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Abstract In this article we give a vanishing result for the cohomology groups Hp,q(X,

SνE ⊗ L), where E is a vector bundle generated by sections and L is an ample line bun-
dle on a smooth projective variety X. We also give an application related to a result of
Barth-Lefschetz type. A general nonvanishing result under the same hypothesis is given
to prove the optimality of the vanishing result for some parameter values.

1. Introduction

Throughout this article we denote by X a smooth projective variety of dimen-
sion n over the field of complex numbers, by E a vector bundle of rank e, and
by L a line bundle on X.

For any integer ν ≥ 0, consider the Dolbeault cohomology group of type
Hp,q(X,SνE ⊗ L), where SνE denotes the νth symmetric power of E.

The classical theorem of Nakano, Akizuki, and Kodaira (see [1, Theorem 1])
gives conditions on parameters n, e, p, q such that the cohomology group vanishes
when ν = 0 and L is ample.

When E is generated by sections and L is ample, Le Potier [7], in the ν = 1
case, gave generalized conditions on those parameters for the vanishing of the
group.

Peternell, Le Potier, and Schneider [9] in the case ν ≥ 2, provided n − q ≤ 1,
gave a condition that assures a vanishing of the cohomology.

In this article, using a vanishing theorem of Laytimi and Nahm [6, Theo-
rem 2.2], we give a condition for the vanishing of the cohomology group when
n − q ≥ 2.

In the particular case p = n, we improve the condition of the vanishing of
the cohomology groups in question and give an application related to a result of
the Barth-Lefschetz type.

In the second part, a general nonvanishing result under the same hypothesis
on the vector bundles is given in order to prove the optimality of the obtained
vanishing result for some parameter values.

All the results of this article are a generalization of the ones in [9].
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2. Vanishing theorem for vector bundles generated by sections

We need to recall some results. Let N denote the set of all natural numbers.

DEFINITION 2.1

Define the function δ : N ∪ {0} −→ N by the following:(
δ(x)
2

)
≤ x <

(
δ(x) + 1

2

)
;

that is, δ(0) = 1, δ(1) = δ(2) = 2, δ(3) = δ(4) = δ(5) = 3, . . . .

NOTATION 2.2

Let α ≥ 1, and let e,n, p, q be nonnegative integers, where p (and q) ≤ n. Define
the function Q by

Q(α,p, q) = r0(e − 2 + α) + (α − 1)(e − 2)

with r0 = min{δ(n − q), δ(n − p)}.

THEOREM 2.3 ([6, THEOREM 2.2])

Let E be a vector bundle of rank e, and let L be a line bundle on a smooth
projective variety X of dimension n. If ν ≥ 2 and SνE ⊗ L is ample, then we
have

Hp,q(X,SνE ⊗ L) = 0 for q + p − n > Q(ν, p, q),

where Q is defined in Notation 2.2.
In particular,

Hn,q(X,SνE ⊗ L) = Hq,n(X,SνE ⊗ L) = 0 for q > ν(e − 1).

We need to use the following.

PROPOSITION 2.4 ([9, PROPOSITION 2.1])

Let X be a smooth projective variety of dimension n, let E be a vector bundle
generated by sections, let F be a vector bundle on X. Let k ≤ n − 1 be a positive
integer. If

Hq(X,SνE ⊗ F ) = 0 for n − q ≤ k and 0 ≤ ν ≤ k,

then

Hq(X,SνE ⊗ F ) = 0 for n − q ≤ k and all ν ≥ 0.

Our main result is the following.

THEOREM 2.5

Let X be a smooth projective variety of dimension n, let E be a vector bundle of
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rank e generated by sections, and let L be an ample line bundle on X. Then

Hp,q(X,SνE ⊗ L) = 0

(i) if n − q ≤ 1 for p + q − n > e − 1 and all ν ≥ 1;
(ii) if n − q ≥ 2 for p + q − n > Q(β, p, q), where β = min{ν,n − q} (for the

function Q; see Notation 2.2).
In particular,

Hn,q(X,SνE ⊗ L) = 0 for q > β(e − 1).

Proof
Part (i) is [9, Theorem 2.2]. For (ii), we apply Proposition 2.4 with F = L ⊗
Ωp

X . Since the function Q(k, p, q), for fixed p and q is increasing in k, it suffices
according to Proposition 2.4 to prove

Hp,q(X,SνE ⊗ L) = 0 for n − q = k, ν = k.

This is true due to Theorem 2.3. �

When p = n, one can get a better result than Theorem 2.5.

