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The Statistical Precision of Medical
Screening Procedures: Application to
Polygraph and AIDS Antibodies Test Data

Joseph L. Gastwirth

Abstract. The increased use of screening tests for drug use or antibodies to
the HTLV-III (AIDS) virus, as well as pre-employment polygraph testing,
has raised concerns about the reliability of the results of these procedures.
This paper reviews the mathematical model underlying the analysis of data
from screening tests. In addition to the known formulas for the proportion
of positive (negative) classifications that are correct, we provide a large
sample approximation to their standard errors. The results reinforce the
need for confirmatory tests and indicate that moderately large sample sizes
should be used to determine the accuracy rates of screening tests that will
be applied to the general population in which the prevalence of the disease

or trait is low.
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1. INTRODUCTION

As the use of medical screening tests for drug use
or exposure to AIDS antibodies and pre-employment
polygraph (or “lie detector”) testing have become more
widespread, concerns have been expressed about their
routine use. In part, these concerns arise because the
prevalence of persons with the disease or a deceptive
character in the general population is far less than
that in a prescreened group, e.g., persons in a high
risk category for the disease in question, so there may
be a high fraction of false positive classifications
among the test results. The discussion of screening
tests in standard texts (Ingelfinger, Mosteller,
Thibodeau and Ware, 1983; Sackett, Haynes and
Tugwell, 1985) assumes that the accuracy rates, that
is, the sensitivity and specificity of the screening test,
and the prevalence = of the disease in the population
" to be tested are known. The sensitivity (specificity) of
a test is the probability that a person having (not
having) the disease is correctly classified. In his analy-
sis of polygraph data, Raskin (1986) estimates = from
the proportion of persons classified as deceptive using
the method developed by Steinhaus who analyzed
paternity cases (Finkelstein, 1978; Solomon, 1966);
however, the sampling error of the resulting condi-
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tional probability that the classification is correct did
not play a role in the data analysis.

The purpose of this paper is to show that the esti-
mated conditional probability, C, of interest has an
asymptotic normal distribution and to show the effect
of this error on the inference one can draw from a
screening test. The sampling variability of the esti-
mate of C and the effect of the accuracies of the
screening test are considered. Section 2 is devoted to
areview of the general framework and the main math-
ematical result. The results are applied to data on the
enzyme-linked immunosorbent assay (ELISA) test
used to screen blood for antibodies to the AIDS virus
in Section 3. Raskin’s data (1986) on the polygraph
are reanalyzed in Section 4. Our results indicate that
the standard error of the estimate C of the conditional
probability a person diagnosed as having a disease (or
being deceptive) actually has the disease (or is decep-
tive) increases as the prevalence of the disease or trait
in the population tested decreases. Thus, the problem
of a high fraction of false positives is exacerbated by
a high degree of uncertainty. An examination of the
components of the standard error indicates that the
specificity needs to be quite accurately estimated in
order to make the standard error of € small, e.g., .02,
when it is applied to a large population which has a
moderate prevalence of the disease. This suggests a
change in the usual allocation of samples between
diseased and disease-free individuals when the accu-
racy rates of a screening test are determined or
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preferably an increase in the size of the disease-free
sample.

2. THE MATHEMATICAL FRAMEWORK USED
TO ANALYZE THE RESULTS OF A
SCREENING TEST

The purpose of a screening test is to determine
whether a person belongs to the class (D) of people
who have a specific disease. The test result indicating
that a person is a member of the class D will be
denoted by S and a result indicating nonmembership
by S. The accuracy of a test is specified by two
probabilities,

n=P[S| D]
= the probability a person with the disease is
correctly diagnosed, called the sensitivity of
the test,

and

6= P[S| D]
= the probability a disease-free individual is
correctly diagnosed, called the specificity of the
test.

Our focus is on the conditional probability, P[D | 9],
that a person whom the test indicates as having the
disease actually has it. Letting = = P(D) denote
the prevalence of the disease in the population tested,
and assuming that a person tested can be regarded
as randomly selected from that population, Bayes’
theorem yields
P[D A S]
PID|S] =~ 5

L
m+ (1 —x)(1 —0)

(2.1) : =

™™
m(p+0—-1)+ (1 —-6)"

This probability is called the predictive value of a
positive test (PVP).

In mass screening programs the prevalence = may
vary among subpopulations so that is must be esti-
mated separately in each one. This is accomplished by
using the fact that the probability a person tested will
be diagnosed as sick, is

p = P[S]
#P[S|D] + (1 — =)P[S| D]
m+ (1 —=)(1 —9).

