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_ Abstract. This survey is a review of Soviet studies in reliability theory. The
stress is on the theoretical work developed in the Soviet Union during the
last two decades. Some related work, although not by Soviet scholars, is

also described.
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1. INTRODUCTION

In the present survey we give a review of Soviet
studies in reliability theory. We do not intend to cover
all research works of Soviet scholars. Our stress is on
the mathematically rigorous theoretical work and not
on applications. Also, an attempt was made to give
more attention to the latest research.

An early respectable reliability-related research
study in the Soviet Union is due to Gnedenko (1943),
who formalized the fundamental result in the theory
of extreme values discovered by Frechet (1927) and
Fisher and Tippet (1928). The main result states
that if X, is the largest among n independent
and identically distributed (iid) random wvariables,
and if there exist sequences of constants {a,} and
{b., b, > 0} such that (X,) — a,)/b, has a limiting
distribution G, then G must have one of three possible
forms. An analogous result also holds for the smallest
variables. (See Barlow and Proschan (1975) and Mann
and Singpurwalla (1985) for more detailed discussion
of these results.) Much of the latter development of
reliability theory was continued by Gnedenko himself
and his collaborators and students (Solovyev,
Ushakov, Belyayev, Kovalenko and many others).

In view of the so-called scientific technological rev-
olution, reliability theory started to develop in the
sixties when the Soviets began to adopt large-sized
and operationally complex technical systems, such as
communication systems, fuel energy complexes, au-
* tomated control industrial systems, information com-
putational systems (multicomputer complexes), etc.
Unclassified Soviet research in reliability theory
seems to be greatly influenced by western, mainly
American, studies. All major western monographs on
reliability theory have been translated into Russian,
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and typicallly are out of sale despite a substantial
number of edition copies. Fundamental notions of
reliability, developed in the western world, such as
coherent systems, distribution with monotone failure
rate, optimal maintenance and control, standby items,
different types of reserve, etc., found quick response
from Soviet applied probabilists already familiar with
queuing theory and quality control. It seems, however,
that sometimes the results of queuing theory were
applied mechanically in reliability problems giving
formally correct but practically useless answers.

A comprehensive review of reliability theory is given
in the Handbooks on Reliability by Kozlov and
Ushakov (1970, 1975), the first of which quoted here
is an English translation. There are also several review
papers by Belyayev, Gnedenko and Ushakov (1983),
Gnedenko, Kozlov and Ushakov (1969) and Levin and
Ushakov (1965) that are dedicated to the state of art
of reliability theory. More mathematically oriented is
the monograph of Gnedenko, Belyayev and Solovyev
(1969); various aspects of reliability are covered in
books by Polovko (1965), Shishonok, Repkin and
Barvinski (1964) and Shor (1962). A huge bibliography
can be found in Gnedenko (1983).

Many important results have been obtained by So-
viet scholars. Their research, however, is not always
familiar in this country, and the present authors hope
to bring it to the attention of more people.

The main Soviet research in reliability theory can
be found in the English translations of the journals
Tzvestiya Akademii Nauk SSSR Tekhnicheskaya
Kibernetika [Soviet Journal of Computer and System
Sciences (formerly called Engineering Cybernetics)],
Avtomatyika (Soviet Automatic Control) and Kiberne-
tika (Cybernetics). Some articles are published in
Kybernetes (in English), an International Journal of
Cybernetics and General Systems.

To help the readers to identify Soviet works, we
have divided the references at the end of this paper
into two parts. Part I contains works of Soviet authors,
and Part II contains works of non-Soviet authors.
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2. COHERENT SYSTEMS

In this section we discuss the problem of determin-
ing the reliability of coherent systems introduced by
Birnbaum, Esary and Saunders (1961) and developed
in Barlow and Proschan (1975). This notion had an
enormous impact on Soviet work in reliability, and
there is a vast number of papers inspired by this idea.

Consider a system with N components which are
labeled from 1 to N. We associate with the ith com-
ponent a binary variable x; such that, at any specified
time, x; = 1 if the ith component is functioning and
x; = 0 otherwise. Let x = (x;, - - -, xn5). The structure
function of the system ¢ is a function of x such that
¢(x) = 1 or 0 depending on whether the system is
functioning or not functioning at that moment. A
system is said to be coherent if its structure function
¢ is such that ¢(0, ---, 0) = 0; ¢(1, ---, 1) = 1; and
é(x1, -+ -, xn) is nondecreasing in each argument. In
other words, a coherent system is a system that is not
functioning if all of its components are not function-
ing, is functioning if all of its components are func-
tioning and if it is initially functioning, remains
functioning whenever some initially failed compo-
nents are restored to functioning states.

If the lifetimes of the N components of a coherent
system are statistically independent and T denotes
the lifetime of the system, then the system reliability
at time ¢ is given by

R(t) = P[T > t]

N
= ¥ I mp®) + (1 — x)q:@)],
{x:¢(x)=1} i=1
where p;(t) is the probability that the ith component
is still functioning at time ¢, and q;(t) = 1 — p:(¢). In
particular, if the ith component has an exponential
life distribution with p;(¢) = exp(—A;t) for t > 0, then

Rt)= Y II exp(—At)
(x:¢(x)=1} {iEA(x)}
x I [1— exp(—A;t)],

{J€EB(x)}

where A (x) = {i:x; = 1} and B(x) = {j:x; = 0}. Burtin
and Pittel (1972a) performed an asymptotical study
of this formula when \; = \;0 and 0 is small. They
showed that if Ay(t) = —R’(t)/R(t) is the system
failure rate, then as § — 0,

Ao(t)=[k0ktk‘1 Y I X,](1+0(1)),

{xE€D} {jEB(x)]
where k = miny.4x)=0;n(X), n(x) is the number of 0’s
in x, and D = {x:¢(x) = 0 and n(x) = k}. The
implication of the above result is that when 8 is small,
the system failure rate is approximated by the failure

rate of a Weibull distribution with cumulative distri-
bution function: 1 — exp(—ut*) with « = k and
p =0T xen) [l ijeBcon Ni- '

The reliability of a coherent system can also be
calculated through minimal paths or minimal cuts
representations. A path set is a set of components
such that the functioning of these components ensures
the functioning of the system. A minimal path set is
a path set such that all of its components must be
functioning to ensure the functioning of the system.
Similarly, a cut set is a set of components such that
the failure of these components ensures the failure of
the system. A minimal cut set is a cut set such that
all of its components must fail to ensure the failure of
the system. Let Py, - - -, P, denote all possible minimal
path sets, and C, - - -, C, denote all possible minimal
cut sets of a coherent system with structure function
¢. Then ¢ can be represented as a parallel-series or a
series-parallel structure:

rl—f[(l—ﬂx,)

i=1 JEP,

d(x) =+

JEC,

The system reliability at time ¢ is E¢ (x), the expected
value of ¢ (x). The expectation can be evaluated term-
by-term with the help of the identity x? = x;, after the
right side is expanded into a sum of products of x;’s.
If a structure consists of a large number of compo-
nents, the determination of all minimal path series
structures and of all minimal cut parallel structures
can be difficult. The knowledge of these substructures
is however not needed to obtain lower and upper
bounds for the reliability, so that it seems rather
natural to eliminate minimal path series structures
that are formed by a large number of components and
that have a small probability of functioning. Similarly,
it seems reasonable to exclude minimal cut parallel