THEOREM 2.6

Let X be a smooth projective variety of dimension n, let E be a vector bundle of
rank e generated by sections, and let L be an ample line bundle on X. Then

Hn,q(X,SνE ⊗ L) = 0

(i) if n − q ≤ 1 for q ≥ e and all ν ≥ 0,
(ii) if n − q ≥ 2 and ν ≥ 2 for

q ≥ min
{

β(e − 1) + 1,
(e − 1)n + 1

e

}
,

where β = min{ν,n − q}.

Proof
The first part is a particular case of [9, Theorem 2.2].

For the second part, we apply Proposition 2.4 with F = L ⊗ KX and k =
[(n − 1)/e], where [ ] denotes the integral part. We have, therefore, to verify that

(1) Hn,q(X,SνE ⊗ L) = 0 for q ≥ n − k and ν ≤ k.

But q ≥ n − k implies q ≥ (e − 1)k + 1 ≥ (e − 1)β + 1. Hence (1) is a conse-
quence of Theorem 2.3.

To finish the proof, notice that

q ≥ n − k ⇐⇒ q ≥ (e − 1)n + 1
e

.

�
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Theorem 2.6 in the case rk(E) = 2 was settled in [9, Theorem 2.3].
As an application of Theorem 2.6, we have the following.

THEOREM 2.7

Let X be a smooth subvariety of dimension n in P
N . Denote by NX the normal

bundle of X in P
N . Then if k ∈ Z and ν ≥ max{2, k + 1},

Hq
(
X,SνN ∗

X(k)
)

= 0

(i) if q ≤ 1 for q ≤ 2n − N ,
(ii) if q ≥ 2 for q ≤ max{(n − 1)/(N − n), n − 1 − γ(N − n − 1)}, where γ =

min{ν, q}.

Proof
The proof follows from Theorem 2.6 if one uses Serre duality and the fact that

SνNX(−k) = Sν
(
NX(−1)

)
⊗ OX(ν − k).

�

REMARK 2.8

For k ≤ 1, using the amplitude of NX , one has stronger results than Theorem 2.7.
Indeed, with the notation

f(x) = n − 1 − x(N − n − 1),

it is shown in [10] that for k ≤ 0,

Hq
(
X,SνN ∗

X(k)
)

= 0 for q ≤ f(1),

and in [3], for k = 1 the vanishing is obtained for q ≤ f(2).
However, in the case k ≥ 2, Theorem 2.7 gives a new condition that assures

a vanishing of the cohomology.

3. Nonvanishing theorem for vector bundles generated by sections

The aim of this section is to generalize the nonvanishing results in [9].
We need the following.

LEMMA 3.1 ([9, LEMMA 2.1])

Let

0 → F → Fk → · · · → F1 → F0 → E → 0

be an exact sequence of sheaves on a smooth projective variety X.
Assume that

Hq(X,Fi) = 0 for 0 ≤ i ≤ k, q ≥ q0.

Then

Hq+k+1(X,F ) 
 Hq(X,E) for q ≥ q0.
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Proof
The lemma is proved by induction on k and by cutting the exact sequence into
two pieces. �

PROPOSITION 3.2

Let X be a smooth projective variety of dimension n, let E be a vector bundle
of rank e ≥ 2 generated by a vector space V ⊂ H0(X,E) of dimension f + e for
some positive integer f , and let L be an ample line bundle. Consider the exact
sequence of vector bundles

(∗) 0 → F → V ⊗ OX → E → 0.

Then
(a) if f = 2, and ν ≥ 2,

Sν−2V ⊗ Hp,q+2
(
X, (detE)∗ ⊗ L

)

 Hp,q(X,SνE ⊗ L)

(b) if f > 2, 2 ≤ ν ≤ e, and either p ≥ q or ν ≤ (δ(n − q)/2) + 1,

(∗∗) Hp,q+ν(X, ∧νF ⊗ L) = 0 for p + q − n > Q(ν, p, q),

where Q is defined in Notation 2.2.
In particular, for p = n we have if f > 2, and 2 ≤ ν ≤ e,

Hn,q+ν(X, ∧νF ⊗ L) = 0 for q > ν(e − 1),

(c) if f > 2, 2 ≤ ν ≤ e, and either p ≥ q or ν ≤ (δ(n − q)/2) + 1,

Sν−fV ⊗ Hp,q+f
(
X, (detE)∗ ⊗ L

)

 Hp,q(X,SνE ⊗ L)

for p + q − n > Q(f − 1, p, q).