When a sample of n persons are tested, one estimates
D by the proportion p of those who are classified in S.
Solving for 7 in equation (2.2) yields the estimate
of prevalence studied by Rogan and Gladen (1978),

(2.2)

which is
15+0—1_[)—(1—0)

2.3 ; = .
23) TTa¥0-1 g+0-1

Substituting 7 for « in (2.1) yields the estimator C for
P[D | S]; namely,
-1 |y 1-29)
n+60-—-1 p ’

It should be noted that formula (2.3) can yield an
estimate of prevalence which does not lie between 0
and 1. For example, if n and 8 are low, p can be less
than 1 — 6 and = negative. In practice, when 5 and ¢
are moderately large, e.g., =.8, and = is not too small,
this happens very infrequently. To avoid such prob-
lems, one can define a truncated version #,, of = as
™= mm[max(w, 0), 1] and use 7; in place of 7
in solving for C, except that if #, = 1, € should be
set = 1. In the Appendix we show that #; and # are
asymptotically equivalent to order n™" so the large
sample theory of Rogan and Gladen is valid for #,.
However, when = is small, the sample size n required
for the applicability of the large sample results can be
quite large.

When 7 and 6 are not known but are estimated by
7 and 6 based on samples of size n; and n,, where the
screening test is used on persons whose disease status
is known, we replace n and 6 by these estimated values.
The main statistical result will now be stated:

24) C=

"G»lz"

THEOREM. As n, n, and n. increase, the sampling
distribution of C is approximately normal with mean
P[D | S] and variance

{ n(1 = 6) Fpﬂ—p)
pin+6-1)) p°n

71 -0) |"n(1—n)
@5) * {p(n +6 - 1)} n

+{ (1l — 7) }20(1—0)
p(n+6—-1) ng
Before illustrating the use of (2.5) we note that
when 7 and 6 are known the last two terms in (2.5)
vanish. These terms reflect the variability in our es-
timate of the true positive rate due to uncertainty
about the true value of the specificity and sensitivity
of the screening test. The first term reflects the vari-
ation due to the fact that p is estimated by the pro-
portion of persons tested who are classified in D. From
formula (2.5), we realize that in the case when 5 and
0 are high, but the prevalence () of the disease is low,
the third term, the contribution of the variability in
the estimate of the sensitivity # can be the dominant
term. Moreover, both the first and third terms increase
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as 7 decreases so that the use of screening tests on
groups that have a low prevalence rate will often
yield a low predictive value positive that has a large
standard error.

Of at least as much importance in public health as
C is the false negative rate,

m(1 —n)

(1-p)’
which is 1 minus the probability a negative test is
correct or 1 minus the predictive value of a negative
test result (PVN). In the context of monitoring, the
estimation of F has been studied by Goldberg and
Wittes (1978) so that well shall not focus on it. For
the sake of completeness, we note that
FL+A) _ #(1—d)

1-p) #A-+QQ-7)0

also has a large-sample normal distribution with mean
P[D | 8] and variance given by

(2.6) F=PD|3] =

F=

(1-n%®  p(—p)
W+ 0—DL—pF b
0 “n(1 — 1)
@7 +L1—mw+o—1J "

+[ (1-n)1 -7 ]20(1—0)
1-p)n+06-1) ng

In the mass screening applications with which we
are concerned, formula (2.7) and the normal approx-
imation should not be used to develop confidence
intervals for F unless the adequacy of the normal
approximation has been checked since the sample
sizes n, n; and n, required for its accuracy will be large
if the accuracies n and 6 are high and p and = are
expected to be small.

3. APPLICATION TO SCREENING FOR AIDS

The ELISA test for AIDS is used to screen donated
blood for the AIDS antibody. An evaluation of this
test by Weiss et al. (1985) yielded # = %688 = .977 and
6 =297 = 926 when “borderline” results are classi-
fied as having the antibody. Although Barnes (1986)
reports that blood banks require three positive ELISA
tests before the confirmatory Western blot test is
administered, we shall examine the statistical char-
acteristics of just one screening test. Indeed, only one
test is often administered in mass screening programs
and apparently it is the practice in drug use testing by
some employers. R

In Table 1 we present the estimated PVP, C and its
approximate standard deviation as a function of the
prevalence rate for two sample sizes (n) of the tested

TABLE 1
Approximate standard errors of the estimated true positive rate C
when 1 = 9717, 0 = .926 if they are known or estimated from
samples of size n, = 88 and n, = 297 as a function of the disease
prevalence w and size n of the population to be screened

Standard  Standard  Percentage of
Preva- error error the variance
lence E(C) if 7, if 5, of C due to

T 0 are 0 are estimation

known estimated of 6

n = 500
.50 930 .0065 .0170 849
.40 .898 .0094 .0245 85.2
.20 .768 0241 .0570 82.1
.10 595 .0491 .1026 77.0
.05 410 .0817 1544 72.0
.03 .290 .1056 .1898 69.0
.01 118 .1433 2428 65.2
n = 10,000

