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Spiegelhalter cites Zadeh in support of the view
that Dempster’s rule of combination can lead to unin-
tuitive results. For a reply to Zadeh’s arguments, see
Shafer (1986a).

The Bishop of Bath and Wells whose work on
probability Lindley discusses was named George
Hooper. Hooper “actually became a bishop only in
1703, long after his work on probability was published.
Details about Hooper’s life and work are given by
Grier (1981). Hooper gave two rules for combining
testimony, a rule for concurrent testimony and a rule
for successive testimony. I have discussed these rules
and their Bayesian counterparts elsewhere (Shafer,
1978, 1986¢).

Hooper’s rules were widely admired in the 18th
century; they appear, for example, in Diderot’s Ency-
clopedie. The Bayesian analysis that Lindley reviews,
together with a corresponding analysis for the case of
successive testimony, displaced Hooper’s rules in the
early 19th century (see Shafer, 1978). But this Baye-
sian account of “the probability of testimony” quickly
became a laughingstock. It was roundly and justly
denounced both by logicians critical of probability,
such as John Stuart Mill, and by probabilists
who preferred a frequentist interpretation, such as
Antoine-Augustin Cournot.

Rejoinder

Dennis V. Lindley

I find myself in general agreement with the contri-
butions of Watson and Spiegelhalter. Watson is right
when he says we do not have to accept Savage’s
axioms. But it is desirable to have an axiom system to
support one’s calculations and the lack of them must
count against the alternatives to probability. Spiegel-

halter is right when he says that ultimately it’s the"

appeal of probability that matters: people will see that
it makes good sense. Just as with Euclidean geometry,
it is the operational aspect that counts, rather than
Euclid. Watson queries the existence of the Great
Scorer. I do not think it matters because one would
wish to behave in such a way that one could not be
exposed by his or her arrival. I would regard it as a
serious proposal to pay meteorologists, or even medical
doctors, according to their scores.

Whilst I find myself in dispute with Shafer, his
arguments command respect and are not easily re-
futed. He contends that the axioms depend on condi-
tional probability and expected utility, rather than

%J
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ 2

The theory of belief functions does not require us
to go back to Hooper’s rules. Instead it provides a
framework that includes both Hooper’s analyses and
the Bayesian analyses as special cases, along with
many intermediate possibilities. The virtue of this
flexibility is that we can tailor our analysis to our
actual evidence. If we have significant prior evidence,
we can use it. If we have evidence for causal depend-
ence between the witnesses, we can use it. If we have
instead evidence for dependence in our uncertainties
about the witnesses, we can use it. By relating the
numbers we offer to actual evidence in this way, we
can hope to escape the ridicule that so wounded sub-
jective probability in the 19th century.
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that these depend on the axioms. While it is true that
historically the concepts pre-date any axiom system,
Savage introduced the axioms in order to justify a
system, classical statistics, that denies conditional
probability (of a hypothesis) and does not admit ex-
pected utility (with an expectation over unknowns);
and he was much surprised when the axioms destroyed
that system.

The scoring-rule argument works for almost every
rule and does not depend on 0 or 1 as Shafer suggests.
The preferences in Bayesian decision analysis are not
necessarily sharp. If d; has expected utility 10.927 and
ds 10.926, then d; is preferred only slightly to d;. The
analysis is designed to select an act because only one
act is typically possible.

Shafer also raises the issue of constructive proba-
bility. It is difficult, having experienced A,, to think
of probabilities for A; if only because probability de-
scribes uncertainty and A, is no longer uncertain. My
response is that we should try to develop methods that
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would help people to do this. If these all fail, then it
will be necessary to think afresh. But forensic scien-
tists, finding it necessary to think about probabilities
for clothing stains (for example) have been able to
assess them.

There remains the contribution by Dempster and
Kong. They really'throw the book at me and I am at
a loss how to react. Certainly no response within the
limits that the editor is likely to impose on me could
be adequate. It is therefore perhaps best to remain
silent except for one remark that touches on a point
raised by others. One reason that I reject belief func-
tions is that, at every stage, they are more complicated
than probability—and that is hard enough, as Watson
points out in connection with Schum’s work. They
involve more assessments and harder calculations.

Rejoinder

David J. Spiegelhalter

By concentrating on applications, I appear to have
escaped lightly in the discussion. Dr. Watson pointed
out the multitude of criteria that could be used for
evaluation of aids to clinical decision-making. Some
order can be introduced by classifying all criteria
according to whether they concern the system as
decision-maker or as aid, and whether they are meas-
ures of process or outcome. Thus “internal coherence”
is a process measure of the system as decision-maker,
“comparison with experts” is an outcome measure as
a decision-maker, “user satisfaction” is a process
measure as an aid, and “effect on patients’ health” is
an outcome measure as an aid.

Professor Lindley was concerned about my inter-
pretation of “uncertainty about a probability.” Per-
haps this phrase should not be used, since it does not
differentiate between doubt in one’s current beliefs
due to imprecision in the probability assessments on
which that belief is based, and sensitivity in that belief
due to ignorance of potential future evidence. As evi-
dence accumulates, the imprecision will generally in-
crease as one gets into an increasingly narrow area of
experience, but ignorance will be reduced. One’s
“point” current belief can therefore be thought of as
the mean of two second-order distributions, repre-
senting what that belief might be now, and what it
may become in the future.

Professor Shafer offers a vision of creative systems
that can generate arguments in novel situations. He

Furthermore, in my experience it is never necessary
to extend the probabilistic argument in the way the
theory of belief functions suggest. For example, if
imprecision about a probability is relevant, then prob-
ability theory will require its assessment within its
own calculus. Dempster and Kong reinforce this point
when they take several paragraphs to solve the simple
decision problem in their Table 1.

In conclusion may I thank those responsible for
arranging the conference that led to these papers, and
the editors for encouraging them to appear. I hope
that readers will feel that the issues we address are
important, both in theory and practice. If any readers
feel they can meet the challenge it would be interesting
to hear from them.

is correct that I, and my clinical colleagues, view
expert systems in a much more limited sense, often
having very little to do with the tenets of artificial
intelligence, although exploiting their programming
environments. I remain confident that probability is
the appropriate tool in this area, and recent develop-
ments in strict probabilistic reasoning using local com-
putations in general causal networks (Lauritzen and
Spiegelhalter, 1987) overcome many technical prob-
lems. The parallels raised by Professor Shafer between
probability /belief-function and expert-system/artifi-
cial intelligence contrasts are intriguing.

Both Professors Shafer and Dempster mention up-
per and lower expected losses from belief functions,
which I find rather confusing. Are belief intervals to

" be interpreted as upper and lower probabilities or not?

Suppose we adopt Dempster’s decision theoretic struc-
ture after hearing “Slippery Fred’s” evidence. Then
{u}Be Obey .8 < P (slippery) < 1.0, which—from Shaf-
er’s original equation (3)—can easily be shown to
impose the constraint ¢ = max{0, 4(1 — 2p)/(4 — 3p)}.
If p = Y2, then {u}ga is equivalent to 0 < g < 1, which
does not appear too unreasonable. However, the im-
plicit constraints become much stronger after a crank
of the rule-of-combination having seen the thermom-
eter. Let us denote by r the probability the thermom-
eter is right even if it is not working properly. To
obtain coherently {u}gq = .04 < P (slippery) < .05, we
require for, say p = V2, that (3 + 97r)/(123 — 23r) <