structures with a large number of components and

high reliability. In this way, Litvak (1981) has ob-
tained lower and upper bounds for the reliability of a
complex system by using smaller sets of minimal path
series structures and minimal cut parallel structures
that do not have common components. These bounds
turn out to be almost exact in many practical situa-
tions (for instance, they are exact for a bridge struc-
ture). Litvak (1979) and Ushakov and Litvak (1977)
have used the mentioned bounds for reliability in the
case of other physical characteristics such as capacity,
resistance, transportation cost, etc. They considered
using methods of graph theory, a two-pole network of
an arbitrary structure with given mutually independ-
ent estimates of its parameters. In particular cases,
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the known Ford-Fulkerson theorem about the maxi-
mum flow in a two-pole network and earlier estimates
of Esary and Proschan were obtained. Litvak and
Ushakov (1984) have also considered different meth-
ods to estimate the characteristics of two-terminal
networks of arbitrary physical nature. The main dif-
ficulty here is due to the fact that reliability calcula-
tions for structures, which cannot be represented as a
superposition of simpler (parallel-series or series-
parallel) substructures, are typically very difficult.
Thus it is desirable to develop simple estimates of the
parameters of complex networks that require less com-
putations than optimal estimators. Some principles
for obtaining these estimators are discussed by these
authors with applications to estimation of the char-
acteristics of networks with elements of two possible
types. Litvak (1974) has used the technique of Boolean
algebras to obtain an exact formula for the reliability
of a system represented in parallel-series or series-
parallel form.

Lomonosov and Polesskii (1971, 1972) considered
an information network with n nodes and a set of
channels connecting these nodes. Every channel can
be in two states, independent of the others: operative
(with probability p) and inoperative (with probability
q = 1 — p). Inoperative channels may cause the
network loss of connectivity, i.e., signals cannot be
transmitted from one end of the network to the other.
The network is said to be connected if signals can be
transmitted successfully, through operative channels,
from one end to the other. At a specified time, the
reliability R of such a network is the probability that
the network is connected. They obtained the following
two-sided bounds on R:

nl—g”)" ' —@m-1)1-q¢”*)"<R

n—1

= z (1 - qui)9

k=1
where r is the number of edges in the smallest cut set,
vi=|Ci|,and {C;,i=1, ---, n — 1} is a collection of
cut sets which form so-called cut basis. The bounds
are also sharp in the sense that there are networks of

- special configurations for which the inequalities turn

into equalities. Clearly, by replacing p by the channel
reliability function R (¢) one can obtain useful asymp-
totic approximations to the network reliability when,
for example, the channels are highly reliable.

Genis (1985a, 1985b) obtained two-sided bounds on
the reliability of a renewable standby system, and
considered an estimate of the failure rate of the same
system. For other kinds of reliability bounds one can
refer to Barlow and Proschan (1975). ’

Ushakov (1960) considered systems with several
possible levels of functioning. The characteristic of
functioning quality is a linear function of the reliabil-

ities of all components, which can be used in optimi-
zation problems under maintenance restraints. Netes
(1980) used the decomposition method to estimate the
level of functioning (effectiveness) of a system.
Gadasin (1973) and Gadasin and Lakaev (1978, 1979)
have obtained formulae for various characteristics of
reliability for a special class of coherent structures
(so-called recurrent structures). In particular they
considered systems with a grid structure where a
connection between two elements is achieved by
retranslation of a signal along communication chan-
nels through intermediate faulty elements. The
problem is to determine the probability of connect-
edness of a fixed set of objects. This probability is a
complicated function of the reliability parameters, and
it was suggested to estimate it by taking several first
terms in the multivariate Taylor expansion. Because
there is no convenient analytical expression for this
function, the derivatives are evaluated numerically at
the point where the parameters vanish. A general
study of recurrent structures (like railways or high-
ways, oil or gas pipelines, electrical systems) can be
found in the monograph of Gadasin and Ushakov
(1975) where a number of new analytical and algo-
rithmic results were obtained. In particular, isotropic
systems with a network structure close to that of a
planar graph were investigated.

Notice that for complex engineering systems even
the notion of failure or reliability is difficult to for-
mulate. A monograph of Dzirkal (1981) is dedicated
to methods of assigning the operational efficiency of
such systems.

Books of Cherkesov (1974) and Kredenster (1978)
deal with so-called systems with time redundancy.
Possessing essentially two states “up” or “down” with
respect to functioning of the structure at a given time,
these systems may or may not implement the preas-
signed task, depending on the nature of the whole
trajectory of transitions from one state to another.
For example, if there is time to carry out an operation
then failures of the system during its operation process
may require only that one implements once again
either the whole operation or part of the operation. A
similar situation may occur if the system becomes
“inertial” in a sense and allows failure periods not
exceeding a given time period. Such systems are most
common for information and computational devices
where restarting is possible during the operation, and
storage (batteries) are available for electronic com-
puters in the event of short-time interruptions of the
power supply. The paper of Mikadze (1979) is dedi-
cated to the analysis of reliability of computational
systems with time redundancy in the presence of
failures and malfunctioning.

Gnedenko (1964a, 1964b) had initiated the study of
systems that have an idle backup device that is put
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into operation when the main device fails. The distri-
bution of failure-free time has been studied under
different assumptions. In the case of preventive main-
tenance, Gnedenko and Makhmud (1976) showed that
there exists a unique period for preventive mainte-
nance operation that leads to maximal failure-free
duration. They considered a maintenance policy under
which the operating element of a duplicated system
continues to work until a failure of the second element
while the first is undergoing preventive maintenance.
The existence of the time period t, such that, for
performance time ¢ of preventive maintenance opera-
tions less than ¢, the use of preventive maintenance
causes a decrease in the mean duration of failure-free
operation of the system, generalizes previous results
of Osaki and Asakura (1970).

Kabashkin (1984) considered systems, the behavior
of which is described by a stationary Markov process,
with the graph of state transitions decomposed into
two subgraphs. He suggested a method to calculate
the stationary probabilities without solving simulta-
neous equations. Kartashov and Shvedova (1983)
offered an approximate method of evaluating the
reliability of objects chosen from a control lot in a
prescribed way. This method is based on the assump-
tion that changes over time of the parameters of a
system can be regarded as a Markov process.

The need to estimate the reliability of highly reliable
systems along with the need for simpler tractable
formulae resulted in the development of various
asymptotic methods. An excellent review of these
methods (based mainly on Soviet work) is given by
Gertsbakh (1984). For instance, for practical purposes
it is important to estimate the difference between the
lower and upper bounds (the error of reliability eval-
uation). Kovalenko (1975) had shown that this differ-
ence is bounded by the tail probability of a Poisson
distribution. This fact can be explained by the major-
ization of the process describing the evolution of the
system by a Poisson process with parameter Y, A;.

Solovyev (1971) introduced a sequence of regener-
ating processes depending on a parameter that influ-
ences the behavior of the process in such a way that
, the probability of failure during a single regeneration
period tends to zero. He obtained interesting theorems
concerning the convergence of the distribution of
properly normalized failure time to the exponential
distribution. Similar results have been obtained by
Gnedenko and Solovyev (1974, 1975) for various
models of standby with renewal. Their methods allow
estimation of the reliability of complex systems with
possible interaction between components. A different
method for describing complex systems with renewal
is the consolidation of states (see Korolyuk and
Turbin, 1978). Besides reducing the dimensionality,
this method provides a very convenient representation

of a complicated semimarkovian process with a large
number of states by a Markov process with a smaller
number of states. -

Kalashnikov (1969) used the direct Lyapunov
method to estimate the reliability of a redundant
system with constant repair time of failed items giving
special consideration to the cases in which the number
of repair positions is smaller than the total number of
items. He obtained some asymptotic estimates of re-
liability as time increases.