.50 930 .0014 .0158 98.5
.40 .898 .0021 .0229 98.9
.20 .768 .0054 .0519 99.0
.10 .595 .0110 .0907 98.5
.05 410 .0183 .1323 98.1
.03 .290 .0236 .1595 97.8
.01 118 .0320 .1986 97.4

Note: The low prevalence rates and moderate sample sizes
(n = 500) are not sufficiently large for 7; and 7 to be equivalent.
The standard error using 7, rather than = in (2.4) would be smaller;
however, the main features of the table and conclusions would not
be seriously affected.

population. The proportion of the variance of C that
is due to uncertainty in our knowledge of # is also
given. The results show that when the prevalence = is
reasonably large, e.g., .4 or more, the expected value
of C is reasonably high, about .9, and its standard
error small, e.g., about .025, even accounting for un-
certainty in our knowledge of the specificity and sen-
sitivity of the screening test. On the other hand, when
7 is small, not only is C less than .5, indicating a rate
of false positives exceeding 50%, its standard error is
also quite high. Even when 7 is .10 and C is expected
to be nearly .6, the standard error of C remains about

" .10, even when a sample of 10,000 persons is screened.

Indeed, the effect of sampling variability in the esti-
mates of 1 and @ on the standard error of C remains
regardless of the size of the population screened.

The standard errors in Table 1 indicate that even
when a highly accurate screening test is used on a
population with a low prevalence, the result, C, of the
test should be reported as a one-sided confidence
interval or with its standard error. This should make
the inherent uncertainty clear to both the doctor and
the patient.

In order to assess what might happen if a more
accurate test were devised or if multiple positive tests
were required (it is hard to model this situation pre-
cisely as the tests are unlikely to be statistically
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independent), we assumed that » = .99, § = .98,
n, = 88, ny = 297 and n = 10,000. If = = .05,
E(C) = .923, however; the approximate standard
error of C when 7 gnd 6 were estimated was .116.
When = = .02, E(C) = .503 and the approximate
standard error was .208. Since the normal approxi-
mation to the sampling distribution of the proportions
# and @ is not that accurate for samples of these sizes
(a Poisson approximation is preferable), one should
not use these results to create a formal confidence
interval. Recent simulations of Hammick (1987) for
the case when 5 and 6 are known (n = .977, § = .926)
indicate that the normal approximation is valid when
« is at least .05. For smaller prevalence rates, the
results in Table 1 are underestimates of E(C) and
overestimates of the standard error. When = = .01,
the Monte Carlo standard error was roughly half that
in Table 1. Nevertheless, the estimated coefficient of
variation of C in this case was about 50%, which is
quite high.

The results also imply that the sample sizes used to
determine the specificity of a screening test may need
to be increased, especially if the test will be used on
the general population rather than on subgroups
known to have an above average prevalence or risk.
Not only can this be seen by an examination of
Table 1, it can be formally derived from formula (2.5)
by regarding the sum n; + n, = N as fixed and finding
the choice of n, and n, as fractions y and 1 — y of N
which minimize the sum of the two rightmost terms
in (2.5). Routine calculus yields

n, ™

no_ (1—-6)(1—n)
(3.1) m_l_w\/ -

Formula (3.1) shows that the optimal allocation of
the subjects used to determine the accuracy of the
screening test is related to the prevalence rate in the
population that will be screened and the accuracy rate
expected. It also provides the optimal allocation when
the objective is to minimize the standard error of C.
If one desired to estimate the prevalence = or the
PVN, F, most efficiently, the optimal allocation would
. be different. For example, from Rogan and Gladen’s

results, we find that the optimal allocation for esti-
mating 7 is

n 7\ /al=m)
T 1-7 (1 —6)°

Similarly, when the focus of attention is the estima-
tion of the false negative rate, the optimal allocation
is '

m_ o« \ nd
B3 L1+ Va-na-o

(3.2)

Formula (3.1) was based on the large sample vari-
ance (2.5), so both n; and n, should be large, e.g., at
least 100 and preferably more. The approximate 1:3
ratio for the sample sizes 88:297 in the NIH study
(Weiss et al., 1985) is quite appropriate since the test
will be applied to a high risk population. Formula (3.1)
suggests that if a screening test with values of n and 6
near .95 is used to screen a general population with a
prevalence less than .05, the number n,, of disease-
free persons used in the determination of 6 should be
even larger relative to n;.