Proof
Result (a) is [9, Proposition 3.1].

Note that, using the exact sequence (∗) tensored with L ⊗ Ωp
X and using the

vanishing theorems of Nakano, Akizuki, Kodaira, and Le Potier, we get

Hp,q+1(X,F ⊗ L) = 0 for p + q − n ≥ e.

Note also that if ν > f , then the vanishing of Hp,q+ν(X, ∧νF ⊗ L) holds because
of ∧νF = 0.

For ν ≤ f , we use induction on ν.

Tensor the exact sequence

0 → ∧νF → ∧ν−1F ⊗ V ⊗ OX → · · · → SνV ⊗ OX → SνE → 0

with L ⊗ Ωp
X , and denote

F ν−i = ∧ν−iF ⊗ SiV ⊗ L ⊗ Ωp
X .
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This gives

0 → F ν → F ν−1 → · · · → F 0 → SνE ⊗ L ⊗ Ωp
X → 0.

Let us first treat the case ν = 2.

We have Hq(F 0) = 0 for p + q − n > 0 and Hq(F 1) = 0 for p + q − n > e; it
follows from Lemma 3.1 that for p + q − n > e,

Hq+2(∧2F ⊗ L ⊗ Ωp
X) 
 Hq(S2E ⊗ L ⊗ Ωp

X),

but Hq(S2E ⊗ L ⊗ Ωp
X) = 0 for p + q − n > Q(2, p, q) by Theorem 2.5, and

Q(2, p, q) ≥ e since e ≥ 2.

Now by the induction hypothesis, we have for i = 1,2, . . . , ν,

Hq(F ν−i) = 0 for p + q − n > H(i),

where

H(i) = Q(ν − i, p, q − ν + i) + ν − i,

H(i) = rν−i(e − 2 + ν − i) + (ν − i − 1)(e − 2) + ν − i,

and

rν−i = min
{
δ(n − p), δ(n − q + ν − i)

}
.

Since

H(i) − H(i + 1) = (rv−i − rv−i−1)(e + ν − i − 2) + rv−i−1 + e − 1 > 0,

we have for i = 1,2, . . . , ν,

Hq(F ν−i) = 0 for p + q − n > H(1).

Now using Lemma 3.1, we get, under the condition p + q − n > H(1),

Hq+ν(∧νF ⊗ L ⊗ Ωp
X) 
 Hq(SνE ⊗ L).

But Hq(SνE ⊗ L) = 0 for p + q − n > Q(ν, p, q) by Theorem 2.5.
(1) If δ(n − p) ≤ δ(n − q) and thus p ≥ q, then rν−1 = r0 = δ(n − p) and

Q(ν, p, q) − H(1) = (r0 − 1) + (e − ν),

which is nonnegative if ν ≤ e.

(2) If δ(n − p) > δ(n − q), then r0 = δ(n − q). By assumption, we have

δ(n − q + ν − 1) ≤ δ
(
n − q +

δ(n − q)
2

)
≤ δ

(
n − q + δ(n − q)

)
,

but δ(n − q + δ(n − q)) = δ(n − q) + 1 since for any integer x,

δ
(
x + δ(x)

)
= δ(x) + 1.

This gives rν−1 = δ(n − q) or is equal to δ(n − q)+1. If rν−1 = δ(n − q) as in (1),

Q(ν, p, q) − H(1) = (r0 − 1) + (e − ν).

If rν−1 = δ(n − q) + 1,

H(1) = (r0 + 1)(e − 3 + ν) + (ν − 2)(e − 2) + ν − 1.
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Hence Q(ν, p, q) − H(1) = r0 − 2(ν − 1), but by hypothesis, r0 − 2(ν − 1) is non-
negative.

Note that if p = n, then rν−1 = r0 = 1, and

Q(ν,n, q) − H(1) = e − ν.

This finishes the proof of (b).
To prove (c), tensor the exact sequence

0 → Sν−fV ⊗ detF → · · · → Sν−1V ⊗ F → SνV ⊗ OX → SνE → 0

with L ⊗ Ωp
X (ν ≥ f ), and use the vanishing result (∗∗) in Proposition 3.2 and

Lemma 3.1 to get

Hp,q+f (X,Sν−fV ⊗ detF ⊗ L) 
 Hp,q(X,SνE ⊗ L)

for p + q − n > Q(f − 1, p, q).

To finish the proof we only have to note that detF = (detE)∗. �

For p = n one can get this slightly better result.

