156 E. J. HANNAN

different 6, if the underlying process is not of the fitted
structure, although they lead to the same 6, if the
process is of the fitted structure. Suppose we fit an
AR(k) model. Consider, for example, the Gaussian
likelihood '

1. - 1
L(6) =ilog det =, +7, Y'Z'Y

and alternatively an M estimate

with Y, =0 if ¢t=<1

(if ¢? is unknown the estimate has to be modified, cf.
Martin and Yohai (1985)). Then,

1 1
ELr(9) = T log det =, + T tr{==71
and

k
EL%0) = EP(E asYt—s>-

s=0
If Y, is also an AR(k) process then both ELr(f) and
EL%(0) are minimized by the true parameter value,
while in the case where Y; is not an AR(k) process,
ELr(0) and EL%(0) are minimized by different values.
This means that one has not only to consider the

Comment

Jorma Rissanen

In this exceptionally lucid and comprehensive sur-
vey, Professor Hannan covers essentially all the im-
portant ideas in the theory of linear dynamic systems,
both deterministic and stochastic, developed during
the past twenty years or so. In addition, he describes
the more recently introduced new statistical ideas for
selecting such models for time series. I was particularly
impressed by the apparent ease and elegance with
which Professorr Hannan managed to explain the
rather intricate notions without any undue sacrifice
in precision.

I would like to comment on two issues of a general
nature raised by Professor Hannan. There have been
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quality of the estimation procedure, but also the “qual-
ity” of the estimated parameter.

In the formula below (5.8), Hannan should not
compare the estimate ®,(j) with ®(;j) but with the
estimated parameter ®,(j) (in the above sense), ob-
tained as a solution of the theoretical counterpart of
equation (5.8), and then ask in a second step how good
the ®,(j) represent the structure of the series (in fact,
the finitely many ®,(j), j = 1, ---, h, describe the
structure of the process “better” than the finitely
many tp(.])y.’ = 17 ] h)~

It is obvious that the choice of an estimation pro-
cedure doesn’t only imply an estimated parameter 6,
but also an optimal order. The results of Shibata
(1980) 'favoring AIC are only for the case where the
parameters are estimated by the Yule-Walker equa-
tions. It would be interesting to know whether using
other estimation procedures (e.g., robust ones) leads
to other order criteria.
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several attempts to apply the beautiful and deep ap-
proximation theory of Adamyan, Arov and Krein in a
statistical context for the purpose of obtaining an
optimal low order model reduction. As explained in
the paper, such a procedure begins with a high order
dynamic system, arrived at, perhaps, by applying
physical or chemical laws to a process, or by other
means. This is then, in the second stage, reduced to a
desired complexity, optimally in the sense of minimum
distance in a certain norm. The point I wish to make
is that because the initial system, which necessarily
has the status of a model rather than any “true”
system, is nonunique, the end result cannot be as-
signed any meaningful optimality property. Instead, it
is just an optimal approximation of an arbitrary model
of the data.

My remaining comments aim to amplify and,
perhaps, modify some of the concluding remarks in
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Sections 4 and 5 made by Professor Hannan about my
minimum description length (MDL) principle. Al-
though some of the main analytical results of the
predictive and the semipredictive versions of the cri-
terion do presently require Gaussian assumptions, the
same is not true of the general criterion nor by any
means of the applicability of the principle itself. Fur-
thermore, the MDL principle has more recently been
expressed in a new and more satisfactory form (Ris-
sanen, 1987), where the several earlier versions appear
as computable approximations of the central notion,
the stochastic complexity and which certainly is not
restricted to Gaussian likelihoods nor any other ad
hoc choices. In fact, an application of the principle
amounts to searching for a model class among any
that we can think of which permits the largest assign-
ment of a density or probability to the actually ob-
served set of data. The classes may, if desired, be
restricted by constraints not determined by the ob-

Comment

Ritei Shibata

It is my great pleasure to comment on Professor
Ted Hannan’s excellent review paper. This paper cov-
ers a wide range of topics in stationary multiple time
series analysis. My comment is only on a part, “order
estimation procedure” for the case n = 1. I strongly
agree with him that there is no means by which it can
be established that AIC is always to be preferred to
BIC or the reverse. The admissibility result that any
choice of Cr implies admissible order estimation
(Stone, 1981, 1982; Takada, 1982; Kempthorne, 1984)
supports us.

The results by Shibata (1986a, 1986b) suggest that
consistency of order estimation and uniform order of

, consistency, in terms of mean squared error, of the
resulting parameter estimates are not compatible. I
therefore also agree with the author that the choice of
procedure should be related to the purpose of the
analysis. In this respect, I could not understand the
derivation of BIC by Rissanen, particularly the rele-
vance of quantizing and coding both observations and
parameters. I prefer the original derivation of BIC by
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served data, such as “prior knowledge” or considera-
tions involving the intended application of the model.
Hence, it represents a sort of “global” maximum like-
lihood principle, which is free from any choices with
the possible exception of the desired extraneous con-
straints. The principle is equally well applicable to the
selection of models, regardless of the number of pa-
rameters in them, as to hypothesis testing, and con-
sequently it is difficult for me to imagine a statistical
problem which could not be dealt with in such a
manner. In this my thinking appears to be bolder than
Professor Hannan’s more cautious view, according to
which the existence of any generally applicable prin-
ciple is in doubt.
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Schwarz (1978) from the Bayesian point of view. For
a Koopman-Darmois family, the log of the marginal
likelihood,

logfeT(y'o—b(o)) dp,(ﬁ)

is approximated by
d
sup T(y’0 — b(#)) — = log T,
6€0 2

for large T, provided that u(f) has a density with
respect to Lebesgue measure, which is bounded and
locally bounded away from zero. The penalty term
—d/2 log T = log T ~%* follows from the boundedness
assumption on u(f) and the fact that the integration
of exp(—T'| 0| % over d-dimensional Euclidean space
0 is (27 T) %2 However, if u(f) is chosen as a measure
whose density becomes peaky as T increases, then the
penalty is not necessarily of the order of log T. For
example, if u(6) is concentrated on a 1/+T neighbor-
hood, the penalty is of the order of constant like as in
AIC (Takada, 1982).

One significant difference of AIC from other criteria
is in the derivation based on a distance, the Kullback-
Leibler information number for the model and the



