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Comment

Peter J. Huber

This is a very stimulating paper, and the issues
raised and discussed in it—how to deal with three
distinct types of uncertainty: structural, stochastic
and technical—clearly are important not only in ap-
plied statistical work, but also beyond.

I shall confine my comments to two central issues
of this paper: the problem of the infinite regress and
the question of whether and when to combine different
kinds of uncertainty.

The main and obvious difficulty one faces with the
structural type of uncertainty is an infinite regress:
once one has quantified the structural uncertainty,
one also should quantify the uncertainty of this quan-
tification, and so on. The customary (perhaps: the
only?) way to cut this regress is to act as if at a certain
level there was certainty. Often (although not neces-
sarily), this means that one assumes some parametric
family of structural models; if one is a Bayesian, one
also posits a fixed prior on the space of parameters. It
is somewhat awkward in the case of the Bayesian
approach that at this stage of modeling the prior will
not reflect a reasonably accurate, objective or subjec-
tive probability; it rarely is anything more than a
¢onventional substitute for ignorance (e.g., a flat or a
conjugate prior). But what is much worse, and this
equally affects all approaches, is that the true struc-
ture with practical certainty will lie outside of the
parametric family. I am always surprised how glibly a
majority of statisticians (especially Bayesians!) are
able to talk around these difficulties. Roughly speak-
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ing, what happens is that in large samples the proce-
dure will pick some member of the parametric family
close to the true structure (whatever that means) and
then try to do the best possible for that member. It
depends on the parametric family, on the type of
procedure, on the true situation and on an unspecified
kind of closeness whether the “best possible” for the
model is any good at all for the true situation. Mere
intuition can be very misleading.

It would be a delusion to think that a Bayesian
approach, that is, the opportunity to choose also a
prior, in such situations provides more security than
the Neyman-Pearson version—if the family of models
chosen by the statistician (i.e., the support of his prior)
does not contain the true underlying situation, one
has to go outside of the Bayesian framework in order
to justify the use of a Bayes procedure.

For me, this infinite regress was a major conceptual
difficulty when I first got into statistics in 1961; the
stumbling block then turned out to be the stepping
stone leading into a theory of robustness. Some per-

" sonal reminiscences about the struggle preceding my

1964 paper may help to illustrate the point. Somehow,
I then wanted to capture situations describable by
statements like: “With this kind of data I would expect
about 2% grossly wrong observations, but probably
not more than 10%; these values could be anywhere.”
After some stillborn attempts with a nonparametric
version of maximum likelihood, I naturally tried Baye-
sian approaches next, since by then I knew that even
large data samples (I had had experiences with non-
linear least squares problems with a few thousand
observations) would not allow me to assess distribu-
tion tails reliably without using outside information.
However, I was unable to invent believable priors.
After a while I realized that the problem was not
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merely caused by my lack of imagination or faith, but
lay deeper. The set of all probability distributions is
very rich, and any genuine prior probability on it lives
on a very thin subset (so that entirely reasonable,
nearby possibilities are excluded by not belonging to
the support of that prior). Once this had become clear,
the obvious thing to try was an old recipe of Gauss,
namely to take some reasonable-looking procedures
and to investigate their properties. Actually, the first
candidate I tried in any serious fashion (the M esti-
mate with a truncated-linear ¢ function) turned out
to be asymptotically minimax with respect to ¢ con-
tamination. In itself, this does not mean much—
optimality theorems are important only because they
show that you cannot improve any further by going
in the same direction—but it turned out also that
the maximum risk was relatively insensitive to mis-
specification (see Huber, 1964), end of Section 6 and
Table I), and that some actually observed distributions
were very similar to the least favorable strategies of
nature, more so than to the idealized normal model
(see, e.g., Huber, 1981, pages 91-94).

The points to be stressed here are: the structural
model cutting the infinite regress was not chosen
because I believed in it, but because it was relatively
safe to act as if it were true and because it was in the
ballpark of actually observed error distributions.
Hodges’ objection that the minimax procedures would
give essentially no protection if the model is far off, is
correct in principle, but it nevertheless misses the
point: minimaxity is only one of several criteria help-
ing with the selection of a robust procedure and clearly
must be supplemented by breakdown and other con-
siderations. Its purpose is to safeguard within a small
neighborhood—so small that it is difficult to discrim-
inate in a meaningful fashion between models living
inside, but large enough that the differences still mat-
ter. This argument is also relevant to Hodges’ criticism
of the diagnostic approach: roughly speaking, the
proper underlying philosophy is to use diagnostics to
catch the larger deviations from the model and ro-
bustness to deal with the smaller ones.

The main and undisputed strength of the Bayesian
approach is to provide a neat and unified way to
combine evidence from different sources. However, it
is not always desirable (or even possible) to combine
the evidence. Often, it may be more important instead
to identify the dominant source of uncertainty, to
ascertain to what extent different conclusions may
depend on it and what might be done to reduce that
uncertainty. \

In particular, the combination becomes meaningless
and useless, if the lesser sources of uncertainty are
comparable in size to the uncertainty in the assess-
ment of the dominant source of uncertainty. A couple

of separate and rough back-of-the envelope calcula-
tions then can be more revealing than a black box
presentation of the combined effects.

