
On L-functions of twisted 4-dimensional
quaternionic Shimura varieties

Cristian Virdol

Abstract In this article we prove the meromorphic continuation to the entire complex
plane and also the functional equation of the zeta functions of twisted 4-dimensional
quaternionic Shimura varieties in quite general cases.

1. Introduction

Let F be a number field, and let X be a smooth projective variety defined over F .
For a prime number l, we denote by Hi

et(X, Q̄l) the l-adic cohomology of X̄ =
X ×F Q̄. Then the Galois group ΓF := Gal(Q̄/F ) acts on Hi

et(X, Q̄l) by a repre-
sentation ρi,l, and the L-function Li(s,X/F ) attached to the representation ρi,l

converges for Re(s) > 1 + i/2. Moreover, it is conjectured that the L-function
Li(s,X/F ) converges and does not vanish in the semiplane Re(s) > 1+ i/2, has a
meromorphic continuation to the entire complex plane, and satisfies a functional
equation.

In this article we prove, in quite general cases, that the zeta function of
“twisted” quaternionic Shimura varieties can be meromorphically continued to
the entire complex plane, satisfy a functional equation, do not vanish, and con-
verge in the semiplane Re(s) > 3. We prove all these results also for the base
change of these Shimura varieties to arbitrary solvable extensions of totally real
number fields which contain their field of definition.

More precisely, in this article we consider a totally real number field F with
[F : Q] = d ≥ 4 and a quaternion algebra D over F , which is unramified at exactly
4 infinite places of F . We denote by G the algebraic group over F defined by
the multiplicative group D× of D, and we define Ḡ =: ResF/Q(G). Fix a prime
ideal ℘ of the ring of integers O := OF of F , such that G(F℘) is isomorphic to
GL2(F℘), and denote by SḠ,K = SK the quaternionic Shimura variety associated
to an open compact subgroup K := K℘ × H of Ḡ(Af ), where K℘ is the set of
elements of GL2(O℘) which are congruent to 1 modulo ℘, H is an open compact
subgroup of the restricted product of (D ⊗F Fp)× where p runs over all the finite
places of F , p �= ℘, and Af is the finite part of the ring of adeles AQ of Q. Then
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the quasi-projective variety SK is defined over a totally real finite extension E/Q

called the canonical field of definition.
The group GL2(O/℘) acts on the variety SK. For H sufficiently small this

action is free. We fix such a small group H , we consider a continuous Galois repre-
sentation ϕ : ΓE → GL2(O/℘), and we denote by S′

K the variety defined over
E obtained from SK via twisting by ϕ composed with the natural action of
GL2(O/℘) on SK (see §2 for details).

In this article we assume that D �= M2(F ) and that L := Q̄Ker(ϕ) is a solv-
able extension of a totally real number field. Under these assumptions we prove
that (for some quaternion algebras D we have to assume the existence of some
Asai representations of degree 3 or 4 for GL(2); see Theorem 7.1 for details) if
k is an arbitrary solvable extension of a totally real number field containing E,
then the L-function L4(s,S′

K/k) is holomorphic, does not vanish in the semiplane
Re(s) > 3, has a meromorphic continuation to the entire complex plane, and sat-
isfies a functional equation. We remark that one could obtain these results also
for general (not twisted) quternionic Shimura varieties of arbitrary level. In order
to obtain these results, we use in particular the automorphy of degree two Asai
representations of automorphic representations of GL(2) which appear in [R2]
(for details, see Proposition 6.2) and also the meromorphic continuation of some
degree 16 L-functions that appear in [R3] (see Proposition 6.3 for details). We
remark that similar results were obtained by the author in [V1] in the case of
twisted quaternionic Shimura varieties of dimension 3, and in that case the mero-
morphic continuation of the triple L-functions that appear in [I] was essential.

2. Twisted quaternionic Shimura varieties

Let F be a totally real number field such that [F : Q] = d � 4, and let O := OF

be its ring of integers. Let D be a quaternion algebra over F which is unramified
at exactly 4 infinite places of F . In this article we assume that D �= M2(F ).
Let S∞ be the set of the infinite places of F . Then S∞ is identified as a ΓQ-set
with ΓF \ ΓQ. Let S′

∞ be the subset of S∞ at which D is ramified. Thus the
cardinality of S∞ − S′

∞ is equal to 4.
We denote by G the algebraic group over F defined by the multiplicative

group D×, and we let Ḡ = ResF/Q G. For v ∈ S∞ − S′
∞, we fix an isomorphism

of G(Fv) with GL2(R). We have Ḡ(R) =
∏

v∈S∞
G(Fv). Let J = (Jv) ∈ Ḡ(R),

where

Jv =

{
1 for v ∈ S′

∞,

1/
√

2
(

1 1
−1 1

)
for v ∈ S∞ − S′

∞.