So far we have been concerned with minimizing the
standard error of C. Comparing formulas (3.1) and
(3.3) reveals that the opti;nal allocation for minimiz-
ing the standard error of F differs substantially as the
accuracy of the estimated sensitivity 5 plays a more
important role. Even so, if n = 6 = .95 and = = .01,
which is reasonable for an AIDS screening test given
to a low risk group, formula (3.3) yields an optimal
allocation n,:n, of 1:5. In practical terms these con-
siderations imply that accuracy rates should be deter-
mined on larger samples, especially of disease-free
individuals.

Finally, we note that our calculations assumed that
n and 0 were estimated from simple random samples
in which the disease status was known. In practice,
even the “gold standard” diagnostic or reference test,
e.g., the Western blot test for AIDS antibodies, may
not be 100% accurate so that its small error rates
should be taken into account (Gart and Buck, 1966;
Greenberg and Jekel, 1969).

The accuracies of both the screening and reference
test can be determined by an experiment that admin-
isters both to members of two populations with differ-
ent prevalences of the disease. The reason one cannot
use just one population is that the results are sum-
marized in a single 2 X 2 table (disease status as
determined by the screening and reference tests) so
there are only three “independent” counts. However,
there are five unknown parameters, the sensitivity
and specificity of each test and the prevalence of the
disease. With the two-population design with different
prevalences, there are six unknown parameters and
six “independent” cell counts so the maximum likeli-
hood equations can be solved. The statistical proper-
ties of the resulting estimates are given by Hui and
Walter (1980) and by Vacek (1985) under different
assumptions on the independence of the classification
errors of the two tests. Mantel (1951) discussed the
estimation of n when several replications of the test
were given to each subject.

The method used in the Appendix to derive
the asymptotic normality and variance of C also
applies to the estimates of n and @ yielded by the
two-population experimental design. One must now
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include the covariance term

—27(1 — 6)n(1 — 7)Cov(n, §)
pi(m+ 6 —1)% '

The numerical results in Hui and Walter (1980) sug-
gest that Cov(n, ) is relatively small but negative so
that the values in the tables are likely to be slight
underestimates of the standard error of the asymptotic
distribution of C.

4. APPLICATION TO THE USE OF
LIE DETECTORS

In the murder trial of James Frye, Frye v. United
States, 293 F.1013(D.C. Cir. 1923), defense counsel
desired to introduce the result of a systolic blood
pressure test for deception as it was favorable to his
claim that Mr. Frye was innocent. The trial judge did
not admit this evidence on the basis that it was not
sufficiently reliable. The appeals court affirmed this
ruling and set out the following criteria for the admis-
sibility of scientific evidence:

Just when a scientific principle or discovery
crosses the line between the experimental and
demonstrable stages is difficult to define. Some-
where in this twilight zone the evidential force of
the principle must be recognized, and while courts
will go a long way in admitting expert testimony
deduced from a well-recognized scientific princi-
ple or discovery, the thing from which the deduc-
tion is made must be sufficiently established to
have gained general acceptance in the particular
field in which it belongs.

Whether the criteria of general acceptance of a
scientific principle or technique set forth in the Frye
case is the most suitable one has been subject to an
extensive debate in legal circles (Imwinkelried, 1981;
Lacey, 1984; Raskin, 1986). Most commentators agree
that the scientific evidence presented to a court should
be reliable; the issue is how to determine the degree
of reliability required for admissibility. These consid-
erations are not of a purely statistical nature as courts

> are also concerned with the possibility that the pro-
bative or evidentiary value of a scientific nature could
be outweighed by the danger of its prejudicing or
confusing a jury. This can easily occur with scientific
evidence if jurors are unaware of the possible errors
inherent in this technique. Focusing on C or the PVP,
as well as on the sensitivity and specificity, may help
in the determination of whether a technique is suffi-
ciently reliable in a particular case.

Ever since polygraph evidence was not accepted as
sufficiently reliable in the Frye case, the judicial
acceptance of scientific evidence in general and poly-

graph tests in particular has been somewhat mixed
(Lacey, 1984; Imwinkelried, 1981). Recent proposals
to use polygraph testing more often to screen current
employees and new applicants has renewed interest in
and concern about the reliability of the method
(Brooks, 1985; Hurd, 1985; Holden, 1986; Simon,
1983) because of a possible high rate of false positive
classifications. The statistical principles underlying
the analysis of polygraph data follow the framework
presented in Section 2. The class D now denotes the
set of deceptive persons and S denotes the set of
persons the test classifies as being deceptive. The
usual analysis of the data and the proper way to
describe the results to a jury are described in Raskin
(1982, 1986). The analysis assumes that the accuracy
rates n and 6 are known, while the prevalence 7 of
deceptive persons in the group tested is estimated
from the data using (2.3) and the conditional proba-
bility P[D | S] is obtained from (2.4). Usually the sam-
pling variability inherent in the estimates of =,  and
6 are ignored, and we now examine their effect on the
data in Raskin (1986) to assess their effect.

