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Comment

T. W. Anderson

1. OBJECTIVES

I am pleased that Statistical Science has furnished
the opportunity to review my second edition and stim-
ulate a discussion of the development and future of
multivariate statistical analysis. The reviewer makes
clear that his paper is “a thoroughly biased and narrow
look”; I look forward to an unbiased, broad and com-
prehensive view in the future.

This article contrasts two books on multivariate
statistical analysis that are very different in content
and objectives. I shall-hold my discussion to Scher-
vish’s remarks concerning my book. Let me first elu-
cidate my criteria for inclusion of material. Writing a
book on multivariate statistical analysis originated as
an idea some forty years ago. It was accomplished over
a period of years in connection with teaching courses
in the Department of Mathematical Statistics at Co-
lumbia University. I wanted to write about statistical
analysis that I thought has a sound foundation, about
methods that were widely accepted. When the first
edition was published in 1958, I had no thought that
a quarter of a century would pass before the second
edition would appear. When I finally came to revise
the book, I found that most of the contents had stood
the test of time; there was little that I wanted to
change or delete, although there was a good deal that
could be added. It has been a great satisfaction to me
that the book has stood up so well; the initial selection
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of material has been justified. The objectives and
organization of the first edition have been retained.
In fact, the headings of the chapters and of most of
the sections have been kept.

Although the book includes a considerable amount
of mathematics, the primary objective is to provide
and explain the methods and their properties. I think
that the purpose of statistical theory is to initiate,
develop, clarify and evaluate statistical methods. One
criterion for inclusion of a topic is that it contributes
to understanding useful procedures. Accordingly,
there is not much theory in the book for its own sake,
but I will admit that the relevance of some material is
a matter of personal taste and some theory is to satisfy
intellectual curiosity.

A second criterion, as the reviewer has surmised, is
that a topic has a mathematical backing. For a confi-

- dent and thorough understanding, the mathematical

theory is necessary. This implies a rigorous treatment.

Thirdly, I wanted to organize the contents coher-
ently. This desire is partly for the sake of clarity and
efficiency of exposition and partly for personal satis-
faction—aesthetics, if you will.

An outcome of following these criteria was that the
inference treated here is based on normal distributions
as models. There was not a place for ad hoc methods,
valuable though they may be. Normal distributions
serve as suitable models for generating many sets of
data, but, of course, not for all sets.

Because the book is aimed at statistical practice,
I included a number of examples, perhaps not
enough. Beside the twelve examples mentioned by
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the reviewer, there are some additional data sets in

problems. To assist the practitioner some tables of

significance points have been added.

Although the book is now 675 pages instead of the
378 pages of the first edition, I, as author, was the
first to realize that not everything of value in multi-
variate analysis could be included in a single volume.
(Some people have told me they like that first edition
better because they do not have so much to learn.)
However, I thought that no purpose was served by
listing in the book what had been excluded. A book
should be judged on the basis of the author’s objec-
tives: Are they worthwhile? Is he successful in achiev-
ing them?

Before I discuss some omissions relevant to the
review, let me point out that I assume some statistical
knowledge and sophistication on the part of my read-
ers. They know, presumably, that the power of a test
is important and that the significance level is to be
balanced against power. Thus, the appropriate signif-
icance level should be adjusted to sample size. A null
hypothesis is only an approximation to the question
that the investigation really wants to ask; x = 0 is to
be interpreted as u close to 0. This degree of approxi-
mation is related to sample size, the choice of signifi-
cance level and the resulting effect on power. Achieved
significance levels may serve as a measure of departure
from the null hypothesis. I can recommend a good
text for these ideas (Anderson and Sclove, 1986).

In this book under review I have not gone into detail
about the applicability of the methods and how to
carry them out; there are important practical matters
that I did not have space for. Some suggestions about
computation were made, but the development of effi-
cient computational methods requires different exper-
tise and depends to”some extent on the size of the
data set and the equipment available. Computational
programs and packages were not mentioned. (Will
they last 26 years?) Although I think graphical tech-
niques are essential, a comprehensive exposition of
them did not fit in because a rigorous foundation
for them is not available.

2. TESTING HYPOTHESES AND INVARIANCE

Something like one-quarter of my book is devoted
to tests of hypotheses and their properties. I think
that this emphasis is not out of line with current
practice. In terms of statistical methods with a firm
theoretical basis it is certainly not. Indeed, I think a
greater proportion of research reported in the journals
of mathematical statistics concerns such issues. I sup-
pose I am partly responsible because my first edition
made a number of problems apparent; a lot of doctoral
dissertation advisers owe me thanks. Of our knowledge
of statistical procedures with a firm mathematical

foundation, tests of hypotheses form a fairly large part
and my treatment reflects this share.