It is particularly embarrassing when structural un-
certainty is dominant, but the experts disagree widely
about its extent. For example, in a problem of astro-
nomical dating (Huber, 1982), a crucial piece of the
evidence was a text with Venus observations. Apart
from the fact that the text is replete with gross errors,
there is a substantial structural uncertainty: there are
doubts about the overall reliability of the text. To
mention a specific question: how sure is the attribution
of the observations to the reign of king A? One expert
might put this probability well above 95%, another
below 50% and assertions about the date of king A,
based on this text alone, are dominated by this uncer-
tainty.

How should one then combine evidence derived
from this text with that derived from others? One
possibility is to present a couple of alternative anal-
yses, perhaps using some version of interval arithmetic
with lower and upper probabilities. Another is to
proceed conditionally, given that the attribution is
correct.

Incidentally, by being rather extreme with regard to
structural and other uncertainties, this dating problem
also happened to put into focus some other delicate
aspects of the relative strengths and weaknesses of
the different approaches. In a Bayesian framework, it
was difficult to go beyond relative likelihoods even
with additional, independent data (the main result
derivable in this framework was that among four
choices suggested by the Venus text, one chronology
was favored about 10,000 to 1 over the others by the
combined evidence). In the Neyman-Pearson frame-
work, one could use the independent data to test the
correctness of the best of the four (a permutation test
rejected the hypothesis that all four were wrong on
the 1% level).

The third source of uncertainty—technical uncer-

_ tainty or inadequacy of execution, again raises the

question: to combine or not to combine? It is the
obligation of a competent professional to keep tech-
nical uncertainty small—smaller than the other un-
certainties by about an order of magnitude. Of course,
he or she will occasionally fail, and in addition there
is Murphy’s law. Thus, we can expect a mixture of
frequent, but mostly negligible, small errors on one
side with rare gross errors on the other side, but we
may lack a rational basis for estimating (or even only
guessing) the probability of the latter. The problem is
certainly worse than in robustness (where it is possible
to use a majority of good cases to keep a small minority
of bad ones under control, even if one does not know
very accurately how often the bad ones occur). The
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principal method for checking that kind of failure, at
least in the United States, is the malpractice suit, and
such suits might even provide some empirical evidence
about human frailty of technical professionals, al-
though not necessarily transferable to the cases
Hodges has in mind!

Comment

Joseph B. Kadane

I agree with Jim Hodges’ approach to problems of
robustness and uncertainty, and congratulate him for
his clear exposition of it. I would, however, add a few
remarks and references.

Although his paper cites de Finetti as coming “clos-
est to the goal of a complete context for statistical
activity,” Hodges does not in this paper bring his
analysis very close to de Finetti’s ideas. For example,
he does not mention the extreme subjectivity of de
Finetti (probabilities represent a person’s opinions;
different people may have different opinions). Whose
opinions do or should a Rand logistics study repre-
sent? Are different experts consulted on different
aspects of the problem? If so, by what principles
should such opinions be brought together?

A second important aspect of de Finetti’s work is
his emphasis on prevision (see Goldstein, 1986). There
are important questions about elicitation using de
Finetti’s methods when ethical neutrality fails, as it
will for most experts most of the time (Kadane and
Winkler, 1987a, 1987Db).

A third important aspect of de Finetti’s work is his
insistence on finite additivity of probabilities. de Fi-
netti believed that while your probabilities might be
countably additive in a given situation, there is no
axiom that they must be. Mere finite additivity
changes the nature of probability theory, particularly
in the failure of conglomerability (Schervish, Seiden-
feld and Kadane, 1984). This has a variety of con-
sequences for statistics (Kadane, Schervish and
Seidenfeld, 1986; Hill, 1980a). It would be interesting
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if Hodges would remark on how these aspects of de
Finetti’s work may have influenced his work and that
of his Rand colleagues, or how they might.

“With respect to Bayesian ideas of robustness, there
are several important approaches left unmentioned.
First, there is the classic paper of Edwards, Lindman
and Savage (1963), which introduced the idea of stable
estimation. There is a series of papers (Kadane and
Chuang, 1978; Chuang, 1984) concerning what hap-
pens if the prior, likelihood or utility as assessed is
slightly off from “true.” These two papers study con-
ditions under certain topologies in which the achieved
expected utility is continuous. There is also important
work of Novick and Ramsey (1980) and of Hill
(1980Db).

Hodges mentions puzzlement that so few applica-
tions use predictive distributions. In the area of par-
ametric elicitation, these have been used for some
time. Predictive distribution in this context have the
advantage of being able to present questions to an
expert on variables that are familiar, instead of about
parameters of an unfamiliar distribution. For papers
along these lines, see Kadane, Dickey, Winkler, Smith
and Peters (1980), Kadane (1980) and Winkler (1980).

- The former gives a concrete application in the Appen-

dix. A second use of those programs in a medical
context is described brifely in Kadane (1986).
Finally, Hodges might be interested to learn of an
explicitly Bayesian effort on the spare parts problems
for Naval aircraft almost 20 years ago (Brown and
Rogers, 1973). There the problem was that the air-
plane in question had not yet flown, so priors based
on spare part usage of other airplanes were used,
together with a judgment about how similar the me-
chanics (and hence, perhaps, spare parts usage) would
be. An additional problem was that spare parts built
while the airplanes were being built were much less
expensive than spare parts built later, and that spare
parts could be partially built, and then completed,