The accuracy rates 5 and 0 are estimated from
special studies carried out on students or on convicted
criminals. Several studies in which a total of 120 guilty
and 120 innocent persons were tested by the control
question polygraph yielded 7 = .88 and § = .86,
if inconclusive results are classified as errors and
# = .97 and § = .92 if inconclusive results are ignored.
Since firms may not hire persons in the inconclusive
category we will use # = .88 and § = .86 in our analysis.
Moreover, these results are somewhat superior to the
accuracies of n = .89 and 6 = .80 reported as typical
in a review by the Office of Technology Assessment
(1983).

Over a 12-year period, Raskin (1986) conducted
292 polygraph tests on a confidential basis for attor-
neys defending suspected criminals and classified 193
or 66.1% of them as deceptive. Setting p = .66, n = .88
and 6 = .86 in equation (2.4) yields C = .93 with a
standard error of .01, if » and 6 are assumed known
and .02 when the sampling variability of 4 and 8 is
incorporated. As before we see that the effect of esti-
mation of the parameters is 7, » and 6 is small when
a group with a high prevalence is screened.

In Table 2 we report the expected value of C and its
standard error for various values of the prevalence
rate, emphasizing low rates. The trend in the results
is similar to that in Table 1. However, due to the lower
accuracy rates of the polygraph, at every prevalence
rate C is smaller and its standard error is higher. In
addition, the smaller sample of persons used to deter-
mine the accuracies of the polygraph further increased
the standard error of C when the estimation of # and
6 was considered. When the prevalence 7 of deceptives
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TABLE 2
Approximate standard errors of the estimated true positive rate C when 4 = .88, § = .86 if they are known or are estimated from samples
of size ny = ny = 120 as a function of the prevalence = and the size n of the population screened

n =292 n ='10,000
Expected
fraction p Standard Standard Percentage Standard Standard Percentage
Prevalence persons  E(C) error error of the error error of the
™ classified if n, if n, variance of C if n, if n, variance of ¢
D 6 are 6 are due to 6 are 6 are due to
known estimated estimation known estimated estimation
.50 510 .863 .0187 .0418 78.2 .0032 .0375 96.7
.40 436 .807 .0254 .0680 78.9 .0043 .0523 98.2
.20 .288 611 .0632 1174 79.4 .0091 .1051 99.1
.10 214 411 .0873 .1809 76.8 .0149 1591 99.1
.05 177 .249 1187 2344 74.4 .0203 .2032 99.0
.03 .162 .163 .1365 2634 73.1 .0233 .2265 98.9
.01 .147 .060 .1590 .2988 71.7 .0272 2644 98.9
TABLE 3

The expected value and standard error of the true positive rate for a polygraph with accuracy rates n = .88, 0 = .86 when they are known and-
when they are estimated from a sample of 960 persons and 10,000 people are tested®

Standard error

Standard error of C if 71, 0 are estimated for three
allocations of the subjects

Prevalence E(C) of Cif 5,
7" 0 are known n; = 840 ny = 240 n; = 120
np = 840 ny = 720 ny = 840
.50 .863 .0032 .019 .0159 .0153
40 .807 .0043 .026 ' 0219 .0207
.20 611 .0091 053 .0438 .0407
.10 411 .0149 .0806 .0664 .0618
.05 249 .0203 .1031 .0850 0791
.03 .163 .0233 115 .0949 .0883
.01 .060 0272 1294 .1068 .0994

2The standard errors were calculated from formula (2.5) with n = 10,000 and the values of n, and n, specified in the appropriate column.

was less than .10, the standard error was at least half
of the expected PVP. Thus, our analysis supports the
skepticism of Brooks (1985) and other legislators and
psychologists (Holden, 1986) about the reliability of
routine polygraph examinations. With prescreening,
e.g., when 7 is at least .5, the proportion (1 — C) of
false positive classifications that are erroneous is re-
duced to about 10% and its standard error is small.
Because of the lower specificity and sensitivity of
"the polygraph relative to the ELISA test for AIDS
antibodies, we explored the potential for reducing the
standard error of C by changing the relative proportion
of the sample sizes n; and n, from 1:1 to 1 :3or1:7.
Table 3 presents the expected value of C and its
standard error for each of the three allocations of a
total of 960 subjects used to obtain the accuracy rates
for a polygraph test subsequently applied to a group
of n = 10,000 people. We assume that n = .88 and
0 = .86, as in Taple 2, and note that although the
expected value of C is the same in all cases there is an
appreciable (25%) reduction in the standard error in

the low prevalence situation. However, the results in
Table 3 remind us that more precise determination of
the accuracy rates will not reduce the high fraction of
false positive classifications that are expected to occur
when a moderately accurate screening device is used
in a population with a low prevalence of the charac-
teristic for which is it screened.