The power of a test is an important property; its
knowledge is desirable in choosing a significance level;
and selection of a particular test among alternative
tests may depend on a comparison of their powers.
The powers of some tests are easily ascertained and
described, for example, the T? test, but for most mul-
tivariate tests the powers cannot be explained com-
pactly. An important class of multivariate tests is the
class of invariant tests of the general linear hypothe-
sis. Comparison of the powers of some competing tests
is made in Section 8.6.5 in terms of asymptotic expan-
sions; the leading terms depend on only two functions
of the invariants of the parameters. To tabulate the
power function of such a test, however, involves (1)
the dimensionality, (2) the number of linear restric-
tions (or columns specified), (3) the number of degrees
of freedom in the estimate of the covariance matrix,
(4) the significance level, (5) the sum of the roots of a
certain population determinantal equation and (6) the
sum of squares of those roots. The exact power func-
tions which could be calculated from exact noncentral
distributions (in Muirhead, 1982, for example) might
involve more parameters.

It should be pointed out further that in principle a
family of tests may provide a family of confidence
regions. In many cases these are feasible regions; see
Sections 5.3 and 8.7, for example.

This review and ensuing discussion is not the place
for a full scale debate on hypothesis testing. (See
Lehmann, 1986, for example). It surely has a place in
statistical inference—where sampling variability is
evaluated and its effects controlled. My feeling about
statistical theory is that it yields guideposts on the
basis of definite statements. A map does not give every
topographical detail; yet it can be used to locate un-
stated positions by their relation to marked positions.

The property of invariance is used in much of the
book and is in part a unifying thread. In the simplest
case of testing H: u = 0 in N(u, ) the invariant of
the sufficient statistics ¥ and S with respect to linear
transformations X* = CX is T2 = Nx’S” % (or a
function of it) and of the parameters u and X is
Nu’Z7u. One desirable property of any test based on
the sample invariant is that it has a fixed significance
level; that is, the probability of rejecting H when it is
true does not depend on Z. Another desirable effect is
that the T? test (rejecting H when T? is larger than a
constant) has power against any alternative u # 0 that
is greater than the significance level and the power
increases along any ray u = 7y (that is, 7 increasing
and the vector v fixed). As a matter of fact, it is
further proved in Section 5.6 that the T test is ad-
missible in the class of all tests, not just invariant
tests. In this and many other cases an optimal invar-
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iant test cannot be improved on by any test—invariant
or not.

In the univariate case, invariance with respect to
positive scalar C implies use of the t statistic; the
requirement is that inference is independent of the
scale of measurement, a reasonable condition. Invari-
ance with respect to all scalar C implies the two-sided
t test, which has power greater than the significance
level against all alternatives. (It is seldom, if ever, that
one sees a two-sided ¢ test made with different prob-
abilities assigned to the two tails.) In the multivariate
case, invariance with respect to all nonsingular C
requires that the scales of measurements of the com-
ponents do not affect the outcome, but also imposes
invariance with respect to oblique transformation of
coordinates.

Obviously, there are problems where the parameter
invariants do not describe suitably the alternatives
the investigator considers relevant. In testing u = 0,
one might be interested in alternatives 4 = 0, u # 0
that is, each component being nonnegative and at
least one component being positive. Perlman (1969)
found the likelihood ratio criterion for testing the null
hypothesis against this set of alternatives. (Further
references are given by Perlman.) He showed that the
distribution of the criterion under the null hypothesis
depends on the nuisance parameter = and obtained
upper and lower bounds for the probability of rejection
under the null hypothesis. Such a test will give greater
power against some alternatives u = 0 than the T2
test but not against all such alternatives. How suitable
such a test is depends on which alternatives in the set
u = 0 are considered most important. Much more
study needs to be done and is being done.

The reviewer (Section 11) has quoted my example
of test of the hypothesis that the means of four pop-
ulations are equal and questions whether the asserted
difference in means is meaningful in the sense of
classification. I carried out the test at the 1% signifi-
cance level, but it would have been better to take a
smaller percentage because the sample sizes are large;
the minimum sample size was 70. Nevertheless the
null hypothesis would be rejected (at even unreason-
able significance levels, such as 107*).