The reliability of a “k-out-of-n” system has been
well studied for identical element reliabilities, but
little work has been done for the case in which-the
elements have different reliabilities. Zhegalov (1986)
developed a method of calculating the reliability of
this kind of system which avoids complete enumera-
tion of all possible states of the system.

The problems of statistical simulation of the func-
tioning of complex systems have been initiated in the
USSR by Buslenko (1976, 1978). Reliability aspects
of these simulations have been investigated by Gorskiy
(1970) and by Groysberg (1981). In particular these
authors compared the existing methods of confidence
estimation of reliability characteristics (the plane
method, the substitution method and the heuristic
method) and determined conditions under which each
method gives the best results. For instance, the heu-
ristic method works best for reliability block diagrams
of the series type. To increase the efficiency of relia-
bility estimation for redundant systems in which fail-
ures are rare, a combined method based on joint use
of known procedures was suggested.

Simulations of the operational process of highly
reliable systems evoked the need to develop acceler-
ated simulation (Monte Carlo) methods. Kovalenko
(1976, 1980) contributed to the solution of this prob-
lem by proposing a version of a small parameter
method for calculation of the characteristics of a Mar-
kov chain. Lubkov (1980) gave recurrent formulae for
an algorithm to simulate failures of components of
technological systems. This algorithm is effective in
estimating the reliability of highly reliable standby
systems by simulation.

Summing up we see that this branch of reliability
theory is very well developed in the USSR with a
number of important and original contributions.

3. SYSTEMS WITH MONOTONE FAILURE RATE

For many engineering systems, especially for those
having mechanical components, certain reliability
characteristics decrease due to the deterioration or
“aging” of elements. In the Soviet Union, the notion
of aging has been introduced by Solovyev (1965),
Ushakov (1966) and Solovyev and Ushakov (1967).
The effect of aging can be formulated in terms of the
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behavior of the hazard function, namely the condi-
tional probability density of failure given that no
failure has occurred up to the moment under consid-
eration. For aging elements the hazard function is
monotonically nondecreasing. This property of the
hazard function imposes restrictions on all the mo-
ments of the distribution; this fact can be used to
obtain useful bounds for the whole family of distri-
butions. However, except for the above-mentioned
authors, there are relatively few Soviet specialists
working in this field. There are no reports of whether
a given complex system possesses a monotone failure
rate. The assumption of an exponential distribution
of lifetime seems to be too widely accepted.

Ushakov (1966) has constructed the following upper
and lower bounds for the probability P that the system
is functioning during a given time period #,:

K(1 — t/T) < P < K exp(—to/T).

Here T is the mean time between failures, ¢ is the
mean time of regeneration and K = T/(T + t). For
small values of t,, these bounds are close to one
another, and for the evaluation of P in this case, it
suffices to know only the expected time between the
failures, not its distribution.

One of the basic questions of finding the reliability
of a system with components whose failure rate is
monotone was addressed by Solovyev and Shakhbazov
(1981). These authors have obtained lower and upper
bounds for the average working time of series and
parallel systems formed by aging components with
given expected values of lifetimes.

In the book of Bolotin (1971) some probability
models of the crossing of a certain level by a stochastic
process were used to describe the failure processes of
mechanical parts (see also Konenkov and Ushakov,
1975). A number of mathematical models of failure
are considered in the monograph of Gertsbakh and
Kordonskiy (1969), which has more references to
(rather inaccessible) Soviet papers.

A related subject is the study of accelerated testing.
These methods are especially important when direct
verification of reliability under normal working con-
ditions is practically impossible because of the large
number of tests needed or for some other technical
reasons. A number of different models for accelerated
failure processes and corresponding mathematical
techniques are given by Perrote, Kartashov and
Tsvetayev (1968) and Kartashov (1979).

We also mention here some physical principles sug-
gested by Russian scholars as the basis of reliability
theory. They are the “Sedyakin principle,” the “hered-
ity principle” and the “least action” principle.

The Sedyakin principle, suggested by Sedyakin
(1966), states that the reliability of a system under

conditions ¢ depends only on the amount of resource
(cumulated hazard) developed by it in the past, and
not on how this resource was developed. Let A(z, ¢)
denote the failure (or hazard) function of a system
operated under conditions ¢, and let x; and x, be the
lengths of the intervals of operation time for the
system operated under conditions of ¢; and ¢,. Accord-
ing to Sedyakin’s principle, if x; and x, satisfy the
integral expressions

r= f Az, &) dz = f Az, &) dz,
0 0

then the probability p(t) of trouble-free operation of
the system during [0, ¢] depends on x;, ¢, x, and &,
only through r, and

p(t) = p V(| x1) = p@(t] x2),

where p®(t|x;), i = 1, 2, is the conditional proba-
bility of trouble-free operation of the system during
[x:, x; + t] given that the system remains operative at
time x; under conditions ¢;. This principle was shown
to be in accord with experimental data obtained from
an accelerated life-testing of light bulbs. It also can be
used to construct reliability models for a broad class
of systems.

The “heredity principle” was suggested by
Kartashov and Perrote (1968), and states that the
production process can change the values of the inter-
nal parameters of a system, but cannot disturb the
functional relationships between them. This principle
makes it possible to formulate many reliability prob-
lems in a rigorous mathematical language and to ob-
tain recommendations for constructing methods of
accelerated testing. On the basis of the heredity prin-
ciple, Kartashov and Perrote also concluded that Sed-
yakin’s principle can take place for products of one
type and may not be satisfactory for products of
another type. Using the “heredity principle,” Kar-
tashov (1971) studied accelerated testing in the case
of an unstable production process. He obtained con-
ditions under which it is possible to estimate, from
the results of accelerated testing, certain numerical
characteristics of the tested units.

The “least action” principle was suggested by
Perrote and Yavriyan (1978). It is formulated in con-
nection with the problems of resource consumption of
a system. This principle says that the motion of a
system along any coordinate of the complete set of
parameters takes place along the trajectory, corre-
sponding to the minimum of an integral obtained from
the Lagrange function of the system. The “least ac-
tion” principle can be used to predict a number of
properties that objects operating in variable regimes
can possess.
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4. OPTIMIZATION METHODS OF RELIABILITY

Accounting for various restrictions on resources ( for
instance, cost limitations) results in a number of prob-
lems of conditional (linear or nonlinear) optimization.
As a rule the common features of these problems are
the complexity of structural restrictions, large dimen-
sionality and complicated target functions. The Soviet
research in this field seems to be influenced greatly
by dynamic programming, optimal inventory problems
and queuing theory. :

For example, the traditional problems of optimal
inventory are treated now as problems of supplying
spare parts for complex systems. The supply process
has a hierarchical structure and involves a complex
rule of replenishing at each stage (see Ushakov, 1969;
Shura-Bura and Topolskiy, 1961; Rubalsky and
Ushakov, 1976). These problems are closely related to
classical problems of inventory theory when the items
are assumed to be withdrawn continuously while the
supply is discrete (Rubalsky, 1977). Paramonov and
Savvin (1978) examined the problem of determination
of an assigned standby for objects on the basis of
experimental results. They offered an adaptive
method to calculate the necessary time of service.
Dzirkal and Shura-Bura (1980) have suggested a
model of functioning of standby units, which was used
to obtain a computational scheme to calculate the
reliability of the standby group with uncertain re-
switching under general assumptions about monitor-
ing of the state of the standby components. Rubalsky
(1984) has obtained a procedure that optimizes the
standby stock when a part of the rejected product is
duplicated and a part is repaired.