PROPOSITION 3.3

Let X be a smooth projective variety of dimension n, let E be a vector bundle of
rank e generated by a vector space V ⊂ H0(X,E) of dimension f + e for some
positive integer f , and let L be an ample line bundle. Consider the exact sequence
of vector bundles

0 → F → V ⊗ OX → E → 0.

Then
(a) if 2 ≤ ν ≤ e and (n(e − 1) + 1)/e ≥ e + 1,

Hn,q+ν(X, ∧νF ⊗ L) = 0

for q ≥ min
{

ν(e − 1) + 1,
(n − 1)(e − 1)

e
+

ν(ν − 1)
2

}
;

(b) if ν ≥ f , 2 ≤ f − 1 ≤ e, and (n(e − 1) + 1)/e ≥ e + 1,

Sν−fV ⊗ Hn,q+f
(
X, (detE)∗ ⊗ L

)

 Hn,q(X,SνE ⊗ L)

for q ≥ min
{

(f − 1)e + 1,
(n − 1)(e − 1)

e
+

f(f − 1)
2

}
.

Proof
For (a) the vanishing of Hn,q+ν(X, ∧νF ⊗ L) under the hypothesis 2 ≤ ν ≤ e is
done in the particular case of Proposition 3.2(b). For the above vanishing under
the hypothesis (n(e − 1) + 1)/e ≥ e + 1, we use induction on ν.

With the notation

G ν−i = ∧ν−iF ⊗ SiV ⊗ L ⊗ KX ,
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we get

0 → G ν → G ν−1 → · · · → G0 → SνE ⊗ L ⊗ KX → 0.

For ν = 2, we have Hq(G0) = 0 for q > 0 and Hq(G1) = 0 for q > e; it follows
from Lemma 3.1 that for q ≥ e + 1,

Hn,q+2(∧2F ⊗ L) 
 Hn,q(S2E ⊗ L).

But Hn,q(S2E ⊗ L) = 0 for q > (n(e − 1)+1)/e by Theorem 2.6, and (n(e − 1)+
1)/e ≥ e + 1 by hypothesis.

Now by the induction hypothesis, with the notation N1 = (n(e − 1) + 1)/e

we have for i = 1,2, . . . , ν,

Hq(G ν−i) = 0 for q ≥ N1 − 1 +
(ν − i)(ν − i + 1)

2
.

We have then, for i = 1,2, . . . , ν,

Hq(G ν−i) = 0 for q ≥ N1 − 1 +
(ν − 1)ν

2
.

Now using Lemma 3.1, we get, under the condition q ≥ N1 − 1 + ((ν − 1)ν)/2,

Hq+ν
( ν∧

F ⊗ L ⊗ KX

)

 Hq(SνE ⊗ L ⊗ KX).

But Hq(SνE ⊗ L ⊗ KX) = 0 for q ≥ N1 by Theorem 2.6. This finishes the proof
of (a).

With the notation

G f −i =
f −i∧

F ⊗ Sν−f −iV ⊗ L ⊗ KX ,

we get

0 → G f → G f −1 → · · · → G0 → SνE ⊗ L ⊗ KX → 0.

We use the vanishing result of part (a) and Lemma 3.1 to get the wanted iso-
morphism in (b). �

COROLLARY 3.4

Let X be a smooth projective variety of dimension n, and let E be a vector bundle
of rank e generated by a vector space V ⊂ H0(X,E) of dimension f + e. Assume
that detE is ample. Then

(a) if f = 2 and ν ≥ 2,

Hq(X,SνE ⊗ detE ⊗ Ωp
X) 
 Sν−2V ⊗ Hq+2(X,Ωp

X)

for p + q − n ≥ e;
(b) if f > 2, 2 ≤ ν ≤ e, and either p ≥ q or ν ≤ (δ(n − q))/2 + 1,

Hq(X,SνE ⊗ detE ⊗ Ωp
X) 
 Sν−fV ⊗ Hq+f (X,Ωp

X)

for p + q − n > Q(f − 1, p, q) (see Notation 2.2);
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(c) if ν ≥ f , and 2 ≤ f − 1 ≤ e,

Hn−f (X,SνE ⊗ detE ⊗ KX) 
 Sν−fV

for n ≥ min
{

e(f − 1) + 1 + f,
(n − 1)(e − 1)

e
+

f(f + 1)
2

}
.