Let K∞ be the centralizer of J in Ḡ(R). Set

X = Ḡ(R)/K∞.

Then X is complex analytically isomorphic to (H±)4, where H± = C − R. For
each open compact subgroup K ⊂ Ḡ(Af ), set

SK(C) = Ḡ(Q) \ X × Ḡ(Af )/K.
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For K sufficiently small, SK(C) is a complex manifold that is the set of the
complex points of a quasi-projective variety SK of dimension 4 defined over a
totally real number field E. More exactly, we have that ΓE is the stabilizer of
S′

∞ ⊆ ΓF \ ΓQ.
We fix ℘ a prime ideal of OF such that G(F℘) is isomorphic to GL2(F℘).

Consider K := K℘ × H , where K℘ is the set of elements of GL2(O℘) which are
congruent to 1 modulo ℘ and H is some open compact subgroup of the restricted
product of (D ⊗F Fp)×, where p runs over all the finite places of F , with p �= ℘.
Then it is well known (see, e.g., [C, Corollary 1.4.1.3]) that for H sufficiently
small, the group GL2(O/℘) acts freely (see [V1]) on

SK(C) = Ḡ(Q) \ X × Ḡ(Af )/K.

We fix such a small H .
Consider a continuous representation

ϕ : ΓE → GL2(O/℘),

and denote by S′
K/Spec(E) the twisted Shimura variety obtained from SK via

twisting by ϕ composed with the natural action of GL2(O/℘) on SK (see [V1,
§2] for details).

3. Zeta functions of twisted quaternionic Shimura fourfolds

From now on, if π is an automorphic representation of Ḡ(AQ), we denote the
automorphic representation of GL2(AF ), obtained from π by Jacquet-Langlands
correspondence (usually denoted JL(π)) by the same symbol π.

If π is a cuspidal automorphic representation of weight 2 of GL(2)/F which
is a discrete series at infinity, then there exists (see [T], [C], [BR1]) a λ-adic
representation

ρπ,λ : ΓF → GL2(Oλ) ↪→ GL2(Ql),

which satisfies L(s − 1/2, π) = L(s, ρπ,λ) and is unramified outside the primes
dividing nl. Here n is the level of π, O is the integer ring of the coefficient field
of π, and λ is a prime ideal of O above some prime number l. In order to simplify
the notation, we denote by ρπ the representation ρπ,λ.

Let K be an open compact subgroup of Ḡ(Af ), and let HK be the Hecke
algebra of convolutions of bi-K-invariant, Q̄l-valued compactly supported func-
tions on Ḡ(Af ). If π = π∞ ⊗ πf is an automorphic representation of Ḡ(AQ), we
denote by πK

f the space of K-invariants in πf . The Hecke algebra HK acts on
πK

f .
We have an action of the Hecke algebra HK and an action of the Galois

group ΓE on the étale cohomology H4
et(SK , Q̄l) and these two actions commute.

Then we know (see, e.g., [RT, Proposition 1.8]).
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PROPOSITION 3.1

The representation of ΓE × HK on the étale cohomology H4
et(SK , Q̄l)(2) is iso-

morphic to ⊕
π

ρ(π) ⊗ πK
f ,

where ρ(π) is a representation of the Galois group ΓE . The above sum is over
weight 2 irreducible cohomological automorphic representations π of Ḡ(AQ), and
the HK -representations πK

f are irreducible and mutually inequivalent.

The automorphic representations that appear in Proposition 3.1 are one-dimen-
sional or cuspidal and infinite-dimensional. If π is one-dimensional, then ρ(π)
has dimension 6 and if π is infinite-dimensional, then ρ(π) has dimension 16.

We fix an isomorphism j : Q̄l → C and define the L-function

L4(s,SK) :=
∏
π

∏
q

det
(
1 − Nq−s+2j(ρ(π)(Frobq))|H4

et(SK , Q̄l)(2)Iq
)−1

,

where Frobq is a geometric Frobenius element at a finite place q of E and Iq is
an inertia group at q. (In order to define the local factors at the places of E

dividing l, one actually has to use the l′-adic cohomology for some l′ �= l and [B,
Theorem 3] which gives us the expression of the local factors of the zeta functions
of quaternionic Shimura varieties.)

We have the following (for details, see the proof of [V1, Theorem 3.2]).

THEOREM 3.2

The L-function L4(s,S′
K) is given by the formula

L4(s,S′
K) =

∏
π

L
(
s − 2, ρ(π) ⊗ (πK

f ◦ ϕ)
)
,

where the product is taken over cohomological automorphic representations π of
Ḡ(AQ) of weight 2, such that πK

f �= 0.