5. OTHER ISSUES AND IMPLICATIONS

As the same statistical paradigm can be used
to analyze urinalysis tests for drug use or pre-
employment tests to determine whether a job appli-
cant possesses sufficient knowledge or skills to per-
form the job, our results have wide applicability. They
reinforce the known statistical fact that the prevalence
of the trait in the population tested is a major factor
in the determination of the PVP and PVN (Bross,
1954; Fleiss, 1981) with an increased standard error
of the estimated PVP in populations with a low prev-
alence. Before examining further applications we need
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to address the similarities and differences in the analy-
sis of polygraph and medical screening data.

In order to estimate.the accuracy of the polygraph,
Raskin (1986) combined the results of several smaller
studies which appeared mutually consistent in the
sense that the accuracies differed from one another by
amounts which could arise by chance. Since experi-
mental or field conditions can vary substantially, the
x 2 test of homogeneity (Mosteller and Rourke, 1973)
should be used to check that the sample proportions
are not too diverse. Indeed, the studies listed in Saxe,
Dougherty and Cross (1985) show a wide variation
in the estimates of 7 and 6 obtained by different
investigators.

The same problem also arises in the determination
of the specificity and sensitivity of the ELISA test.
The total sample of 297 healthy donors consisted of a
group of 228 persons from Vermont and 69 from
Denmark. The results are given in Table 4. Using the
normal approximation to the Mann-Whitney form of
the Wilcoxon test yields the value Z = 5 showing that
the distribution of mean absorbance ratios (the basis
of the ELISA test) in the Vermont donors is signifi-
cantly greater than that of the Danish donors. Thus,
it is not proper statistical procedure to pool the two
samples. If we only consider the Vermont data, the
estimated specificity becomes 2°%ss = .904. This dif-
ference reduces the PVP and reinforces the concerns
about the widespread use of screening tests without
confirmatory ones. For example, when = = .05, the
expected value E(C) is .348 in contrast with .410 in
Table 1, and when = = .01, E(C) is only .093.

Similarly, the sensitivity of the ELISA test may
depend on whether or not the AIDS patient has
Kaposi’s sarcoma (KS). Of the sample of 88 persons
used to determine 5, 51 had KS. The ELISA ratios
of the KS and non-KS patients are also reported in
Table 4 and the same version of the Wilcoxon test
yields the value Z = 3.6 indicating that the ELISA
ratio units of AIDS patients with KS are higher than
non-KS patients. Weiss et al. (1985) are aware of this,
as they remarked that KS patients had more ex-

tremely high ratios but that the proportions of both
groups with ELISA ratios of 3.0 or more (the cut-off
point for a borderline classification) were not statis-
tically significantly different. (Note: In response to an
earlier version of this article Dr. S. Weiss kindly called
my attention to the recent work of Blaser, Cohn, Cody,
Penley, Judson, Saxinger and Weiss (1986). In order
to assess the usefulness of repeating the ELISA test,
these investigators restandardized the cut-off values
using the data on the 228 healthy blood donors from
Vermont and set the criteria for a positive classifica-
tion at 8.0 ratio units or more, borderline as 4.5 to
7.99 ratio units and negative as less than 4.5 units.)

Another potential issue arises when the group used
to determine the accuracy rates differs from the pop-
ulation on which the test will be used. Raskin (1986)
obtained his accuracy rates from mock crime studies,
often on subjects from prison populations, who should
have the demographic and other relevant background
characteristics of persons accused of crimes. This may
no longer be the case if the same polygraph test is
used on employees of a bank. Thus, the accuracy rates
need to be verified on a population similar to the one
on which it will be used.

Similar problems arise in determining the sensitiv-
ity and specificity of the ELISA test. The sensitivity
is determined from AIDS patients. In view of the
differential response between KS and non-KS
patients, asymptomatic carriers of AIDS antibodies
might have a somewhat different distribution of
ELISA ratios than either category of AIDS patients.
At first one might believe that the specificity of the
test could be determined from a larger sample of well
individuals; however, the difference between the two
groups of blood donors indicates that there may be
some real biological differences among healthy popu-
lations. Differences in the accuracies of various ver-
sions of ELISA test kits (Kuritsky, Rastogi, Faich,
Schoor, Menitove, Reilly and Bove, 1986) also affect
their use by blood banks. Indeed, screening tests may
suffer from a decreased performance level in the field
relative to the laboratory. Moreover, the tests may