Proof
Part (a) is [9, Corollary 3.2]. Part (b) follows from Proposition 3.2(c) with L =
detE. To prove (c) we use Proposition 3.3(b) and the fact that Hn(Ωn

X) 
 C. �

For the sequel we need to recall the following result.

THEOREM 3.5 ([4, THEOREM 2.5])

Let X be a projective variety. Then for fixed r ≥ 1 and k ≥ 0, there is a natural
bijection between the following two sets:

(1) the set of morphisms f : X −→ Gr(r,Cr+k) with f finite (onto its image);
(2) the set of equivalence classes of vector bundle surjections

C
r+k ⊗ OX −→ E

with rank(E) = r such that det(E) is ample.

EXAMPLE 3.6

Let e, f be integers such that 3 ≤ f ≤ e − 1, and let

Gr(e,Cf+e)

be the Grassmann manifold of e-dimensional quotient spaces of Cf+e. Let Q be
the universal quotient bundle of rank e on Gr(e,Cf+e). Let Y be a nonsingular
subvariety of Gr(e,Cf+e) of dimension greater than or equal to e(f − 1) + f + 1.

Let g : X → Y be a finite surjective morphism, and assume that X is nonsingular.
Then the bundle E = g∗(Q) satisfies the assumption of Corollary 3.4. Hence for
any ν ≥ f , the cohomology group

Hn−f (X,SνE ⊗ detE ⊗ KX) �= 0.

Conversely, let X be a smooth variety, and let E be vector bundle on X

satisfying the hypothesis of Corollary 3.4 (i.e., the conditions that the vector
bundle be generated by an (e + f)-dimensional subspace of H0(X,E), where
e = rank(E), and that det(E) be ample). Then by Theorem 3.5 we get a finite
(onto its image) morphism

g : X → Gr(e,Cf+e)

such that g∗(Q) = E. Note that dim(X) ≤ ef.

REMARK 3.7

In the above example, if we take X to be Gr(e,Cf+e) and L = det(E), then we
see that Theorem 2.5(ii) is optimal when β in this theorem is equal to n − q = f.
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We next show that for X = Gr(e,Cf+e) in the above example, the nonvanishing
cohomology group can be independently computed using Bott’s formula.

PROPOSITION 3.8

Fix positive integers f, r. Let Gr(r, d) be the Grassmannian of all the codimen-
sional r-subspaces of a vector space V of dimension d = f + r.

Let Q be the universal quotient bundle of rank r on X = Gr(r, d).
Then for ν ≥ f ,

Hn−f (X,SνQ ⊗ detQ ⊗ KX) = (detV )⊗f ⊗ Sν−fV.

Proof
For the universal subbundle on Gr(r, d), denoted by S′, we have KGr(r,d) =
((detQ)∗)⊗d = (detS′)⊗d. Thus

Hq
(
Gr(r, d), SνQ ⊗ detQ ⊗ KGr(r,d)

)
= Hq

(
Gr(r, d), SνQ ⊗ (detS′)⊗d−1

)
.

Let Sa be the Schur functor of the partition a (for a definition, see [2, §6.1]).
By a corollary of Bott’s formula [8, Corollary 1], we have

Hq
(
Gr(r, d), SνQ ⊗ (detS′)⊗d−1

)
= δq,i((a,b)−c(d))Sψ(a,b)V,

where

a = (ν,0,0, . . . ,0︸ ︷︷ ︸
r−1 times

), b = (d − 1, d − 1, . . . , d − 1︸ ︷︷ ︸
d−r times

);

for a sequence v = (v1, v2, . . .),

i(v) = card
{
(i, j)

∣∣ i < j, vi < vj
}
.

For any sequence u, ψ(u) = (u − c(d))≥ + c(d), where

c(d) = (1,2, . . . , d),

and (w)≥ is the sequence obtained by rearranging the terms of the sequence w

in weakly decreasing order,

(a, b) = (ν,0,0, . . . ,0︸ ︷︷ ︸
r−1 times

, d − 1, d − 1, . . . , d − 1︸ ︷︷ ︸
d−r times

).

(
(a, b) − c(d)

)
= (ν − 1, −2, −3, . . . , −r, f − 2, f − 3, . . . ,0, −1),

we get i((a, b) − c(d)) = f(r − 1) = n − f , and ψ(a, b) = (ν, f, f, . . . , f︸ ︷︷ ︸
d−1 times

).

Thus Sψ((a,b)V = (detV )⊗f ⊗ Sν−fV. �
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[8] L. Manivel, Un théorème d’annulation pour les puissances extérieures d’un fibré
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