4. Base change

We know the following result (see [V2, Theorem 1.1]).

THEOREM 4.1

If F is a totally real number field, π is a cuspidal automorphic representation of
weight 2 of GL(2)/F , and F ′ is a solvable extension of a totally real number field
containing F , then there exists a Galois extension F ′ ′ of Q containing F ′, such
that F ′ ′ is a solvable extension of a totally real field, and there exists a prime λ

of the field coefficients of π, such that ρπ,λ|ΓF ′ ′ is modular; that is, there exists
an automorphic representation π1 of GL(2)/F ′ ′ and a prime β of the field of coef-
ficients of π1 such that ρπ,λ|ΓF ′ ′

∼= ρπ1,β .
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In this section we fix an automorphic representation π as in Theorem 4.1 and
we denote ω := πK

f ◦ ϕ. In this article we assume that the field L := Q̄Ker(ϕ) is a
solvable extension of a totally real number field. Thus the field K := Q̄Ker(ω) is
a solvable extension of a totally real number field.

Let k be a solvable extension of a totally real number field which contains
E. From Theorem 4.1 we deduce that there exist a Galois extension F ′ ′ of Q

containing FKk, such that F ′ ′ is a solvable extension of a totally real field,
and a prime λ of the field coefficients of π, an automorphic representation π1 of
GL(2)/F ′ ′, and a prime β of the field of coefficients of π1 such that ρπ,λ|ΓF ′ ′

∼=
ρπ1,β .

By Brauer’s theorem (see [SE, Theorems 16, 19]), we can find some subfields
Fi ⊂ F ′ ′ such that Gal(F ′ ′/Fi) are solvable, some characters χi : Gal(F ′ ′/Fi) →
Q̄×, and some integers mi, such that the representation

ω|Γk
: Gal(F ′ ′/k) → Gal(Kk/k) → GLN (Q̄l)

can be written as ω|Γk
=

∑i=k
i=1 mi IndΓk

ΓFi
χi (a virtual sum). Then

L
(
s, (ρ(π) ⊗ ω)|Γk

)
=

i=k∏
i=1

L
(
s, ρ(π)|Γk

⊗ IndΓk

ΓFi
χi

)mi

=
i=k∏
i=1

L
(
s, IndΓk

ΓFi
(ρ(π)|ΓFi

⊗ χi)
)mi

=
i=k∏
i=1

L
(
s, ρ(π)|ΓFi

⊗ χi

)mi
.

If F ⊂ Fi, since ρπ,λ|ΓF ′ ′ is modular and Gal(F ′ ′/Fi) is solvable, from Lang-
lands base change for solvable extensions one can deduce easily that ρπ,λ|ΓFi

is
modular, and in this case we denote by πi the automorphic representation of
GL(2)/Fi such that ρπ,λ|ΓFi

∼= ρπi .

5. Known results

The following is known (see [R1, Theorem M]).

PROPOSITION 5.1

If π1 and π2 are two cuspidal automorphic representations of GL(2)/L, where
L is a number field, then π1 � π2 is an automorphic isobaric representation of
GL(4)/L.

We know the following (see [JS]).

PROPOSITION 5.2

If π1 and π2 are two cuspidal unitary automorphic representations of GL(n)/L

and GL(m)/L, where L is a number field, then the function L(s,π1 × π2) has a
meromorphic continuation to the entire complex plane with possible simple poles
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only at Re(s) = 0 and 1, and the completed L-function satisfies a functional equa-
tion s ↔ 1 − s. Also, the function L(s,π1 × π2) does not vanish in the semiplane
Re(s) > 1.

6. Asai L-functions

Let K/F be an extension of number fields, and let d := [K : F ]. We consider the
algebraic group G := ResK/F GLn /K. Thus G(F ) = GLn(K), and the L-group
of G is equal to the semidirect product

LG = GLn(C)d � ΓF ,

where GLn(C)d is indexed by the elements σ ∈ ΓK \ ΓF and ΓF acts on GLn(C)d

by permuting the factors in the natural way. We consider the representation

rK/F : LG → GL
(
(Cn)⊗d

) ∼= GLnd(C)

given by

rK/F

(
(gσ); 1

)(⊗
σ

vσ

)
=

⊗
σ

gσvσ

and

rK/F

(
(Iσ); τ

)(⊗
σ

vσ

)
=

⊗
σ

vτσ,

where (gσ) ∈ GLn(C)d and τ ∈ ΓF and Iσ denotes the identity (n × n)-matrix in
the σth place.