TABLE 4
Number of individuals having a given mean absorbance ratio in the ELISA for HTLV antibodies®

Group Sample Number of individuals in ratio range Median
size <2 2-2.99 3-3.99 4-4.99 5-5.99 6-11.99 12+ ratio
Healthy Donors
Vermont 228 134 72 15 3 2 2 0 1.86
Denmark 69 ° 68 1 0 0 0 0 0 61
AIDS patients
With KS 51 0 1 3 4 2 22 19 9.12
Without KS 37 0 1 4 3 13 14 2 5.76

@ Adapted from Table 1 of Weiss et al. (1985).
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respond to factors other than the one screened for.
For instance, the ELISA test detects HLA antibodies
as well as those for the HTLV-III (AIDS) (Sayers,
Beatty and Hanson, 1986) and the polygraph may
reflect a general level of stress. The sensitivity of the
polygraph may be diminished as there are ways decep-
tive persons can use to defeat it (Raskin, 1986).

Most medical discussions of the effect of false pos-
itive and false negative classifications (see Sackett,
Haynes and Tugwell, 1985) evaluate the decision to
give further tests or treatment in terms of maximizing
expected utility. T'ypically the consequences of a false
positive are less serious than those of a false negative
as the error is quite likely to be corrected when the
confirmatory test is given. Thus, the false negative
rate (1 — F) has received more attention in the bio-
statistical literature concerned with periodic screening
programs (Goldberg and Wittes, 1978; Zelen and Fein-
leib, 1969). Moreover, the dependence of PVP and
PVN on the prevalence of the characteristic in the
population to be screened may render them less useful
than specificity and sensitivity in determining the cut-
off value for the classification (DeLong, Vernon and
Bollinger, 1985).

Since medical screening tests are often given to
persons who have some risk factors or symptoms of a
disease and employment tests are given to persons
who apply for a job and presumably believe they
possess the requisite skills, screening tests typically
are given to populations with a prevalence higher than
that of the general population. The increased use of
screening tests and related procedures on populations
with a low prevalence rate motivated our analysis
emphasizing C, the estimated PVP, rather than the
estimated PVN.

To illustrate the potential problem, James and
Morgenstern (1985) reported that 5 of 100 United
States Army blood donors tested positive on the
ELISA test for AIDS antibodies, but only one of
them was confirmed by the Western blot test. Since
the prevalence of AIDS antibodies in the Army is
undoubtedly less than .01, the 4 out of 5 misclassifi-
cations from a single screen may well be an under-

,estimate. Similar results were reported by Marwick
(1985) who noted that only the proportion .002 of
slightly over 1.5 million units of donated blood were
repeatedly positive on the ELISA screening test. Of
these units, 2552 were given the reference Western
blot test and only 587, or just 23%, were confirmed as
having AIDS antibodies. The problem of assuring that
an ample supply of disease-free blood is available has
many more dimensions; we note that statistical con-
siderations have an important role and support the
recommendation of Weiss et al. (1985) that a confor-
matory assay be developed and used.

In addition to the possibility of contracting AIDS
accidentally by a blood transfusion, public concern
with the accuracy of screening tests was increased
when President Reagan issued Executive Order 12564
(Labor Law Reporter, 1986a) authorizing mandatory
drug screening tests for Federal employees in sensitive
positions. The guidelines issued by the Justice De-
partment (Labor Law Reporter, 1986b) stated that
confirmatory tests would be required. However, the
aceuracy of the mass drug tests has been questioned
by Altman (1986) who noted that a study by Hanson,
Caudill and Boone (1985), which sent blind samples
with known amounts of various drugs to laboratories,
found that the sensitivity and specificity of the tests
were noticeably lower than the values of # and 6 on
the samples used to certify the testing procedures. For
example, only 1 of 11 testing firms met the standard
that both » and 6 exceed .8. Usually, the specificity
remained high but the sensitivity was low (ranging
from .31 to .88 depending on the particular substance).

The accuracy of the screening test is quite important
even when a confirmatory test is used since confirm-
atory tests are not always correct. To approximate a
confirmatory test we assumed that n = .99 and § = .98
and obtained the results corresponding to those in
Tables 1 and 2. Assuming that the error rates of the
confirmatory and screening tests are independent
when the prevalence of true positives in the population
(prescreened) to which the confirmatory test is applied
was .1, the expected value of C was .85 and the
expected value of F' was .0013. Assuming that » and 6
were estimated from samples of size 240 and 720,
respectively, the approximated standard errors were
.04 for € and .001 for F. These results suggest that
using a confirmatory test will mitigate but not elimi-
nate the false positive problem. However, the screen-
ing test has to be sufficiently accurate so that the
proportion of true positives among the positive clas-
sifications is .10 (and certainly greater than .05).
When screening a population with low prevalence
(7 < .01), this condition needs to be checked carefully.
This is especially true for testing employees in sensi-
tive jobs as they often have been subject to a personnel
investigation so the prevalence of drug use among
them may be well below the rate of all employees.
Ironically, the fraction of false positive classifications
and the standard error of the estimated PVP will be
larger for this population than the general workforce.

