for i ∈ {0, . . . , d − 1}. Further, using equality (3.2.4.3), Proposition 2.3.4,

and Corollary 2.3.3(ii), we get isomorphisms

(R∗
iJ
)i,0

� Ext∗+i
G/�Z

(h̄i, iJ)� Ext∗+i
G/�Z

(π{1,...,i}, iJ)� Ext∗+i
G/�Z

(v{1,...,i}, iJ)

�
{
Ext

∗+i−|S\{1,...,i}|
G/�Z

(F�, iJ)�
∧∗+2i+1−d YJ if {i+ 1, . . . , d− 1} ⊆ J,

0 otherwise.

Observe that the smallest J which contributes is J(i, I) := I ∪ {i+ 1, . . . ,

d− 1}. In particular, the E1 page of the spectral sequence is supported in

the vertical strip defined by

−|S \ I| ≤ p≤−|J(i, I) \ I|.

Moreover, since dimYJ = d− 1− |J |, we see that for each p in the above

range, the column Ep∗
1 is supported in the range

d− 1− 2i≤ q ≤ 2d− 2− 2i− p− |I|.

In other words, the E1 page is supported in the half square with left corner

(−|S \ I|, d− 1− 2i)

and right corners(
−|J(i, I) \ I|, d− 1− 2i

)
and

(
−|J(i, I) \ I|,2d− 2− 2i− |J(i, I)|

)
.

Now, we observe that the E∗•
1 of our spectral sequence is the same, up to

some shifts, as that which occurs in [20, proof of Theorem 1] and [2, Chapter

X, Proposition 4.7]. We still have to compare the differential d1 with that

of these two references. Using Proposition 2.3.4(ii) again, we see that for

J ′ ⊇ J with J ′ a strict subset of S, the nonzero map (R∗
iJ′ )i,0 −→ (R∗

iJ
)i,0 is

induced by the natural map YJ ′ −→ YJ . It follows that for p >−|S/I| (i.e.,
everywhere except maybe on the first nonzero column), the differential dpq1 is

the same as that of the two references cited above. In fact, the only possible

difference concerns d
−|S/I|,d−1−2i
1 , for which we have no control yet in our

setting, except in the trivial case where i= 0, because in this case, the E1

is supported on one point. For i > 0, in order to ensure that d
−|S/I|,d−1−2i
1
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is the same as in the two references cited above, we have to prove that each

map

(4.1.6.2) (Rd−1−2i
iS

)i,0 � F� −→ (Rd−1−2i
iJ

)i,0 � F�

is an isomorphism. However, since we know that all the other maps

(Rd−1−2i
iJ

)i,0 −→ (Rd−1−2i
iJ′ )i,0 for J ′ ⊂ J � S are isomorphisms, it is suffi-

cient to prove that (4.1.6.2) is an isomorphism for a single J . For this, we

look at the special case I = ∅, so that the left corner is (1− d, d− 1− 2i). If

all the maps (4.1.6.2) were zero, we would have E1−d,d−1−2i
2 � F�, creating

a nonzero R−2i
π∅

, which is absurd since R∗
π∅

has to vanish for ∗<−i, and i

was supposed to be positive.

Therefore, we have identified the first page of our spectral sequence with

that of [20, proof of Theorem 1] and [2, Chapter X, Proposition 4.7], up

to shifts. Using their results, we get that Epq
2 is always zero except in the

upper right corner of the triangle, where it is 1-dimensional. Therefore, we

get

(R∗
πI
)i,0 � F�

[
−
(
2d− 2− 2i− 2|J(i, I)|+ |I|

)]
.

We still need to compute the shift a = −(2d − 2 − 2i − 2|J(i, I)| + |I|).
Observe first that 2d − 2 − 2|J(i, I)| = 2|{1, . . . , i} \ I|. Then, using i −
|{1, . . . , i} \ I| = |{1, . . . , i} ∩ I|, we get a = 2|{1, . . . , i} ∩ I| − |I|. Eventu-
ally, using the equality i+ |I|= |{1, . . . , i} ∩ I|+ |{1, . . . , i} ∪ I|, we get

a= |{1, . . . , i} ∩ I| − |{1, . . . , i} ∪ I|+ i= ∂I(i).

The proof of Theorem 4.1.3 is now complete. However, it will be important

to keep some track of the isomorphism (R
−∂I(i)
πI )i,0 � F� that we have just

obtained when we study the Lefschetz operator in the next section. We may

decompose this isomorphism in four steps:

(i) The spectral sequence provides the isomorphism (R
−∂I(i)
πI )i,0 �

(R
−∂I(i)+|J(i,I)\I|
iJ(i,I)

)i,0.

(ii) Corollary 2.3.3 and the following remark exhibit an isomorphism

(Rd−1−2i
iJ(i,I)

)i,0 ⊗
max∧

YJ(i,I)
∼−→ (R

−∂I(i)+|J(i,I)\I|
iJ(i,I)

)i,0.