For any automorphic representation π =
⊗′

v πv of GL(n)/K and any alge-
braic Hecke character χ of F , which by class field theory may be viewed as
a character of ΓF and thus as a character of LG, one can define the Asai

L-function L(s,π, rK/F ⊗ χ) =
∏

v L(s,πv, rK/L ⊗ χv), where the product is over
all the finite places v of F , and if v is a finite place of F such that πw is unrami-
fied at any place w of K above v and χv is unramified, then there is a semisimple
conjugacy class A(πv) in LG such that

L(s,πv, rK/L ⊗ χv) = det
(
I − χv(Frobv)rK/F (A(πv))Nv−s

)−1
,

where Frobv is a geometric Frobenius at v.
We know the following (see [R3, Theorem 6.11]).

PROPOSITION 6.1

Let K/F be a quadratic extension of number fields, let n be a positive integer, and
let π be a cuspidal automorphic representation of GL(n)/F . Then L(s,π, rK/F )
admits a meromorphic continuation to the entire complex plane with the only
possible poles at s = 0 and 1 and satisfies a functional equation of the form

L∞(1 − s,π∨, rK/F )L(1 − s,π∨, rK/F )

= ε(s,π, rK/F )L∞(s,π, rK/F )L(s,π, rK/F ),
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where π∨ is the contragredient of π, ε(s,π, rK/F ) is an invertible holomorphic
function, and L∞(1 − s,π∨, rK/F ) and L∞(s,π, rK/F ) are the infinity parts of
the L-functions and are products of Γ-factors. Also, the function L(s,π, rK/F )
does not vanish in the semiplane Re(s) > 1.

We know the following (see [R2, Theorem D]).

PROPOSITION 6.2

Let K/E be a quadratic extension of number fields, and let π be a cuspidal auto-
morphic representation of GL(2)/K. Then there is an isobaric automorphic rep-
resentation AsK/E(π) of GL(4)/E such that

L
(
s,AsK/E(π)

)
= L(s,π, rK/E).

This identity is true for the completed L-functions, that is, for the infinity parts
of these L-functions as well.

With the same notation as in Proposition 6.2, for π a cuspidal cohomological
automorphic representation as in Proposition 3.1, we denote by

ρAsK/E(π) : ΓF → GL4(Q̄l)

the representation associated to AsK/E(π). Thus we have L(s, ρAsK/E(π)) =
L(s,AsK/E(π)), and ρAsK/E(π) is a subrepresentation of

IndΓE

ΓK
(ρπ ⊗ ρθ

π),

which satisfies

ρAsK/E(π)|ΓK
= ρπ ⊗ ρθ

π,

where θ is the nontrivial automorphism of K over E.
We know the following (see [R3, Proposition 7.3]).

PROPOSITION 6.3

Let K/E/F be extensions of number fields with [K : E] = 2 and [E : F ] = 2, and
let π be a cuspidal automorphic representation of GL(2)/K. Then

L(s,π, rK/F ) = L
(
s,AsK/E(π), rE/F

)
.

Moreover, this identity is true also for the completed L-functions.

Actually, the following is conjectured.

CONJECTURE 6.4

Let K/E be an extension of number fields, with [K : E] = d and π be a cuspidal
automorphic representation of GL(n)/K. Then there is an isobaric automorphic
representation AsK/E(π) of GL(nd)/E such that

L
(
s,AsK/E(π)

)
= L(s,π, rK/E).
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Moreover if K/E/F are extensions of number fields and π is a cuspidal auto-
morphic representation of GL(n)/K, then

L(s,π, rK/F ) = L
(
s,AsK/E(π), rE/F

)
.

These identities are true for the completed L-functions as well.

7. L-functions of twisted quaternionic Shimura fourfolds

Assume that k is a solvable extension of a totally real number field which contains
E and that π is an infinite-dimensional cuspidal automorphic representation of
GL(2)/F which appears in Theorem 3.2.

We recall that in §4 we denoted ω =: πK
f ◦ ϕ, and we have assumed that the

field L := Q̄Kerϕ is a solvable extension of a totally real number field.
We denote by ρ(π)ss the semisimplification of ρ(π). Since at all but a finite

number of finite places of E the representations ρ(π)|ΓFi
and ρ(π)ss|ΓFi

yield the
same local L-factors, and because from the weight-monodromy conjecture which
is true for ρ(π) and ρ(π)ss (see [B, Theorem 2]), we know that the poles of the
local L-factors corresponding to ρ(π) and ρ(π)ss are on the line Re(s) = −1 (see
[B, Theorem 2]), we deduce that the order of the pole at some s with Re(s) > 1
of L

(
s, (ρ(π) ⊗ ω)|ΓK

)
=

∏i=k
i=1 L(s, ρ(π)|ΓFi

⊗ χi)mi is equal to the order of the
pole at s of L

(
s, (ρ(π)ss ⊗ ω)|Γk

)
=

∏i=k
i=1 L(s, ρ(π)ss|ΓFi

⊗ χi)mi .