A study of different maintenance and replacement
models in the reliability theory of engineering systems
has been performed in a series of books by Raykin
(1967, 1971, 1978). The optimality of spare parts
allocations for electronic devices was studied by
Kulback (1970). The Lagrange multiplier method
has been used by these authors to obtain exact and
approximate formulae for the optimal number of spare
parts. Under different forms of budget restraints, the
best allocations of spare parts were found, and some
¢onstructive algorithms (essentially of Kettele type)
for their practical implementation were suggested. In
the case of a problem with a large number of restraints,
Demin and Malashenko (1974) suggested the use of
the dual problem of linear programming. In a sense
the dual problem of optimal spare parts allocation
with several restraints is the optimization problem of
multifunctional systems under one-sided conditions
(see also Karshtedt and Kogan, 1971).

Ushakov and Yasenovets (1978) studied two limit-
ing cases. In the first case, the functioning time of the
system is considerably smaller than the average func-

tioning time of any components. In the second case
this functioning time is much larger. Under a budget
constraint in the first case, one should djstribute spare
parts uniformly among the components. In the second
case, if T; is the average lifetime of the ith unit, the
optimal number x; of spare elements of type i, is
approximately equal to

xX; ~ to/Ti + 1,

where £, is a large fixed number.

Brodetskiy (1978, 1980, 1984) has studied systems
with two types of failure (with and without erasing
information). To improve the quality of such systems,
intermediate results are stored in a device that pre-
vents the erasure of data. If a failure leading to erasure
occurs, the process is resumed from the point of the
last data storage. In this problem it is found that for
optimal control of system operating time, the inter-
mediate results must be stored periodically. These
results are extended to the case when the initial task
can be interrupted in order to execute another task
with higher priority.

Ushakov and Yasenovets (1977) considered a new
version of the optimal maintenance policy on the basis
of limited funds. Assume that the spare items can be
obtained until a given sum C, is spent. During this
stage, one observes the moments of replacement and
the types of failed items. Under resource restrictions,
an optimization of some functional (like mean time of
functioning) is solved by methods of integer program-
ming. One of the methods of integer programming (so-
called branch-and-bound method) has been used by
Tatashev and Ushakov (1981) to find an optimal
algorithm of switching standby elements according to
a given timetable.

Barzilovich and Kashtanov (1975) considered the
problem of optimal preventive replacement when the
information concerning reliability is incomplete. The
latter circumstance causes drastic complications of
the mathematical formulation and solution of the

_problem. Churkin (1984) considered the problem of

the optimal turning on of a symmetric standby device,
when the strategy of turning on and off is such that
the length of the queue, when the standby device is
disconnected, is one unit shorter than that at which
it is turned on. He found an optimal procedure that
takes into account the expenditures associated with
turning the standby device on and off, the operation
cost and the transition time from one state to another.

The passage times from one state to another by a
birth and death process is of interest in reliability
theory where the behavior of storage systems with
replacements are described by these processes. These
times can be interpreted then as the periods of func-
tioning without a failure. Solovyev (1972) obtained
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the exact distributions for the moment of first cross-
ing. These formulae are rather cumbersome, so the
asymptotic distribution of properly normalized first
passage moments is shown to be of the form 1 — ae™?,
x>0, 0 < a = 1. The theory of random processes also
has been used by Burtin and Pittel (1972b) for a joint
study of the aging and functioning process of an
unreliable system. Genis and Ushakov (1983) offered
a simple method for the optimal choice of the number
of standby units in multipurpose systems. They solved
the minimization problem of weighted expenditures of
resources under a restriction on reliability character-
istics and the maximization problem of weighted over-
all performance under limitations on the expenditure.

Pashkovskiy (1981) has obtained some results con-
cerning engineering diagnostics. In particular, he de-
veloped the so-called recursive method that permits
the construction of optimal diagnostic procedures for
the case of a complex structure of inspection tests
and also allows one to select a battery of tests out
of a collection of all possible tests to carry out the
inspection.

Related to the problems of optimal inventory are
the problems of dynamic inventory (see Mandel and
Raykin, 1967; Konev, 1974; Ushakov, 1981). In these
problems it is assumed that a number of spare items
is provided and these spare items function under light-
ened conditions so that their failure rate is smaller. It
is possible to switch the spare items on into normal
working conditions. Clearly the switching on of all
items at the beginning causes all of them to begin
using up the resource. On the other hand, excessively
economical switching on of the elements in the first
stages of the operation may lead to failure in these
stages and to curtailment of further functioning of the
system. Thus, heuristically there must be an optimal
switching on strategy.

Gertsbakh (1966, 1970) studied standby control
problems in the situation when the true condition of
the system is unknown and can be tested only at given
time moments. The number of elements included in
the hot reserve after each check-up is selected so as
to minimize the probability of the system failure dur-
ing the given operation time. Related problems along
with a good list of references can be found in the book
of Gertsbakh (1977).

5. STATISTICAL AND MATHEMATICAL
PROBLEMS OF RELIABILITY THEORY

The direction of Soviet work in the statistical as-
pects of reliability theory has been determined by the
book of Gnedenko, Belyayev and Solovyev (1969)
mentioned earlier. The statistical methods used here
are mainly confidence intervals of rather complicated
parametric function and classical (unbiased or maxi-

mum likelihood) estimators of such functions. A study
of the robustness of these procedures by and large has
not been undertaken, although Chepurin and Dugina
(1970) have studied stable estimators for Weibull and
log normal distributions. Methods of applied multi-
variate analysis or data analysis have not been used
in statistical reliability problems.

The work on confidence intervals has been initiated
in Mirnyi and Solovyev (1964) and in Belyayev,
Dugina and Chepurin (1967) and was developed fur-
ther by Pavlov (1982), Sapozhnikov (1970), Sudakov
(1974, 1980) and Tyoskin (1979). Confidence limits
for reliability have been obtained for different models.
Confidence sets for the parameters of monotone fail-
ure rate distribution are constructed by Pavlov (1980),
who gave conditions under which interval estimates
of several unknown parameters can be substituted in
the parametric function to be estimated. Interval
estimation of the reliability of complex systems by
results of reliability testing of its components is a
particular case of this problem. The practical impor-
tance of these problems is due to the fact that complex
systems cannot be accurately tested for their reliabil-
ity because of the constant change in their structure.

Sonkina and Tyoskin (1984) constructed confidence
limits for the probability of failure-free operation of a
series system with Weibull distribution of the failures.
Kaminsky (1984) obtained nonparametric confidence
intervals for quantiles of the aging distributions with
the aim of choosing the optimal number of first fail-
ures so as to maximize the mean value of the lower
confidence limit. Related parametric problems were
investigated earlier by Paramonov (1975), who consid-
ered the estimation of a percentile on the basis of a
small number of life tests. The best invariant esti-
mates were derived for several location-scale para-
metric families including Weibull, log normal and
normal distributions. Notice that the practical impor-
tance of the latter distribution in reliability theory is
not really significant. Yet there are many papers in

the Soviet literature where statistical reliability

motivated problems are studied under normality
assumption.

Various statistical problems arise in the processing
of data on reliability of items after special experiments
or operations. Belyayev (1982) proposed a class of
experimental designs for censored data for which one
can use methods of sequential analysis. He also
suggested the use of the Bayesian approach to deal
with data on the operation of items with “aging”
distribution.