(iii) The inclusion F� = iS ↪→ iJ(i,I) induces the isomorphism (Rd−1−2i
iS

)i,0 �
(Rd−1−2i

iJ(i,I)
)i,0, as was shown in the above proof.

(iv) The geometric input from Section 4.1.4 provides the isomorphism

(Rd−1−2i
F�

)i,0 � F�.
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4.2. The Lefschetz operator

We now study the Lefschetz operator recalled in the introduction. We

refer the reader to [9, section 2.2.4] for the precise definition of this operator

and will content ourselves with recalling the relevant details when necessary

in the proof of Theorem 4.2.2 below.

4.2.1. Our aim is to describe the operator L∗
π : R∗

π −→ R∗
π[2](1) for π a

unipotent elliptic representation. Since this operator is D× × WK -

equivariant, it decomposes as a sum L∗
π =

∑
i,j(L

∗
π)i,j with

(L∗
π)i,j : (R

∗
π)i,j −→ (R∗+2

π )i−1,j .

It also satisfies the following compatibility with torsion:

(4.2.1.1) (L∗
ν
G
π)i,j = (L∗

π)i−1,j−1,

where equality merely means that these morphisms are part of a commuta-

tive diagram involving isomorphisms (4.1.1.2). Thanks to (4.2.1.1), we may

restrict our attention to the case j = 0.

Now, recall from Theorem 4.1.3 that each (R∗
πI
)i,0 is zero unless I ⊆ S.

In the latter case, it is 1-dimensional and concentrated in degree −∂I(i).

Therefore, (L∗
πI
)i,0 is necessarily zero as soon as ∂I(i) �= ∂I(i− 1)+2, which

by Fact 4.1.2 is equivalent to i /∈ I . The following theorem asserts that

(L∗
πI
)i,j is nonzero in the remaining cases.

4.2.2.

Theorem 4.2.2. Let I be a subset of S, and let i ∈ I. Then the operator

(L∗
πI
)i,0 : (R

∗
πI
)i,0 � F�[∂I(i)]−→ (R∗

πI
)i−1,0[2]� F�[∂I(i− 1) + 2]

is nonzero and thus is an isomorphism.

Proof. As in the proof of Theorem 4.1.3, the crucial input comes from

geometry, which rules out the case of the trivial representation F� = πS .

Indeed, recall from Section 4.1.4 that the period map provides us with iso-

morphisms

R∗
πS
[1− d]�

(
H∗(Pd−1,ca,F�)

)∨
=

d−1⊕
i=0

F�[2i](i).
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But by its mere definition, the Lefschetz operator of [9, section 2.2.4] induces

the tautological Lefschetz operator on Pd−1, namely, that given by the Chern

class of the tautological sheaf. It is well known to induce isomorphisms

H i(Pd−1,ca,F�)
∼−→H i+2(Pd−1,ca,F�)(1) for 0≤ i < 2d− 2, thereby proving

the theorem for I = S.

We now consider a general I ⊂ S. We will use the four steps gathered

in the end of Section 4.1.6, which summarize the origin of the isomorphism

(R
−∂I(i)
πI )i,0 � F�. Motivated by step (iii) in that list, we consider for any

J ⊂ S the following commutative diagram, which is functorially induced by

the inclusion map iS ↪→ iJ :

(Rd−1−2i
iS

)i,0

Ld−1−2i
iS

(Rd−1−2i
iJ

)i,0

Ld−1−2i
iJ

(Rd−1−2i+2
iS

)i−1,0 (Rd−1−2i+2
iJ

)i−1,0

The two horizontal maps were shown to be isomorphisms in Section 4.1.6,

and the left vertical map has just been shown to be so. We conclude that

(Ld−1−2i
iJ

)i,0 is an isomorphism.

Further, let us consider the diagram for k ∈N

(Rd−1−2i
iJ

)i,0 ⊗F�

∧k YJ

Ld−1−2i
iJ

⊗Id

(Rd−1−2i+k
iJ

)i,0

Ld−1−2i+k
iJ

(Rd−1−2i+2
iJ

)i−1,0 ⊗F�

∧k YJ (Rd−1−2i+2+k
iJ

)i−1,0

The horizontal maps are explained in the remark of Section 2.3.1, and the

functoriality of these maps ensures that the diagram is commutative. It

follows from the identification (R∗
iJ
)i,0 � Ext∗+i

G/�Z
(v{1,...,i}, iJ) explained in

the course of Section 4.1.6, together with the remark of Section 2.3.3, that

these maps are isomorphisms. Since the left vertical map has just been

shown to be an isomorphism, so is the right one, (Ld−1−2i+k
iJ

)i,0.