In this article we show the following result.

THEOREM 7.1

If k is a solvable extension of a totally real number field containing E, and K :=
Q̄Ker(ω) is a solvable extension of a totally real number field, then the function
L

(
s, (ρ(π)ss ⊗ ω)|Γk

)
has a meromorphic continuation and satisfies a functional

equation s ↔ 1 − s, and it has no zeros and is holomorphic in the semiplane
Re(s) > 1. (In some subcases of cases (iv) and (v) below, we have to assume
that the existence of Asai representations AsF2/F1π

′ defined in Conjecture 6.4 if
[F2 : F1] = 3 or 4 and π′ is an automorphic representation of GL(2)/F2).

Since L
(
s, (ρ(π)ss ⊗ ω)|Γk

)
=

∏i=k
i=1 L(s, ρ(π)ss|ΓFi

⊗ χi)mi , in order to prove The-
orem 7.1 it is sufficient to show the following.

PROPOSITION 7.2

Under the same assumptions as in Theorem 7.1, we have that L(s, ρ(π)ss|ΓFi
⊗ χi)

is holomorphic away from the lines Re(s) = 0 or 1, satisfies a functional equation
s ↔ 1 − s, and does not vanish in the semiplane Re(s) > 1.

We describe now the representation ρss(π) with π infinite dimensional (see [BR2,
§7.2]). Let G be a group, and let K and H be two subgroups of G. We consider
a representation

τ : H → GL(W )
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and a double coset HσK such that d(σ) = |H \ HσK| < ∞. We define a rep-
resentation τHσK of K on the d(σ)-fold tensor product W ⊗d(σ). Consider the
representatives {σ1, . . . , σd(σ)} such that HσK =

⋃
Hσj . If γ ∈ K, then there

exists ξj ∈ H and an index γ(j) such that

σjγ = ξjσγ(j).

We define the representation

τHσK(γ)(ω1 ⊗ · · · ⊗ ωd(σ)) = τ(ξ1)ωγ−1(1) ⊗ · · · ⊗ τ(ξd(σ))ωγ−1(d(σ)).

One can prove easily that the equivalence class of τHσK is independent of the
choice of the representatives σ1, . . . , σd(σ).

Let S∞ − S′
∞ = {σ1, σ2, σ3, σ4}, and let S :=

⋃
ΓF σi. We write S as a disjoint

union of double cosets

S =
k⋃

j=1

ΓF σjΓE ,

and we denote by ρj the representation of ΓE defined by ρπ,λ and the double
coset ΓF σjΓE . Then our representation ρss(π) is isomorphic to ρ1 ⊗ · · · ⊗ ρk.

Define ΓE1 := σ−1
1 ΓF σ1 ∩ σ−1

2 ΓF σ2 ∩ σ−1
3 ΓF σ3 ∩ σ−1

4 ΓF σ4.

We distinguish several cases (up to some permutations).
(i) We have k = 4 and ΓF σjΓE = ΓF σj for j = 1, . . . ,4. Then, for a fixed j,

from ΓF σjΓE = ΓF σj we get ΓE ⊆ σ−1
j ΓF σj , and thus we obtain E1 = E and

ρ(π)ss ∼= ρπ |σ1
ΓE

⊗ ρπ |σ2
ΓE

⊗ ρπ |σ3
ΓE

⊗ ρπ |σ4
ΓE

,

where

ρπ |σj

ΓE
(γ) = ρπ(σjγσ−1

j ).

Hence

ρ(π)ss|ΓFi
⊗ χi

∼= ρπ
σ1
i ⊗χi

⊗ ρπ
σ2
i

⊗ ρπ
σ3
i

⊗ ρπ
σ4
i

,

where the representation π
σj

i satisfies ρ
π

σj
i

∼= ρπ |σj

ΓFi
.

(ii) We have k = 3 and ΓF σ1ΓE = ΓF σ1 and ΓF σ2ΓE = ΓF σ2 and ΓF σ3ΓE =
ΓF σ3 ∪ ΓF σ4. Then it is easy to see that [E1 : E] = 2, E contains σ1(F ) and
σ2(F ) but does not contain σ3(F ) and σ4(F ), that σ3 · σ−1

4 is the nontrivial
automorphism of E1 over E, and that

ρ(π)ss ∼= ρπ |σ1
ΓE

⊗ ρπ |σ2
ΓE

⊗ ρ(π)′ ′,

where ρ(π)′ ′ is a subrepresentation of

IndΓE

ΓE1
(ρπ |σ3

ΓE1
⊗ ρπ |σ4

ΓE1
),

which satisfies

ρ(π)′ ′ |ΓE1
= ρπ |σ3

ΓE1
⊗ ρπ |σ4

ΓE1
.