In the textbook of Belyayev and Chepurin (1983)
one chapter is devoted to the construction of isotonic
estimators of the hazard function that could be used
for the analysis of reliability data based on results of
shock testing.
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Belyayev and Khafid (1984) studied the behavior of
the posterior density of reliability parameters. Expo-
nential and Poisson distribution models have been
investigated in detail. It was shown that the conver-
gence of the Bayes modal estimator to the true para-
metric value is described by a random process close to
a Gaussian one. A different Bayes approach was taken
up by Penskaya (1984), who considered an empirical
Bayes estimation of the reliability function when the
prior density is unknown but can be estimated on the
basis of previous experiments. In a recent paper,
Savchuk (1986) suggested a method for nonpara-
metric Bayesian estimation of an aging-in-the-mean
distribution F(t). The method is based on piece-
wise linear approximation of the cumulative hazard
function

A(t) = J; A(u) du = —In[1 — F(t)],

where A(u) is the failure rate. This method is appli-
cable to both complete and censored data.

Groysberg (1980), on the other hand, considered the
fiducial approach to reliability estimation problems.
This approach reduces the problems to that of finding
a distribution function having random arguments with
known probability distributions, a solution of which
can be obtained by a statistical simulation on a
computer.

In many physical models of the accumulation of
breakdowns, it is reasonable to assume that the break-
downs occur randomly and independently of the pre-
vious history of breakdowns in an object. In this case
the process of accumulation of breakdowns is an ad-
ditive Markov process. With a suitable choice of in-
ternal parameters, the degradation of the object can
be described by the parametric failure whose process
of change will be an additive process. Matveyev (1978)
considered methods of estimating the probability of
parametric failure when the degradation of the inter-
nal parameters can be regarded as an additive Markov
process with continuous realization. The methods dis-
cussed there include the maximum likelihood, the least
squares and the weighted least squares estimates.

~ Some results on recurrent estimation of reliability
from one experiment to another are obtained in Bar-
zilovich (1983). Karapenev (1978) had studied a sys-
tem with components and a repair device in which a
failure of a component is not detected immediately
but only after some lag. Under the assumption that
the rate of repairing is much greater than the rate of
component failure, he obtained an asymptotic esti-
mate of the system reliability. The statistical aspects
of optimal control have been investigated by Rosenblit
(1973) under the assumption that the model contains
unknown parameters. Explicit formulae for estimates
of optimal strategies were obtained.

Klebanov (1978) has considered the following char-
acterization problem: Let us consider two systems A
and B in series, where A has n components and B
has k components, n > k. If the lifetime distribution
of each component is F(t) then the reliabilities of
A and B at time t are given by (1 — F(¢))" and
(1 — F(t))* respectively. Let T = T'(t, F) denote the
time such that the reliability of B at T is equal to the
reliability of A at t. What can be said about F if T is
given? A characterization of the exponential distri-
bution by the property that T'(t, F) = at, a > 1 is
derived.

Genis (1978) otained the rate of convergence to an
exponential distribution that is the limiting distribu-
tion of a random variable with rational Laplace trans-
form. This situation occurs in systems with fast
servicing, for example, in automatic control systems.
Obretnev (1977) characterized the exponential distri-
bution in the class of all increasing failure rate distri-
butions by the property that (EX)* = Var(X) or,
equivalently w, = 2u%. Azlarov and Volodin (1981)
have studied the stability of this characterization and
obtained the following estimate that holds for any IFR
distribution function F(x):

sups>o| 1 — F(x) — e | < [2(1 — po/(u)]2

Various other characterizations of the exponential
distribution related to the lack of memory property or
some other reliability motivated properties were ob-
tained by Klebanov (1980).

Another important area of research in reliability
theory is the problem of dealing with censored data.
Censored data arise often in clinical trials and in
machine lifetime testing experiments. For example, in
a medical follow-up study, some patients of the study
may drop out unexpectedly, or the study itself must
conclude at a prespecified date. In a machine-testing
experiment, some of the objects may be removed from
testing according to already established rules or on
the basis of information regarding the results of the
test. The problem here is to estimate lifetime distri-

- butions based on incomplete (censored) data. Serious

western studies in this area started when Kaplan and
Meier (1958) reported their product-limit estimator,
and the research became even more active after Efron
(1967) and Breslow and Crowley (1974) established
the consistency and asymptotic normality of the esti-
mator. In the Soviet Union, there have also been some
theoretical developments in this area.

Artamonovskii and Kordonskii (1970) considered
maximum likelihood estimators (MLEs) of distribu-
tions with location and scale parameters, on the basis
of k-grouped samples obtained from the simple in-
spection of machines. It is assumed there that all the
machines in question have iid lifetimes, and each has
distribution of the form G((x — a)/b). In the jth



492 A. L. RUKHIN AND H. K. HSIEH

sample, there are N; machines. One observes only the
number m; of machines that failed before an inde-
pendently determined time T;,j =1, - - -, k. Based on
the realizations {m;, T;, N;}, they have obtained a
criterion for the existence and the uniqueness of the
MLEs.

Ushakov (1980), on the other hand, did not assume
the form of the distribution and suggested a non-
parametric estimate of the distribution function—
the same problem studied by Kaplan and Meier
(1958). Here we have n machines, which are put on
life testing. Let x; be the actual lifetime of the jth
machine, j = 1, -- -, n. The x;’s are iid, and have the
same cdf F. Associated with the jth machine, there is
an independently determined censoring variable y;,
j=1, ---, n, where the y;’s are iid and have the same
known (or unknown) cdf G. For the jth machine one
observed only min(x;, y;), and knows whether the
minimum is the actual failure time x; or the censoring
time y;. Ushakov’s approach and formulae for esti-
mating F are different from that of Kaplan and
Meier’s product-limit estimator. It is interesting to
note, based on the present authors’ few calculations,
that these two methods produce the same numerical
results. Kaplan and Meier’s work was not mentioned
in Ushakov’s paper.

In a similar problem concerning censored data,
" Pavlov and Ushakov (1984) obtained unbiased esti-
mators, also in a nonparametric setting, for some
sampling schemes. Recently, Belyayev (1985) used the
methods of martingale theory developed by Aalen
(1978), Gill (1980, 1983) and others to prove the
consistency of the Kaplan-Meier estimator, a property
that was rigorously proved by Foldes and Rejto (1981).
This author also developed confidence bounds for the
reliability functions of systems under repair or the
replacement maintenance policy.

6. FURTHER REMARKS

Soviet scholars have made many important and
original contributions in reliability theory, yet many
important areas of statistical analysis have not re-
ceived much of their attention. They seem to have
more interest in reliability estimation problems, and
less interest in statistical properties of their suggested
estimators or in hypothesis testing problems.

The weakest point of the Soviet reliability research,
from the authors’ point of view, is the lack of statistical
motivation for mathematical models that allow the
evaluation of reliability characteristics. Such models
are typically accepted before the system is actually
constructed and their reliability is calculated on
the basis of the model without checking it against ac-
tual failure data. Problems of model identification,
goodness-of-fit tests and model selection procedures
were rarely published in Soviet journals.

Some Soviet researchers seem to be unaware of
western studies related to their work. In many of the
Soviet papers that we surveyed, the authors failed to
discuss or even mention related influential results
that had been previously published in major western
(English language) journals.

ACKNOWLEDGMENTS

The article is an expanded version of “Survey
of Soviet Work in Reliability,” written by Andrew
L. Rukhin, Technical Report No. 373, April 29,
1986, Department of Statistics, Stanford University,
Stanford, California. The original technical report
was prepared under Contract N00014-76-C-0475
(NR-042-267) for the Office of Naval Research. The
authors wish to express their gratitude for many help-
ful remarks to Ilya Gertsbakh and Boris Pittel. They
also wish to thank Herbert Solomon, Ingram Olkin
and Morris H. DeGroot for their encouragement to
write and revise the technical report.

