288 J. S. HODGES

Rejoinder

James S. Hodges

Several themes emerged in the comments; this re-
joinder is organized as a discussion of those themes.
In the sequel, section numbers refer to the paper under
discussion.

1. REPRESENTATION

The main idea that I gleaned from de Finetti (1974,
1975)—and the idea that was to be brought to practi-
tioners—was the idea that all uncertainty can and
should be represented as probability. This idea has
practical and normative implications. On the practical
side, it and the taxonomy of uncertainty in Section 2
suggest a strategy of allocating resources in analysis
(to which Huber alluded, and which was discussed in
Section 3.1). In this regard, what matters is not how
large the various kinds of error are over one’s lifetime
(Madansky), but how large they are in the problem at
hand—if you take care of the latter, the former will
take care of itself. De Finetti’s idea and Section 2 also
provide a framework for communication among mem-
bers of a team (Smith, 1986, and his comments above).

On the normative side, this central idea requires
practitioners to acknowledge all of the sources of
uncertainty in an analysis and to incorporate them
explicitly in choices made in the course of the analyt-
ical work and in the products that arise from it. In the
Air Force example (to use the expression of a RAND
colleague, Jim Quinlivan), the noise is the signal, and
it must be reported and used in decisions. This imper-
ative does not imply a “black-box presentation”
(Huber), or that one cannot form an attachment to
some particularly elegant model (Geisser); nor is it
clear that an exhaustive list of models is necessary
(Geisser) for an adequate representation of predictive
uncertainty. What is clear is that when the time comes
for betting on what the future holds, one’s uncertainty
about that future should be fully represented, and
model mixing is the only tool around.

In this sense, I am “more optimistic” about the
Bayesian framework than Freedman: in the Bayesian
approach all of the types of uncertainty can be repre-
sented and discussed in the same language and thus
acquire the same importance. In the frequentist frame-
work, this is not the case. But with this Bayesian
advantage comes a disadvantage. Taken at face value,
the approach generates an infinite regress (Huber,
Geisser, Section 2.1) in that expressions of uncertainty
are themselves often somewhat indefinite; at some
level a Bayesian must make an assertion without
further qualification (Huber, Section 2.1).
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2. ADDING INFORMATION TO DATA

At this point one can no longer avoid a question
that has been glossed over so far: what is being
represented? Information—but plainly not just the
information in the data (whatever that might mean).
A data set, by itself, refers only to itself; in uttering
a predictive or inferential statement, we necessarily
add assertions to the data set. For one, we assert the
relationship of the seen to the unseen, e.g., the rela-
tionship of the observations on experimental units to
the properties of some unseen mechanism that pro-
duces the effect of a treatment. This assertion is
usually slipped in implicitly, and it is justified (when
it can be) by the design of the experiment, by knowl-
edge of the experimental apparatus and protocols, and
so on. But without the addition to the data of this
assertion or something like it, any computations done
using those data produce only descriptions of the data,
not inferences or predictions about anything distinct
from the data. (Holland (1986) gives an excellent
discussion of different types of such assertions.)

For another example, we represent the relationship
of the unseen future to the recorded past, usually with
an explicit model. The data themselves do not and
cannot support an assertion that future events will
arise from the same mechanism as past observations
or be otherwise comparable. This assertion must be
added to the data; it is a judgment, perhaps difficult
to criticize, but a judgment nonetheless. (Holland
(1986) addresses this as well.) I think this explains
de Finetti’s argument (alluded to by Geisser) that it
is unfair to criticize someone’s predictions after the
predicted events have passed; you can test predictions,
but the legitimacy of the test as a gauge of future
predictive power depends on an unverifiable assertion
that the past—as represented by the collection of
earlier predictions and the standard against which
they are evaluated—is relevant to the future, for which
a prediction is to be made. Even predictive validation
is necessarily subjective.