We consider two subcases
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(a) E1 ⊆ Fi. Then

ρ(π)ss|ΓFi
⊗ χi

∼= ρπ
σ1
i ⊗χi

⊗ ρπ
σ2
i

⊗ ρπ
σ3
i

⊗ ρπ
σ4
i

.

(b) E1 �⊆ Fi. Then [E1Fi : Fi] = 2, and since ρπ,λ|ΓF ′ ′ is modular, and F ′ ′ is
a solvable extension of E1Fi, we obtain that ρπ |σ3

ΓE1Fi
is modular, and thus there

exists an automorphic representation π′
i
σ3 of GL(2)/FFi such that ρπ,λ|σ3

ΓE1Fi

∼=
ρπ

′σ3
i

. We get

ρ(π)ss|ΓFi
⊗ χi

∼= ρπ
σ1
i ⊗χi

⊗ ρπ
σ2
i

⊗ ρAsE1Fi/Fi
(π′

i
σ3 ).

(iii) We have k = 2 and ΓF σ1ΓE = ΓF σ1 ∪ ΓF σ2 and ΓF σ3ΓE = ΓF σ3 ∪ ΓF σ4.

Then it is easy to see that

ρ(π)ss ∼= ρ(π)′ ⊗ ρ(π)′ ′,

where ρ(π)′ is a subrepresentation of

IndΓE

ΓE2
(ρπ |σ1

ΓE2
⊗ ρπ |σ2

ΓE2
),

which satisfies

ρ(π)′ |ΓE2
= ρπ |σ1

ΓE2
⊗ ρπ |σ2

ΓE2
,

and ρ(π)′ ′ is a subrepresentation of

IndΓE

ΓE3
(ρπ |σ3

ΓE3
⊗ ρπ |σ4

ΓE3
),

which satisfies

ρ(π)′ ′ |ΓE3
= ρπ |σ3

ΓE3
⊗ ρπ |σ4

ΓE3
,

where the fields E2 and E3 verify the following properties [E2 : E] = 2; [E3 : E] =
2; E does not contain σ1(F ), σ2(F ), σ3(F ) and σ4(F ); E1 = E2E3 and E2 could
be equal to E3 and σ1 · σ−1

2 is the nontrivial automorphism of E2 over E and
σ3 · σ−1

4 is the nontrivial automorphism of E3 over E.
Thus we have two cases.
(a) E1 = E2 = E3. Then we consider two subcases.
(1) E1 ⊆ Fi. Then

ρ(π)ss|ΓFi
⊗ χi

∼= ρπ
σ1
i ⊗χi

⊗ ρπ
σ2
i

⊗ ρπ
σ3
i

⊗ ρπ
σ4
i

.

(2) E1 �⊆ Fi. Then [E1Fi : Fi] = 2 and

ρ(π)ss|ΓFi
⊗ χi

∼= ρAsE1Fi/Fi
(π′

i
σ1 ) ⊗ ρAsE1Fi/Fi

(π′
i
σ3 ) ⊗ χi,

where π′
i
σ1 and π′

i
σ3 are automorphic representations of GL(2)/E1Fi defined as

above.
(b) E2 �= E3. Then we consider several subcases.
(1) E1 ⊆ Fi. Then

ρ(π)ss|ΓFi
⊗ χi

∼= ρπ
σ1
i ⊗χi

⊗ ρπ
σ2
i

⊗ ρπ
σ3
i

⊗ ρπ
σ4
i

.
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(2) E3 �⊆ Fi, but E2 ⊆ Fi. Then [E3Fi : Fi] = 2, and

ρ(π)ss|ΓFi
⊗ χi

∼= ρπ
σ1
i ⊗χi

⊗ ρπ
σ2
i

⊗ ρAsE3Fi/Fi
(π′

i
σ3 ),

where π′
i
σ3 is an automorphic representation of GL(2)/E3Fi defined as above.

(3) E2 �⊆ Fi, but E3 ⊆ Fi. This case is similar to case (2).
(4) Fi ∩ E1 = E. Then [E2Fi : Fi] = 2 and [E3Fi : Fi] = 2 and

ρ(π)ss|ΓFi
⊗ χi

∼= ρAsE2Fi/Fi
(π′

i
σ1 ) ⊗ ρAsE3Fi/Fi

(π′
i
σ3 ) ⊗ χi,

where π′
i
σ1 and π′

i
σ3 are automorphic representations of GL(2)/E2Fi and of

GL(2)/E3Fi defined as above.
(iv) We have k = 2 and ΓF σ1ΓE = ΓF σ1 and ΓF σ2ΓE = ΓF σ2 ∪ ΓF σ3 ∪ ΓF σ4.