A test is often, if not usually, conducted before using
the results for other procedures. In this instance
Schervish suggests using the statistics for classifica-
tion into one of the four populations. I agree that in
this case a reasonable purpose for the significance test
is to see if classification on such a basis would be
effective. He estimates the probabilities of correct
classification as given in Table 4. He does not give
any measure of sampling variability of these estimates,
but it would appear that those probabilities are better
than the probability of .25 attained by guessing. Who
decides the value of the improvement?

3. BAYESIAN INFERENCE AND PREDICTION

3.1 Bayesian Inference

The reviewer has used this opportunity to express
himself on many issues in inference. Because of lim-
ited space here, I am not discussing his general views,
but am concentrating on what is specific to multivar-
iate analysis and my objectives in writing this book.
As noted, I developed the posterior distribution of the
mean u and covariance matrix = by using the conju-
gate prior distributions. However, I find it difficult
to see how an investigator determines an inverted
Wishart distribution as a prior for Z, presumably
representing his prior knowledge about =. To make
use of prior knowledge beyond that of determining a
suitable model for the data seems to me desirable
when it is possible. However, to develop that approach
systematically is beyond the scope of my book. Press
(1982) has applied the Bayesian approach systemati-
cally.

3.2 Prediction

I agree that prediction can be an important aspect
of a statistical investigation, not only under the con-
ditions of the collection of the data, but also under
altered conditions. I wish that I had developed these
aspects more. And I would add control as another
objective. How might one modify the parameters (as
estimated) to obtain a desired output? However, the
Bayesian methodology is not the only approach to
these problems. For example, within the classical
framework one can obtain “confidence” regions for
future observations.

4. MORE SPECIFIC COMMENTS

4.1 The Multivariate Behrens-Fisher Problem:
“What’s New?”

It seems strange to me that the reviewer finds
Section 5.5 “The Two-Sample Problem with Unequal
Covariance Matrices” an interesting addition in the
second edition because the first contained Section 5.6
“The Multivariate Behrens-Fisher Problem.” The
only differences between these sections in the two
editions is the addition or modification of six sen-
tences, the change of title, and the interchanging of
section numbers. The purpose of these changes was
not to confuse reviewers.

A more important misunderstanding by Schervish
concerns the purported “discarding of observations.”
For ease of exposition here we consider the two-sample
problem of testing H: ¥ — u® = 0. The T? statistic
in question is T2 = N;y’S~'y, where y = ¥ — £,
%% is the mean of the ith sample, i = 1, 2, N; < N,
and S is based on x{’ — VN;/N, x?, a =1, ..., N,.
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(I assumed that my reader would know that he/she
should randomize the ordering.) If N; < N, not all of
the observations are used in estimating the covariance
matrix of y, but all of the observations are used in y,
the natural estimate of u¥' — p®. My claim is that
the power of the test would not be increased much if
somehow all of the data were used in estimating the
covariance matrix of y.

The T? statistic multiplied by a constant has the
F distribution with p and N, — p degrees of freedom
and noncentrality parameter

-1
2= (u(l) — #(2))/<NL1 >+ Niz 22) (ﬂ(l) _ #(2));
the matrix in this quadratic form is the covariance
matrix of y = £V — £®. The number of observations
not used in calculating S can affect only the “denom-
inator” number of degrees of freedom of F. (Suppose
we were given N, — N; more observations on X))
A possible question is the effect on the power of an
F test of increasing the “denominator” number of
degrees of freedom while keeping the noncentrality
parameter fixed. I found it easy to take a few num-
bers from the table of Tang (1938). In this case,
p = 4 as in several examples and the other number of
degrees of freedom is of the order of sample size in
- some examples. The power is not increased very much
by increasing the number of degrees of freedom in the
estimate of the covariance matrix as long as that

number is reasonably large to begin with.

Power for p = 4 and Significance Level .05

D.F\7? 5 20 45
30 .140 175 996
60 .163 .835 999
o 190 .885 1.000

This is not the place for a comprehensive study of
the multivariate Behrens—Fisher problem. If the two
covariance matrices are approximately equal, an in-
vestigator might pool the sample to increase the num-
ber of degrees of freedom substantially, but in the
resulting T? statistic the inverse of the matrix of
the quadratic form in £ — £® estimates (1/N,)Z; +
(1/N,)Z, instead of (1/N,;)Z, + (1/N3)Z,. A huge
distortion of significance level may be a consequence.

The reviewer seems to be confused by my statement
that “another problem amenable to this kind of treat-
ment” is the problem of testing u™ = u®, where pV
and p? are two subvectors of g = (¢, u?@’)’ in
N(u, Z). The procedure is exactly the one discussed
above: Use the T? statistic calculated on the basis of
Vo = xV — x? to test &y, = 0. Of necessity N; = N,.
It is the reviewer’s remarks that are not amenable.