Thus, I do not suggest dumping cross-validation
(Geisser, Madansky), but I do suggest that cross-
validators stop kidding themselves about getting
something for nothing and figure out what informa-
tion a cross-validation adds to the data on which it is
performed. I am not sure what this information is, but
it must involve exchangeability of future and past
observables conditional on explanatory variables,
for stratified cross-validations, and unconditional
exchangeability, for unstratified cross-validations.
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If models are understood as information added to
data, several implications follow. For example, it
doesn’t matter how a given model was obtained or
whether some substantive justification exists for it
(Madansky). The model is a particular assertion of
the relation of future observations to past observa-
tions, regardless of how it was obtained. This idea can
probably be developed formally as an extension of
Bayesian work on the irrelevance of stopping rules.
(For a brief concurring discussion, see Hill, 1986; for
a more fully developed differing view, see Leamer,
1974, 1978.)

No one will dispute that a prior distribution is an
addition of information to data. But the nature of the
added information is not so obvious. I agree with
Geisser that we lack a satisfactory explanation of what
prior distributions are supposed to mean in a. data
analytic context, that is, when the analyst specifies
his prior after having poked through the data exten-
sively. Leamer (1974, 1978) develops the idea that the
sequence of models examined in a data analysis reveals
prior beliefs about the parameters of those models (in
much the same way that economic choices are sup-
posed to reveal preferences) and thus introduces con-
straints on prior distributions for their parameters.
This might be an accurate description of the behavior
of econometricians, but it is not a convincing portrayal
of, for example, the users of statistics turned out by
the service courses at the University of Minnesota
(my alma mater). People trained in these courses have
very small data analytic and modeling repertoires, so
limited that their behavior reveals more about training
than about prior beliefs. The diagnostic approach
(Section 2.1) includes a preference for simplicity;
but again, simplicity is determined as much by the
state of mathematical and computational art as by
substantive considerations. Thus, in ingenious as it is,
Leamer’s approach is not satisfying.

In Huber’s intriguing reminiscences about his path
to the robustness theory, he said that he hoped to
arrive at methods that would allow him to assert only
vague information and still get a procedure that
“worked well.” But as the foregoing suggests, Huber
solved this problem by a very important narrowing of
scope. If the problem is extended from making infer-
ences about parameters to making predictions—even
predictions subsequent to the inferences that Huber’s
theory treats—the original difficulty looms even
larger. In assessing the uncertainty to be attached to
a prediction, how much of the variability associated
with outliers should be counted? Certainly recording
errors should not be counted; the object is to predict
the actual values that will occur. But some theorists
of robustness (e.g., Hampel, Ronchetti, Rousseeuw
and Stahel, 1986) would have us lump together such
recording errors with, for example, large residuals in
econometric modeling, which have resulted from real

effects, and thus must be counted in attaching a “give
or take” to a prediction. If the goal is to predict and
to assess the uncertainty of the prediction, Huber’s
path will not take us there.

This notion of inference and prediction as the ad-
dition of information to data is obviously too broad
and deep to be treated here, but a few more general
points are readily available. Using a specific mathe-
matical assertion of information is like buying a dog;
you won’t really know whether you've got a good
watchdog until you actually have a prowler—a predic-
tive test—and if your dog turns out to have been a
bad choice, it is too late to choose another. Moreover,
your dog brings surprises with it; it might carry ticks
or chew the furniture or the neighbors’ children. So
while it is bracing to see Kadane and others probe for
ticks in the fur of the finitely additive dog, for the
present I prefer to stick with more familiar hounds
whose shortcomings are better understood.

In response to Madansky, though (and echomg
Smith, 1986), I can say this: objectivity is a hoax. The
best a statistician can do is to know what information
is added to the data by an analysis, to strive to
understand the nature of the added information, and
to be explicit about it.

3. THE STATISTICIAN’S ROLE

What then is the statistician’s role? In short to
suggest legitimate ways and forms in which informa-
tion can be added to data and to assist in their use, to
identify the information added by procedures, to iden-
tify the information that must be added to get from
a given set of data to a desired form of inferential
or predictive statement and to advocate candor and
rigor in the evaluation, selection and reporting of the
information to be added.