Then it is easy to see that [E1 : E] = 3 or [E1 : E] = 6 and E1 is Galois over E,
with Gal(E1/E) ∼= Z3 or Gal(E1/E) ∼= S3, and E contains σ1(F ), but E does not
contain σ2(F ), σ3(F ) and σ4(F ). Thus we have two cases.

(a) [E1 : E] = 3. Then σ3 · σ−1
2 is a nontrivial automorphism of E1 over E and

σ3 · σ−1
2 = σ4 · σ−1

3 . We get

ρ(π)ss ∼= ρπ |σ1
ΓE

⊗ ρ(π)′ ′ ′,

where ρ(π)′ ′ ′ is a subrepresentation of

IndΓE

ΓE1
(ρπ |σ2

ΓE1
⊗ ρπ |σ3

ΓE1
⊗ ρπ |σ4

ΓE1
)

which satisfies

ρ(π)′ ′ ′ |ΓE1
∼= ρπ |σ2

ΓE1
⊗ ρπ |σ3

ΓE1
⊗ ρπ |σ4

ΓE1
.

We consider two subcases.
(1) E1 ⊆ Fi. Then

ρ(π)ss|ΓFi
⊗ χi

∼= ρπ
σ1
i ⊗χi

⊗ ρπ
σ2
i

⊗ ρπ
σ3
i

⊗ ρπ
σ4
i

.

(2) E1 �⊆ Fi. Then [E1Fi : Fi] = 3, and we should have

ρ(π)ss|ΓFi
⊗ χi

∼= ρπ
σ1
i ⊗χi

⊗ ρAsE1Fi/Fi
(π′

i
σ2 ),

where π′
i
σ2 is an automorphic representation of GL(2)/E1Fi defined as above

and AsE1Fi/Fi
(π′

i
σ2) is the conjectured automorphic representation defined in

Conjecture 6.4.
(b) [E1 : E] = 6. Then it is easy to see that ρ(π)ss satisfies the following

properties:
(1) E1 ⊆ Fi. Then

ρ(π)ss|ΓFi
⊗ χi

∼= ρπ
σ1
i ⊗χi

⊗ ρπ
σ2
i

⊗ ρπ
σ3
i

⊗ ρπ
σ4
i

.

(2) σ2(F ) ⊆ Fi, but E1 �⊆ Fi. Then [E1Fi : Fi] = 2 and σ3 · σ−1
4 is the

nontrivial automorphism of E1Fi over Fi and

ρ(π)ss|ΓFi
⊗ χi

∼= ρπ
σ1
i ⊗χi

⊗ ρπ
σ2
i

⊗ ρAsE1Fi/Fi
(π

′σ3
i ).

(3) σ3(F ) ⊆ Fi, but E1 �⊆ Fi. This case is similar to case (2).
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(4) σ4(F ) ⊆ Fi, but E1 �⊆ Fi. This case is also similar to case (2).
(5) σ2(F ) �⊆ Fi and σ3(F ) �⊆ Fi and σ4(F ) �⊆ Fi. Then [σ2(F )Fi : Fi] = 3

and we should have

ρ(π)ss|ΓFi
⊗ χi

∼= ρπ
σ1
i ⊗χi

⊗ ρAsσ2(F )Fi/Fi
(π′

i
σ2 ),

where π′
i
σ2 is an automorphic representation of GL(2)/σ2(F )Fi defined as above

and Asσ2(F )Fi/Fi
(π′

i
σ2) is the conjectured Asai automorphic representation de-

fined in Conjecture 6.4.
(v) k = 1 and ΓF σ1ΓE = ΓF σ1 ∪ ΓF σ2 ∪ ΓF σ3 ∪ ΓF σ4. Then it is easy to see

that [σ1(F ) : E] = 4 and ρ(π)ss satisfies, in particular,

ρ(π)ss|ΓE1
∼= ρπ |σ1

ΓE1
⊗ ρπ |σ2

ΓE1
⊗ ρπ |σ3

ΓE1
⊗ ρπ |σ4

ΓE1
,

and hence if E1 ⊆ Fi, then

ρ(π)ss|ΓFi
⊗ χi

∼= ρπ
σ1
i ⊗χi

⊗ ρπ
σ2
i

⊗ ρπ
σ3
i

⊗ ρπ
σ4
i

.

The field E1 is Galois over E, and Gal(E1/E) is a subgroup of S4 of order
divisible by 4.

Anyway, ρ(π)ss|ΓFi
⊗ χi has one of the forms described above at (i), (ii)(b),

(iii)(b)(4), (iv)(b)(5), or

ρ(π)ss|ΓFi
⊗ χi

∼= ρAsKi/Fi
(π′

i
σj ) ⊗ χi,

where Ki is contained in E1Fi and Ki = σj(F )Fi for some j and [Ki : Fi] = 4
and π′

i
σj is an automorphic representation of GL(2)/Ki defined as above and

AsKi/Fi
(π′

i
σj ) is the conjectured Asai automorphic representation defined in Con-

jecture 6.4.