Fortunately, the field performance of the ELISA
test for AIDS antibodies has been as good as the
levels indicated by the NIH study, so the growth in
transfusion-related cases has leveled off (Marwick,
1985). This is due to the high accuracy of the ELISA
test, the very high accuracy of the Western blot test
and the fact that high risk groups have been screened
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out of the donor pool by self-selection and by con-
fidential questionnaires (Nusbacher, Chiavetta,
Naiman, Buchner, Scalia and Horst, 1986).

The accuracy of drug screening tests has played
a role in legal cases. In Capua v. City of Plainfield
CA-86-2992 (D.C.N.J. 1986), Judge Sarokin reviewed
drug testing cases and decided that random testing is
not permissible and that there should be probable
cause before an employee is tested. In statistical terms,
probable cause increases the prevalence or prior prob-
ability = and will increase the expected value of C and
decrease its standard error.

The potential harm from errors in polygraph tests
has been discussed by Hurd (1985) who noted that the
problem is compounded by the fact that these results
are not confidential (i.e., restricted to the employer
giving the test) and the fact that legal recourse for the
individual when the employer gives out the results to
other potential employers often is unavailable. Again
statistical analysis focuses our attention on the high
expected fraction of false positives (1 — C) in Table 2
when the prevalence is low as well as on the high
standard error of an individual diagnosis. Hopefully,
polygraphers and employers will consider these results
in their interpretation of the results of screening and
polygraph tests.

APPENDIX: OUTLINES OF THE PROOFS

We now provide the mathematical basis of our
assertion that 7 and 7, are asymptotically equivalent
and the derivation of formula (2.5).

We first prove

LEMMA Al. If n-> %, 0 > % and © > 0, then
Vn(# — «) and Vn(#, — =) have the same limiting
distribution.

PrROOF. From (2.3) it follows that # = 7, when-
ever 0 < (p+60—1) < (n + 6 — 1), ie,, when
1 — 6 < p < 1. Recall that p is the maximum likeli-
hood estimate of p = 7y + (1 — w)(1 — @) and that
l1-0<p<nysince n>1—46and = > 0. From

- Bernstein’s inequality .

P[|p —p| > ¢] < 2e72".

Therefore, for any ¢ < min[yp — p, p — (1 — 0)],
« — 71, = 0 except for a set of probability no greater
than 2¢72"". Hence, P[| Vn(#, — #)| > 0] < 2%’
so that Vn(#, — ) — Vn(# — 7) converges to zero
in probability and the result follows.

REMARK. The condition 7 > %, § > % holds
for about any useful screening test (Bross, 1954;
Goldberg, 1975). When = is small, 7 and 6 are near 1

and « > (1 — 6), a large n may be needed before the
asymptotic results are valid.

We next state

THEOREM A.l. Let the accuracy rates a and § be
estimated by the proportions 7, 6 of correct classifica-
tions in samples of size n, and n; from persons in class
D and D, respectively. Let =, p and p be as described
earlier. Then, asn, m and ng increase, the sampling
distribution of C tends to a normal distribution with
mean P[D | S] and variance (2.5).

PROOF (OUTLINE). The formal development uses
the delta method (Rao, 19’]3), which is based on
expanding the estimate of C around the parameter
it is estimating and using the fact that 4 § and p
are independent sample proportions with respective
means 7, § and p and variances (1 — 1)/n., (1 — 60)/
ny and p(1 — p)/n. As sample averages they obey the
central limit theorem. The Taylor expansion shows
that the difference between

7 [ﬁ—(l—é)]

C=—
(A1) n+60—1

=g, 0,p)
and P[D | S] is representable as

A

p

0 R 0 a
El G-m+g @0
(A2) N (n,6.p) (2,6,p)
) o8 A ,
+ = (p —p) + 0p(n7*).
0D | (n,0,0) v

Formal calculation and evaluation of the three deriv-
atives in (A.2) yields

gl _pto-1 (-1
0"7 (n,6,p) p (7’ + 0 - 1)2 ’
dg _n_=-p)
60 (n,6,p) p (7’ + 0 - 1)2
and
|  __a-9
0P| op (n+0—1p*

The result follows from the fact that expression (A.2)
is a linear combination of three independent sample
averages with variance equal to the sum of the indi-
vidual variances.
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