I agree completely with Smith that quantitative
analysts should operate as part of a team in all of his
five phases of the analytical enterprise—that is the
way we generally do business at RAND. The role I

" have described is, in large part, one of elicitation of

information from collaborators, and it is difficult to
fill that role without participating fully enough to ask
the right questions. Smith’s point is particularly im-
portant in view of the plethora of otherwise useful and
well-meant publications like Andrews and Herzberg
(1985), Atkinson (1985) or Hastie and Tibshirani
(1986), which foster the mistaken notion that a pint
of technique added to a quart of numbers yields a data
analysis (as Brillinger pointed out in his discussion of
Hastie and Tibshirani). I would add to Smith’s five
phases the notion that in longer term work, research
teams often iterate through his scheme. Current Air
Force work on spare parts supply is a result of prob-
lems perceived in the conceptual and formal models
adopted in the late 1940s and early 1950s, which were
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real achievements in their day. The importance of this
iteration is emphasized by stories of ossification like
those given in Section 3.2.

In this connection, I wonder whether Huber had
real problems in mind when he found himself unable
to specify “believable priors.” It is difficult to imagine
how one could assess the believability of any assertion
of information, including a prior, outside of the con-
text of a particular real problem. (Huber generalizes
too quickly about where practicing Bayesians get their
priors; the literature contains many examples of in-
formative priors, e.g. Litterman, 1986, or Smith and
West 1983.)

Huber also opined that it is the statistician’s job to
keep technical uncertainty “smaller than the other
uncertainties by about an order of magnitude.” Not
necessarily; if technical uncertainty is bigger by an
order of magnitude than the other types of uncer-
tainty, but in aggregate the uncertainty is small
enough to allow an unambiguous decision for the
problem at hand, reducing the technical uncertainty
is a waste of effort.

In any case, before we can make operationally useful
assessments of the relative importance of technical
uncertainty in specific problems, we must understand
the extent of technical uncertainty for important
classes of procedures. Currently, we do not. For ex-
ample, the GLIM computer package relies heavily on
the large sample normal approximation to the distri-
bution of the maximum likelihood estimate and on
related approximations. Its manual (Baker and
Nelder, 1978) says of t tests made using the approxi-
mate standard errors: “No general results are known
about the adequacy of this approximation for [non-
normal] models covered by GLIM, so the standard
errors provided must be regarded as only a general
guide to the accuracy of the estimates ...” (Part I,
Section 6, page 1); and of the x% approximation to the
scaled deviance: “rather little is known about how
good the asymptotic approximation is for small sets
of data” (Part I, Section 6, page 2). Let the user
beware!

A final note on the statistician’s role. At the end of
his comment, Freedman says “The real issues here are
of science, not statistical technique.” I do not agree
entirely. Technique constrains; the less unnecessarily
constraining, the better. Many things are natural
within a Bayesian framework and difficult or awkward
in a frequentist setting. For example, partly as a result
of the paper under discussion, one of RAND’s spare
parts researchers is now willing to postulate a few
possible functional forms relating the flying program
to the expected number of failures of each of a collec-
tion of parts. One of these functional forms will hold
(approximately), but which one is not known ahead

of time. It is difficult to conceive of the actual func-
tional form as the outcome of some stochastic mech-
anism, but perfectly natural to treat it as simply
uncertain, in the Bayesian fashion. By considering the
frequency with which each of the possible functional
forms obtained in the past for this and comparable
parts, this researcher is willing to postulate a few
possible prior distributions across the functional
forms, that is, to mix models. Bayesian technique has
assisted his formulation of the problem. Moreover, it
will assist him in evaluating the possible resupply
options he considers, for it gives him a structure for
simulations that incorporates a source of uncertainty
that he previously omitted.