REFERENCES
Part I: Soviet Authors

ARTAMONOVSKIL, V. P. and KORDONSKII, KH. B. (1970). Estimate
of maximum likelihood for simplest grouping of data. Theory
Probab. Appl. 15 128-132.

AzLAROV, T. A. and VOLODIN, N. A. (1981). On closeness to
exponential distribution with monotone failure rate (in Rus-
sian). Teor. Veroyatnost. i Primenen. 26 665.

BARzILOVICH, E. YU. (1983). Problems of Mathematical Reliability
(in Russian). Radio i Svyaz Press, Moscow.

BARzILOVICH, E. YU. and KASHTANOV, V. A. (1975). Organization
of Service Under Limited Information about System Reliability
(in Russian). Soviet Radio Press, Moscow.

BELYAYEV, Yu. K. (1982). Statistical Methods in Reliability Theory
(in Russian). Znaniye Press, Moscow.

BELYAYEV, Yu. K. (1985). Multiplier estimates of the probability
of failure-free operation. Soviet J. Computer Systems Sci. 23
(5) 107-121.

BELYAYEV, Yu. K. and CHEPURIN, YE. V. (1983). Foundations of
Mathematical Statistics (in Russian). Moscow State Univ.
Press, Moscow.

BELYAYEV, YUu. K., DUGINA, T. N. and CHEPURIN, YE. V. (1967).
Calculation of lower confidence bounds on the probability of
faultless performance of complex systems. Engrg. Cybernetics
5 (2) 52-59.

BELYAYEV, YU. K., GNEDENKO, B. V. and UsHAKOV, I. A. (1983).
Mathematical problems in queuing and reliability theory.
Engrg. Cybernetics 21 (6) 62-69.

BELYAYEV, YU. K. and KHAFID, M. S. A. (1984). Asymptotic prop-
erties of the posterior densities of parameters in tests for
reliability. Engrg. Cybernetics 22 (1) 1-16.

BOLOTIN, V. V. (1971). Applications of Methods of Probability The-
ory and Reliability Theory in Construction Calculations (in
Russian). Stroyizdat Press, Moscow.

BRODETSKI1Y, G. L. (1978). The efficiency of entering intermediate
results in systems with failures that destroy information. Engrg.
Cybernetics 16 (6) 75-81.

BRODETSKI1Y, G. L. (1980). The question of optimal organization of
the entering of intermediate information when there are ran-
dom systems errors. Engrg. Cybernetics 18 (2) 61-65.



SURVEY OF SOVIET WORK IN RELIABILITY 493

BRODETSKIY, G. L. (1984). Optimization of the information storage
time in case of random task interrupts. Soviet Automat. Control
16 64-68.

BURTIN, YU. D. and PITTEL, B. G. (1972a). Asymptotic estimates
of the reliability of a complex system. Engrg. Cybernetics 10
(3) 445-451.

BURTIN, Yu. D. and PITTEL, B. G. (1972b). Semimarkov decisions
in a problem of optimizing a checking procedure for an unreli-
able queuing system. Theory Probab. Appl. 17 472-492.

BUSLENKO, N. P. (1976). Complex systems and simulation models.
Cybernetics 12 862-870.

BUSLENKO, N. P. (1978). Simulation of Complex Systems (in Rus-
sian). Nauka, Moscow.

CHEPURIN, YE. V. and DUGINA, T. N. (1970). On a class of stable
statistical estimates in reliability theory. Engrg. Cybernetics 8
(1) 65-72.

CHERKESOV, G. N. (1974). Reliability of Engineering Systems with
Temporal Redundancy (in Russian). Soviet Radio Press,
Moscow.

CHURKIN, V. L. (1984). The problem of optimal instants for turning
on a standby device. Engrg. Cybernetics 22 (6) 23-28.

DEMIN, V. K. and MALASHENKO, YU. E. (1974). Obtaining bound-
ing solutions in optimal standby problems. Engrg. Cybernetics
12 (1) 94-99.

DzIRKAL, E. V. (1981). Assignment and Verification of Requirements
for Reliability of Complex Items (in Russian). Radio i Svyaz
Press, Moscow.

DzIRKAL, E. V. and SHURA-BURA, A. E. (1980). Calculation of the
reliability of a redundant group with unreliable reswitching and
incomplete monitoring. Engrg. Cybernetics 18 (6) 84-90.

GADASIN, V. A. (1973). The reliability of information grids repre-
sented by semioriented graphs. Engrg. Cybernetics 11 (5)
767-775.

GADASIN, V. A. and LAKAEV, A. S. (1978). Estimation of the
reliability of retranslation grids by the method of decomposi-
tion. Engrg. Cybernetics 16 (4) 71-76.

GADASIN, V. A. and LAKAEV, A. S. (1979). Method of linear com-
plexity for estimation of reliability characteristics of redundant
communication networks (in Russian). Upravlyaushchiye
Systemy i Mashiny 3 23-31.

GADASIN, V. A. and UsHAKOV, L. A. (1975). Reliabililty of Complex
Information Control Systems (in Russian). Soviet Radio Press,
Moscow.

GENIS, YA. G. (1978). The convergence of a certain class of distri-
bution functions to an exponential distribution function in
reliability and queuing problems. Engrg. Cybernetics 16
(6) 94-101.

GENIS, YA. G. (1985a). Reliability of renewable standby systems
under general distributions of the time of failure-free opera-
tion of its elements. Soviet J. Computer Systems Sci. 23
(3) 103-109.

GENIS, YA. G. (1985b). The failure rate of a renewable system with
arbitrary distributions of the duration of failure-free operation
of its elements. Soviet J. Computer Systems Sci. 23 (5)
126-131.

GENIS, YA. G. and UsHAKOV, 1. A. (1983). Optimization of the
reliability of multipurpose systems. Engrg. Cybernetics 21
(3) 54-61.

GERTSBAKH, 1. B. (1966). Optimum use of reserve elements. Engrg.
Cybernetics 4 (5) 73-78.

GERTSBAKH, I. B. (1970). Dynamic reserves: Optimal control of
spare items (in Russian). Avtomat. i Vychisl. Tekhn. 1 57-63.

GERTSBAKH, 1. B. (1977). Models of Preventive Maintenance. North-
Holland, Amsterdam.

GERTSBAKH, 1. B. (1984). Asymptotic methods in reliability theory:
A review. Adv. in Appl. Probab. 16 147-175.

GERTSBAKH, 1. B. and KorDONSKIY, KH. B. (1969). Models of
Failure. Springer, New York.

GNEDENKO, B. V. (1943). Sur la distribution limite du terme
maximum d’une série aléatoire. Ann. Math. 44 423-453.

GNEDENKO, B. V. (1964a). Idle duplication. Engrg. Cybernetics 2
(4) 1-9. - '

GNEDENKO, B. V. (1964b). Duplication with repair. Engrg. Cyber-
netics 2 (5) 102-108. :

GNEDENKO, B. V., ed. (1983). Mathematical Aspects of Reliability
Theory (in Russian). Radio i Svyaz Press, Moscow.

GNEDENKO, B. V., BELYAYEV, YU. K. and SOLOVYEV, A. D. (1969).
Mathematical Methods of Reliability Theory. Academic, New
York.

GNEDENKO, B. V., KozLov, B. A. and USHAKOV, I. A. (1969). The
role of reliability theory in the construction of complex systems
(in Russian). In Reliability Theory and Queuing Theory (B. V.
Gnedenko, ed.). Soviet Radio Press, Moscow.