4.2 Unbiased Estimates

I do not understand why the reviewer makes the
point that it is unwise to use the unique unbiased
estimator of R2 based on R? because I make that point
perfectly clear in Section 4.4.3. I gave the expression
(47) to satisfy the reader’s curiosity inasmuch as I had
given the unique unbiased estimate of p based on r.
The authors of this work (Olkin and Pratt, 1958) had
already pointed out that the unbiased estimator of R?
was unacceptable. This is one of the few theoretical
results reported that does not have some practical
implication.

4.3 Discriminant Analysis

Chapter 6, “Classification of Observations,” has
been (in the reviewer’s words) “expanded somewhat,”
actually from 28 pages to 49 pages. Because the term
“discriminant analysis” has been used to cover many
different methods and approaches, I have separated
out the clearly defined topic of classification. Another
aspect of discriminant analysis of more than two
samples is to provide a minimum number of classifi-
cation functions. In the context of means of normal
distributions with a common covariance matrix this
involves the question of the dimensionality of the
space spanned by the means. This question can be
subsumed under canonical correlation analysis of
regression matrices. Although I have done a consid-
erable amount of research in this area, I included little
in the book because I felt that a thorough and rigorous
treatment of the necessary asymptotic theory was
beyond its scope.

It is true that I stated that “to determine the number
of nonzero and zero population canonical correlations
one can test” a sequence of hypotheses, but I warned
that the tests in the sequence “are not statistically
independent, even asymptotically.” The implication
was that such a procedure does not control the prob-
abilities of errors. (This is an example of material
without a full mathematical foundation, and, hence,
is debatable.) In the case of nested hypotheses with a
suitable structure of complete sufficient statistics, a
sequence of such significance tests are independent
and may be optimal. (See Anderson, 1962.) However,
how to determine the number of nonzero canonical
correlations and the number of factors (in factor
analysis) has not been settled definitively.

4.4 Principal Components

If it is desired to predict a vector X by means of a
linear combination of X itself, the mean squared error
of the residuals is minimized by taking as the linear
combination the principal component with the largest
variance. The reviewer states this result when the
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covariance matrix is the correlation matrix, but it
holds without that condition (proved in Schervish,
1986). This interesting interpretation was what I had
in mind when I stated the result as part (b) of Problem
3 of Chapter 11 (Problem 4 in the first edition).
Another interpretation is suggested by part (a) of the
problem. Suppose X = S + E, where the systematic
part S and the error E are uncorrelated and £E = 0,
ZEE’ = ¢*I; the last assumption is reasonable if the
noise is due to the error in a measuring device that is
applied independently to the components. The first
principal component is proportional to the linear
combination of X that maximizes the variance of the
linear combination of the systematic part relative to
the variance of the linear combination of error. The
last is a multiple of the square of the norm of the
vector of coefficients; in this setting it is natural to
set the norm to 1.

4.5 Factor Analysis

It is amusing that Schervish writes “there are tra-
ditionally two modes in which one can perform factor
analysis.” The so-called exploratory mode dates back
to Spearman (1904). With regard to the confirmatory
mode, Anderson and Rubin (1956) developed esti-
mates of the structure when coefficients are specified
in advance and stated some asymptotic theory of
inference. However, not much attention was paid to
this mode until Joreskog (1969) gave it the name
confirmatory, and ‘it was not put into practice until
Joreskog wrote a program for it later.

Factor analysis and latent structure analysis (Sec-
tion 12 of the review) were put into a general frame-
work based on conditional or local independence in
Anderson (1959). A more highly developed model has
been studied by Bartholomew (1984).

4.6 Path Analysis and LISREL

The model (2) in the review is a simultaneous equa-
tions model as treated in my Section 12.7, but the
model for the observed data involves measurement
error added to the unobservable variables in (2). The

_limited information maximum likelihood estimator for
a single equation in a simultaneous equation system
presented in Section 12.7.4 is hardly ad hoc; it was

exposited as minimizing a variance ratio (as in the
F statistic) to avoid considerable algebra.

5. CONCLUSION

The usefulness of multivariate statistical analysis is
growing rapidly—due to greater data collection, in-
creased computer power and expanding knowledge of
statistical techniques. At the present time great prog-
ress is being made in all aspects: statistical theory and
methodology, data analysis, graphical capabilities
and computing facilities. There is good reason to
expect this progress to continue and expand in other
directions.
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