4. HOW POLICY ANALYSIS IS DIFFERENT

The purpose of this paper was not to argue that
policy analysis is a unique environment for applying
statistics (Madansky); it happens to be the area in
which I do most of my work. I face similar problems
in my ornithological work.

But policy analytic applications of statistics do
raise considerations that scientists can often neglect
(Huber, Geisser):

(i) Usually some decisions must be made.

(ii) The analysis is usually done under time and
budget pressure. In the Army work in which I collab-
orate, we are under pressure, not to produce any
particular result, but to produce some result, and an-
alytical niceties are expected to yield. This makes it
difficult to get funding for model criticism and im-
provement, and fosters an atmosphere in which scru-
pulous model criticism is viewed as vaguely traitorous.

(iii) The problems are often of mind-boggling scale
and complexity (e.g., those addressed by macroeco-
nomic modeling) and thus ill understood and not
susceptible to the minute dissection and isolation of
causal factors possible in the physical sciences.

(iv) Strategies for hedging against substantial un-

. certainty are often available, but

(v) Application of techniques motivated by labora-
tory sciences—especially the practice of picking a
model and making statements conditional on it—
presents a real danger in that it prejudices the process
against the hedging strategies.

The latter three points in particular (to respond to
Smith) make the Bayesian approach uniquely suited
to understanding and characterizing where the action
is in policy analytic situations. These problems have
indicated to me the nature of the boundary between
where formal and informal methods can be applied,
although I find that boundary to be less well-defined
than does Smith (1986).
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5. FREEDMAN VS. MADANSKY

Madansky would like me to choose sides in this tiff.
I decline, because I am ambivalent.

A substantial portion of the Army’s analytical effort
goes into setting up models (usually the elaborate
computer variety) and running dozens of “what if’s”
through them. This can be a useful activity if it
produces a better heuristic understanding of the mod-
eled situation; as such, it provides an exercise in
combining assumptions to see what they imply. But
these models are regularly used as if their runs pro-
vided experimental replications of the modeled situa-
tions, which can lead to serious mistakes. This truth
receives a lot of lip service within the Army but little
serious regard. Admittedly, it is extremely difficult to
apply empirical methods to the criticism and improve-
ment of these models, because the data are scarce and
problematic at best. But in the case of one close
combat model, the institutional parents of the model
do not want its users to understand the details of its
algorithms, and actively discourage them from doing
so. This is perverted in a very fundamental sense.

In a world where this happens, I can only applaud
self-appointed and intentionally truculent critics like
Freedman, even though I strongly disagree with him
about substance and tactics in particular instances.
But Freedman’s crusade has an irritating disingen-
uousness about it. He insists that models must be
“right,” but never tells us what that is supposed to
mean. Is Newtonian mechanics “right?” Of course not,
but the bridges near Berkeley were built by engineers
who acted as if it were, and I’ll wager that Freedman’s
trips across them are not troubled by his knowledge
of this fact. We know that in his own applied work
Freedman must make similar judgments of when a
model is good enough; so why doesn’t he tell us how
he does it, instead of just kicking other people when
they’ve done it particularly badly? (For discussions of
“good enough,” see Hill (1986) and Leamer’s discus-
sion of that paper, and for a simple formal approach
to “good enough,” see Kadane and Dickey, 1980.)

The operative question cannot be whether the
model is “right,” but whether the model’s users, and
the consumers of their analyses, understand the as-
sertions of information of which the model consists,
and the nature of the justification (or lack thereof)
for those assertions. The consumer of the analysis
must ultimately judge whether the model is “good
enough” for his purposes, for in any circumstance,
regardless of the technique applied, validation is
founded on subjective judgments and thus is necessar-
ily subjective. You can fault analysts for being negli-
gent or less than candid, but you can’t fault them for
doing the best they can with what’s available. Beyond
that, Freedman’s preference for qualitative over quan-
titative ways of doing this limited “best” can perhaps
be justified on the grounds that it focuses the consum-
er’s attention more appropriately—many people are
stupefied by computer models—but otherwise the
preference seems stylistic.
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