GNEDENKO, B. V. and MAKHMUD, I. M. (1976). The duration of
failure-free operation of a duplicated system with renewal and
preventive maintenance. Engrg. Cybernetics 14 (3) 65-70.

GNEDENKO, B. V. and SoLOVYEV, A. D. (1974). A general model
for standby with renewal. Engrg. Cybernetics 12 (6) 82-86.

GNEDENKO, B. V. and SOLOVYEV, A. D. (1975). Estimation of
reliability of complex renewal systems. Engrg. Cybernetics 13
(3) 89-96.

GoRsKl1y, L. K. (1970). Statistical Algorithms of Reliability Study
(in Russian). Nauka, Moscow.

GROYSBERG, L. B. (1980). A fiducial approach in the estimation of
the characteristics of complex systems. Engrg. Cybernetics 18
(4) 73-80.

GROYSBERG, L. B. (1981). On increasing the efficiency of confidence
estimation of the reliability of systems. Engrg. Cybernetics 19
(2) 102-112.

KABASHKIN, 1. V. (1984). A method of calculating the reliability
indices of a class of Markov systems models. Engrg. Cybernetics
22 (5) 18-21.

KALASHNIKOV, V. U. (1969). Estimating the reliability of redundant
systems with constant restoration time by means of an analogy
to the direct Lyapunov method. Engrg. Cybernetics 7 (3)
66-72.

KAMINSKY, M. P. (1984). Nonparametric confidence estimation of
the quantiles of the duration of failure-free operation in classes
of continuous and aging distributions. Engrg. Cybernetics 22
(1) 10-14.

KARAPENEV, KH. K. (1978). Estimation of the reliability of a
standby system with renewal and lag in the detection of failures.
Engrg. Cybernetics 16 (3) 88-93.

KARSHTEDT, I. M. and KOGAN, L. M. (1971). Optimal standby with
a choice of setups. Engrg. Cybernetics 9 (2) 231-245.

KARTASHOV, G. D. (1971). Accelerated testing in the case of an
unstable production process. Engrg. Cybernetics 9 (4) 664-669.

. KARTASHOV, G. D. (1979). Methods of Forced (Augmented) Experi-

ments (in Russian). Znaniye Press, Moscow.

KARTASHOV, G. D. and PERROTE, A. 1. (1968). On the principle of
“heredity” in reliability theory. Engrg. Cybernetics 6 (1) 78-83.

KARTASHOV, G. D. and SHVEDOVA, 1. G. (1983). A problem of
selecting objects. Engrg. Cybernetics 21 (3) 62-67.

KLEBANOV, L. B. (1978). Some problems of characterizing distri-
butions arising in reliability theory. Theory Probab. Appl. 23
798-801.

KLEBANOV, L. B. (1980). Some results connected with a character-
ization of the exponential distribution. Theory Probab. Appl.
25 617-622.

KONENKOV, YU. K. and UsHAKOV, 1. A. (1975). Problems of Relia-
bility of Radioelectronic Equipment under a Mechanical Load
(in Russian). Soviet Radio Press, Moscow.

KONEv, U. V. (1974). Optimal inclusion of standby elements. Engrg.
Cybernetics 12 (4) 56-62.

KOROLYUK, V. S. and TURBIN, A. F. (1978). Mathematical Foun-
dations of Phase Consolidation of Complex Systems (in Russian).



494 A. L. RUKHIN AND H. K. HSIEH

Naukova Dumka Press, Kiev.

KOVALENKO, I. N. (1975). Investigations in Analysis of Reliability of
Complex Systems (in Russian). Naukova Dumka Press, Kiev.

KOVALENKO, I. N. (1976). Analytic-statistical method for calculat-
ing the characteristics of highly reliable systems. Cybernetics
12 895-907.

KOVALENKO, I. N. (1980). Analysis of Rare Events when Estimating
Efficiency and Reliability of Systems (in Russian). Soviet Radio
Press, Moscow.

KozLov, B. A. and UsHAKOV, L. A. (1970). Reliability Handbook.
Holt, Rinehart and Winston, New York.

KozLov, B. A. and UsHAKOV, 1. A. (1975). Handbook of Reliability
Computation (in Russian). Soviet Radio Press, Moscow.

KREDENSTER, B. P. (1978). Forecasting Reliability with Temporal
Redundancy (in Russian). Naukova Dumka Press, Kiev.

KULBACK, L. L. (1970). Methods of Calculation of Necessary Supply
of Spare Components for Electronic Devices (in Russian). Soviet
Radio Press, Moscow.

LEvIN, B. R. and UsHAKOV, 1. A. (1965). Some aspects of the
present state of reliability (in Russian). Radiotekhnika 4
17-30.

Litvak, YE. L. (1974). Reliability functions of discrete systems (in
Russian). Avtomat. i Vychisl. Tekhn. 5 111-114.

LiTvak, YE. L. (1979). A new method of resistance determination
of complex electrical networks (in Russian). Electrichestvo 12
35-40.

LiTvaAK, YE. I. (1981). A generalized triangle-star transformation in
the investigation of the properties of complex networks. Engrg.
Cybernetics 19 (1) 158-162.

Litvak, YE. I. and UsHAKOV, 1. A. (1984). Estimation of the
parameters of structurally complex systems. Engrg. Cybernetics
22 (4) 35-50.

LoMoNosov, M. V. and PoLEsskil, V. P. (1971). An upper bound
for the reliability of information network. Problems Inform.
Transmission 7 337-339.

LoMoNosov, M. V. and PoLEssKiII, V. P. (1972). Lower bound for
network reliability. Problems Inform. Transmission 8 118-123.

LuBkov, N. V. (1980). A recurrent procedure of simulating failures
in the estimation of reliability of complex systems. Engrg.
Cybernetics 18 (3) 58-61.

MANDEL, A. S. and RAYKIN, A. L. (1967). The optimal plan of
switching on spare units (in Russian). Avtomat. i Telemekh. 5
15-19.

MATVEYEV, A. V. (1978). Estimation of the probability of paramet-
ric failure. Engrg. Cybernetics 16 (4) 76-82.

MIKADZE, I. S. (1979). Probabilistic characteristics of a digital
computer taking its reliability into account (in Russian).
Avtomat. i Telemekh. 17 77-81.

MIRNYL, R. A. and SOLOVYEV, A. D. (1964). An estimate of relia-
bility after tests of components (in Russian). In Cybernetics in
the Service of Communism: Reliability Theory and Queuing
Theory (A. 1. Berg, N. G. Bruevich and B. V. Gnedenko, eds.)
2 213-218. Energia Press, Moscow.

NETES, V. A. (1980). Expected value of effectiveness of discrete
' systems (in Russian). Avtomat. i Vychisl. Tekhn. 11 85-90.
OBRETNEV, A. (1977). Convergence of IFR-distribution to the ex-

ponential one. Dokl. Bulgarian Akad. Sci. 30 1385-1387.

PARAMONOV, YU. M. (1975). Determination of an assigned resource
from a small number of preliminary observations. Engrg.
Cybernetics 13 (5) 93-97. -

PARAMONOV, YU. M. and SAVVIN, A. L. (1978). Determination of
an assigned reserve with allowance for the number of objects
in use. Engrg. Cybernetics 16 (5) 84-88.

PASHKOVSKIY, G. S. (1981). Problems of Optimal Detection and
Search for Failures in Radioelectronic Equipment (in Russian).
Radio i Svyaz Press, Moscow.

PavLov, 1. V. (1980). Confidence bounds for convex functions

of many unknown parameters. Theory Probab. Appl. 25
388-393.