Recall now the notation J(i, I) = I ∪ {i+ 1, . . . , d− 1} of Section 4.1.6,

and observe that J(i− 1, I) = J(i, I) since we assume that i ∈ I . Recall also
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that ∂I(i) = ∂I(i− 1) + 2 under this assumption, and consider the diagram

(R
−∂I(i)
πI )i,0

L
−∂I (i)
πI

(R
−∂I(i)+|J(i,I)\I|
iJ(i,I)

)i,0

L
−∂I (i)+|J(i,I)\I|
iJ(i,I)

(R
−∂I(i−1)
πI )i−1,0 (R

−∂I(i−1)+|J(i,I)\I|
iJ(i,I)

)i−1,0

where the horizontal maps are provided by the spectral sequence considered

in Section 4.1.6. (These are edge maps once we know enough on the support

of the spectral sequence.) These maps were shown to be isomorphisms in

Section 4.1.6, and we have just proved that the vertical right-hand map

is also an isomorphism. We conclude that L
−∂I(i)
πI is an isomorphism, as

desired.

4.2.3. Recollection and proof of the main theorem. We now prove the the-

orem announced in the introduction. In particular, we forget all gradings.

We first assume that π is a unipotent (or principal series) elliptic represen-

tation. Let I be the strict subset of S̃ such that π � πI . By (4.1.1.1) and

Section 4.1.3, we have

R∗,ss
π �

d−1⊕
i,j=0

(R∗
πI
)i,j �

⊕
j /∈I

νj
D
⊗ (R∗,ss

π )j with

(R∗,ss
π )j :=

d−1⊕
i=0

(R∗
πI
)i,j =

d−1⊕
i=0

νi
W
.

According to Theorem 4.2.2 and the explicit description of Proposition 2.2.3,

we have (
(R∗,ss

π )0,L
∗
π

)
�
(
σss(π),L(π)

)
.

Applying again Theorem 4.2.2 to c−jI and using compatibility with twisting

(4.2.1.1), we get for any j /∈ I :(
(R∗,ss

π )j ,L
∗
π

)
� νjW ⊗

(
σss(πc−jI),L(πc−jI)

)
�
(
σss(π),L(π)

)
.

Recalling now Proposition 2.2.1, we eventually get

(R∗
π,L

∗
π)

ss � |LJ(π)| ⊗
(
σss(π),L(π)

)
,

as desired.
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In order to finish the proof of the main theorem, we still have to deal

with the case when π is not elliptic. In this case we must show that R∗
π = 0.

Here we use the full force of the Vignéras-Zelevinski classification in [26,

Theorem V.12]. Following this classification, there is a proper parabol-

ically induced representation ι which contains π as a subquotient with

multiplicity 1, and all other subquotients π′ of which satisfy the condi-

tion λπ′ < λπ. Here, λπ is the partition associated to π via the succes-

sive highest derivatives. Hence, arguing by induction on λπ, we see that

it suffices to prove that R∗
ι = 0. Write ι= iP (τ) for some proper standard

parabolic subgroup P =MU and some irreducible representation τ . Then

R∗
ι =

⊕d−1
i=0 Ext

∗
M (rP v{1,...,i}, τ). But since π is not elliptic, the cuspidal sup-

port of τ is disjoint from W.δ. Therefore, Lemma 2.3.1(i) shows that each

Ext group occurring in the above sum vanishes.

4.2.4. Remark on nonunipotent representations. The main theorem may

remain true for any irreducible F�-representation π of G, under the Cox-

eter congruence hypothesis. In fact, much is already known; Boyer [3] has

described the cohomology of the whole tower and has announced that the

integral cohomology is torsion-less. This allows the splitting of the full com-

plex according to weights. Then our arguments, which are somehow induc-

tive on the “Whittaker level,” work fine for arbitrary elliptic representations,

except that the induction has to be initialized at some point. For unipotent

representations, the initialization was the computation of (R∗
F�
,L∗

π) thanks

to the period map.

All in all, our arguments show that the main theorem is true for any

representation π, provided it holds true for any super-Speh representation,

in the sense of [11, Définition 2.2.3].
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Institut de Mathématiques de Jussieu

4 place Jussieu

75005 Paris

France

dat@math.jussieu.fr

mailto:dat@math.jussieu.fr

	Main theorem
	Elliptic principal series
	Parameterization and decomposition matrix
	A reminder on the l-adic case
	Classiﬁcation under the Coxeter congruence relation
	The decomposition matrix for elliptic representations

	Corresponding representations
	Langlands-Jacquet transfer
	Different operations on Weil-Deligne representations
	The Zelevinski-Vignéras correspondence

	Computation of some Ext groups
	Context and notation


	The cohomology complex
	The unipotent block
	Unipotent blocks for a ﬁnite GLn
	Construction of the block

	The complex
	The tower and its cohomology complexes
	The tame part
	The unipotent part: l-adic cohomology
	The unipotent part: splitting


	Proof of the main theorem
	Computation of Rpi* for pi an elliptic principal series
	Preliminaries
	The case |I|=d-1
	Vanishing when jI
	Computation when j/I

	The Lefschetz operator
	Recollection and proof of the main theorem
	Remark on nonunipotent representations


	References
	Author's Addresses