7.1. The proof of Proposition 7.2
In this section we prove Proposition 7.2.

In cases (i), (ii)(a), (iii)(b)(1), (iv)(a)(1), (iv)(b)(1), and so on, we know that

ρ(π)ss|ΓFi
⊗ χi

∼= ρπ
σ1
i ⊗χi

⊗ ρπ
σ2
i

⊗ ρπ
σ3
i

⊗ ρπ
σ4
i

,

which, from Proposition 5.1, is a tensor product of two Galois representations
ρπ

σ1
i ⊗χi

⊗ ρπ
σ2
i

and ρπ
σ3
i

⊗ ρπ
σ4
i

arising from automorphic representations of GL(4).
Thus from Proposition 5.2 we deduce Proposition 7.2. (We remark that when
the representations ρπ

σ1
i ⊗χi

⊗ ρπ
σ2
i

and ρπ
σ3
i

⊗ ρπ
σ4
i

are reducible, they are sums
of cuspidal automorphic representations of GL(1), GL(2), or GL(3), and even in
this case we can apply Proposition 5.2.)

In cases (ii)(b), (iii)(b)(2), (iv)(b)(2), and so on, we know that [E1Fi : Fi] = 2
and

ρ(π)ss|ΓFi
⊗ χi

∼= ρπ
σ1
i ⊗χi

⊗ ρπ
σ2
i

⊗ ρAsE1Fi/Fi
(π′

i
σ3 ),

where π′
i
σ3 is an automorphic representation of GL(2)/E1Fi. From Proposi-

tions 5.1 and 6.2, we deduce that ρ(π)ss|ΓFi
⊗ χi is a tensor product of two Galois

representations ρπ
σ1
i ⊗χi

⊗ ρπ
σ2
i

and ρAsE1Fi/Fi
(π′

i
σ3 ) arising from automorphic rep-

resentations of GL(4). Thus from Proposition 5.2 we deduce Proposition 7.2.
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In cases (iii)(b)(4), and so on, we know that [E2Fi : Fi] = 2 and [E3Fi : Fi] =
2 and

ρ(π)ss|ΓFi
⊗ χi

∼= ρAsE2Fi/Fi
(π′

i
σ1 ) ⊗ ρAsE3Fi/Fi

(π′
i
σ3 ) ⊗ χi,

where π′
i
σ1 and π′

i
σ3 are automorphic representations of GL(2)/E2Fi and of

GL(2)/E3Fi. Hence ρ(π)ss|ΓFi
⊗ χi is a tensor product of two Galois represen-

tations ρAsE2Fi/Fi
(π′

i
σ1 ) and ρAsE3Fi/Fi

(π′
i
σ3 ) ⊗ χi arising from automorphic repre-

sentations of GL(4), and thus from Proposition 5.2 we deduce Proposition 7.2.
In the cases (iv)(a)(2), and so on, we know that [E1Fi : Fi] = 3, and if we

assume the existence of the Asai automorphic representation AsE1Fi/Fi
(π′

i
σ2)

which appears in Conjecture 6.4, we have

ρ(π)ss|ΓFi
⊗ χi

∼= ρπ
σ1
i ⊗χi

⊗ ρAsE1Fi/Fi
(π′

i
σ2 ).

Hence under the above assumption, ρ(π)ss|ΓFi
⊗ χi is a tensor product of two

Galois representations ρπ
σ1
i ⊗χi

and ρAsE1Fi/Fi
(π′

i
σ2 ) arising from automorphic rep-

resentations, and thus from Proposition 5.2 we deduce Proposition 7.2.
In some subcases of case (v), we have [Ki : Fi] = 4 and

ρ(π)ss|ΓFi
⊗ χi

∼= ρAsKi/Fi
(π′

i
σj ) ⊗ χi

if we assume the existence of the automorphic representation AsKi/Fi
(π′

i
σj ) which

appears in Conjecture 6.4. Hence under this assumption we deduce Proposi-
tion 7.2.

Also, we observe that in case (v), when [Ki : Fi] = 4, if we assume that Ki

contains a quadratic extension F ′
i of Fi, then

L
(
s, ρ(π)ss|ΓFi

⊗ χi

)
= L

(
s,AsKi/F ′

i
(π′

i
σj ⊗ χi|ΓKi

), rF ′
i /Fi

)
,

and in this case, from Proposition 6.1, we deduce Proposition 7.2. �

If π is one-dimensional, then ρ(π) is a 6-dimensional representation, that is, a
virtual sum of representations induced from characters, and Proposition 7.1 is
trivial.
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