PavLov, I. V. (1982). Statistical Methods of Estimation of Reliability
of Complex Systems Based on Experimental Results (in Rus-
sian). Radio i Svyaz Press, Moscow.

PavLov, L. V. and UsHAKOV, 1. A. (1984). Unbiased estimation of
a distribution function from a multiply truncated sample.
Theory Probab. Appl. 29 617-620.

PENSKAYA, M. YA. (1984). Estimation of the a priori distribution
density in reliability problems on the basis of Bayesian
approach by the method of statistical regularization. Engrg.
Cybernetics 22 (3) 34-42.

PERROTE, A. L., KARTASHOV, G. D. and TSVETAYEV, K. N. (1968).
Foundations of Accelerated Reliability Testing of Radio Parts (in
Russian). Soviet Radio Press, Moscow.

PERROTE, A. I. and YAVRIYAN, A. N. (1978). The principle of least
action in reliability theory. Engrg. Cybernetics 16 (6) 101-106.

PoLovko, A. M. (1965). Foundations of Reliability Theory (in Rus-
sian). Nauka, Moscow.

RAYKIN, A. L. (1967). Reliability Theory in Planning of Engineering
Systems (in Russian). Soviet Radio Press, Moscow.

RAYKIN, A. L. (1971). Probability Models of Functioning of System
with Reserves (in Russian). Nauka, Moscow.

RAYKIN, A. L. (1978). Reliability Theory of Engineering Systems (in
Russian). Soviet Radio Press, Moscow.

ROSENBLIT, P. YA. (1973). Estimating optimal preventive mainte-
nance strategies. Engrg. Cybernetics 11 (5) 758-762.

RuBALSKY, G. B. (1977). Inventory Control under Random Demand
(in Russian). Soviet Radio Press, Moscow.

RuUBALSKY, G. B. (1984). Mixed renewal and restocking models for
product of a single type. Engrg. Cybernetics 22 (2) 59-66.
RUBALSKY, G. B. and UsHAKOV, 1. A. (1976). Multiechelon inven-
tory control system with dense branches. Kybernetes 5

(2) 101-105.

SAPOZHNIKOV, P. N. (1970). Estimating the reliability of parallel
and series circuits from trials of individual elements. Engrg.
Cybernetics 8 (4) 683-687.

SAVCHUK, V. P. (1986). Approximate Bayesian estimation of the
probability of failure-free operation for a class of aging distri-
butions. Soviet J. Computer Systems Sci. 24 (2) 37-43.

SEDYAKIN, N. M. (1966). A physical reliability theory. Engrg.
Cybernetics 4 (3) 295-303.

SHISHONOK, N. A, REPKIN, V. F. and BARVINSKI, 1. L. (1964).
Foundations of Reliability Theory and Use of Radioelectronic
Equipment (in Russian). Soviet Radio Press, Moscow.

SHOR, Y. B. (1962). Statistical Methods for Analyzing Control of
Quality and Reliability (in Russian). Soviet Radio Press,
Moscow.

SHURA-BURA, A. E. and TopoLsklY, M. V. (1961). Methods of
Organization Calculation and Optimization of Batches of Spare
Parts of Complex Engineering Systems (in Russian). Znaniye
Press, Moscow.

SoLoOVYEV, A. D. (1965). Theory of aging elements. Proc. Fifth
Berkeley Symp. Math. Statist. Probab. 8 313-324. Univ. Cali-
fornia Press.

SoLOVYEV, A. D. (1971). Asymptotic behavior of the time of the
first occurrence of a rare event in a regenerating process. Engrg.
Cybernetics 9 (6) 1038-1048.

SOLOVYEV, A. D. (1972). Asymptotic distribution of the moment of
first crossing of a high level by a birth and death process. Proc.
Sixth Berkeley Symp. Math. Statist. Probab. 3 71-86. Univ.
California Press.

SOLOVYEV, A. D. and SHAKHBAZOV, A. A. (1981). Nonhomogeneous
standby with renewal. Engrg. Cybernetics 19 (5) 30-38.

SoLOVYEV, A. D. and UsHAKOV, 1. A. (1967). Some bounds on a
system with aging elements (in Russian). Avtomat. i Vychisl.
Tekhn. 6 37-41.



SURVEY OF SOVIET WORK IN RELIABILITY 495

SONKINA, T. P. and TYOSKIN, O. I. (1984). Confidence limits for
the reliability of systems of elements connected in series. Engrg.
Cybernetics 22 (4) 105-113.

Subakov, R. S. (1974). A problem of interval estimation of the
reliability index of a series system. Engrg. Cybernetics 12
(3) 55-63.

SuDAKOV, R. S. (1980). On interval estimation. Engrg. Cybernetics
18 (1) 54-64.

TATASHEV, A. G. and USHAKOV, L. A. (1981). A problem of reswitch-
ing standby elements after a schedule. Engrg. Cybernetics 19
(5) 57-65.

TYOSKIN, O. 1. (1979). Precise confidence limits for the reliability
of redundant systems in the case of failure-free tests of their
elements. Engrg. Cybernetics 17 (4) 116-123.

UsHAKOV, L. A. (1960). An estimate of effectiveness of complex
systems (in Russian). In Reliability of Radioelectronic Equip-
ment (O. Poslavskii, ed.). Soviet Radio Press, Moscow.

UsHAKOV, I. A. (1966). An estimate of reliability of systems with
renewal for a stationary process (in Russian). Radiotekhnika 5
43-50.

UsSHAKOV, 1. A. (1969). Methods for Solving Simplest Problems of
Optimal Inventory under Restrictions (in Russian). Soviet Radio
Press, Moscow.

USHAKOV, L. A. (1980). Estimation of reliability from the results of
truncated observations. Engrg. Cybernetics 18 (5) 76-78.

UsHAKOV, 1. A. (1981). Method of approximate solution of prob-
lems of dynamic standby problems. Engrg. Cybernetics 19 (2)
94-101.

UsHAKOV, L. A. and LITvak, YE. L. (1977). Upper and lower bounds
on parameters of two-terminal networks. Engrg. Cybernetics
15 (1) 59-67.

USHAKOV, L. A. and YASENOVETS, A. V. (1977). Statistical methods
of solving problems of optimal standby. Engrg. Cybernetics 15
(6) 8-16.

USHAKOV, L. A. and YASENOVETS, A. V. (1978). Two limit problems
of optimal standby (in Russian). Nadezhn. Kach. 3 77-82.
ZHEGALOV, S. 1. (1986). A method of calculating the probability of
failure-free operation of a system with different elements.

Soviet J. Computer Systems Sci. 24 (1) 147-149.

Comment

Richard E. Barlow and Zohel S. Khalil
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this survey because it must have involved considerable
time and effort to dig out and interpret such a large
volume of research work. However, this survey article
could be by no means a complete review of Soviet
work in reliability theory. An excellent short survey
of Soviet work in asymptotic methods in reliability
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theory appeared in Advances in Applied Probability by
Gertsbakh (1984). Rukhin and Hsieh have expanded
their survey to include additional topics in reliability
theory. It would have been helpful had they also
mentioned the related excellent work of Brown (1987),
Brown and Ge (1984) and Keilson (1979, 1986) in this
country, because their work is very close and overlaps
in many respects the work of the Gnedenko school of
reliability at Moscow University.

One of us (Khalil) was a Ph.D. thesis student of
Gnedenko at the beginning of the era of the Moscow
school of reliability theory. He studied at Moscow
University from 1963-1969 and has kept in contact
with Gnedenko. Hence, we will first give a short



