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Predictive Likelihood: A Review

Jan F. Bjornstad

Abstract. The concept of predictive likelihood is reviewed and studied. The
emphasis is on comparing and clarifying some of the more important
predictive likelihoods suggested in the literature. A unified modification
and simplification of the sufficiency-based predictive likelihoods is sug-
gested. Other predictive likelihoods discussed include the profile predictive
likelihood and various modifications of it.
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1. INTRODUCTION

Prediction of the value of an unobserved or future
random variable is a fundamental problem in statis-
tics. From a Bayesian point of view, it is solved in a
straightforward manner by finding the posterior pre-
dictive density of the unobserved random variable
given the data. If one does not want to pay the Baye-
sian price of having to determine a prior, no unifying
basis for prediction has existed until recently. In the
last few years, however, attempts have been made to
develop a non-Bayesian likelihood approach to predic-
tion via the concept of predictive likelihood. In this
paper, we compare and study some of the more im-
portant predictive likelihoods that have been proposed
in the literature in order to try to describe the current
state of affairs. The main perspective is to discuss the
concept of predictive likelihood as a foundation for
prediction analysis rather than considering various
prediction methods.

Let Y = y be the data. The problem is to predict
the unobserved value z of Z. The inference is usually
in terms of a confidence interval and/or a predictor
for z. It is assumed that (Y, Z) has a probability
density, with respect to Lebesgue measure or mass
function (pdf) f,(y, z), where 6 is the unknown param-
eter vector. In general we shall let f,(-) or f(-) denote

,the pdf of the enclosed variables, and f;(-|-) or
f(-]-) denotes the conditional pdf of the enclosed
variables. § is the maximum likelihood estimate
(MLE) of 0 based on the data y, and 6, is the MLE
based on (y, z). The MLE based on z alone is denoted
by 6. It is assumed that Y = (Xi, ---, X,), the
unobserved sample is Y’ = (X{, ---, X,) and Z is
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some function of Y’, like Y X/ or Y’ itself. R =
r(Y, Z) is a minimal sufficient statistic for (Y, Z).

The fundamental point in the prediction problem is
that we are dealing with two unknown quantities, z
and 6, and the primary aim is to gain information
about z with 6 playing the role of a nuisance parameter.
Berger and Wolpert (1984) formulate a likelihood
principle for prediction, stating that all evidence about
(z, 6) is contained in the joint likelihood function

L,(z, 0) = foy, 2).

With [, as a basis, the objective is to develop a likeli-
hood for z, L(z | y), by eliminating 6 from [,. Any such
likelihood will be called a predictive likelihood. We
see that likelihood prediction must deal with the prob-
lem of nuisance parameters, and different ways of
eliminating 6 from I, give rise to different predictive
likelihoods.

It follows that the concept of predictive likelihood
is rather vague, reflected by this review which presents
14 versions of L(z|y). However, many of these are
quite similar, and all the different versions are based
essentially on one of the following three operations on
l,: integration, maximization or conditioning. In com-
parison, the Bayes approach is equivalent to integrat-
ing [, with respect to a prior on 6.

An example of a predictive likelihood is the so-
called profile predictive likelihood, L,(z|y) = sups
fo(y, 2) = L(z, 6,), first studied by Mathiasen (1979).
The Bayes posterior predictive density with flat prior,
fo(z|y), can be thought of as an integrated (marginal)
likelihood, since fo(z|y) o« [ L,(2, 8) d6.

EXAMPLE 1. Consider X;, X/’s independent
N(6, o5), where o§ is known, and let Z = ¥ X;//m.
Then L, and f, result in the same likelihood,

L0~N<92, <l+1> a%),i _25,
m n n
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EXAMPLE 2. Assume that all X;’s and X/ ’s are
independent Bernoulli variables with success proba-
bility 6 and consider Z = Y, X;. Let S = ¥ X;. Then
the Bayes predictive density with flat prior is given by

W

fo(zly)=<m+n>m+n+1,

for 0 =z=m;

s+ z

i.e., the posterior distribution of Z is negative hyper-
geometric. The profile predictive likelihood is propor-
tional to

(’:)(s + 2" (n+m—s — z)"tmE,

Stirling’s approximation of L, results in

fo(z1y) - stz
L 5, 0, = .
o 1Y) G TR n+m
This means that, Arelative to fo, L, assigns higher
likelihood for z as 6, approaches 0 or 1.

There is one major difference between predictive
likelihood and ordinary parametric likelihood. The
parametric likelihood of 6 or 6’ has no meaning,
while the predictive likelihood of a value z € B
can be defined. For instance, in the discrete
case, L,(z € B|y) = sup; Po(Y =y N Z € B) =
supy { X .enl,(z, 0)}. We note that f, is additive, but L,
is not. In general, any Bayesian predictive density is
additive, while the predictive likelihoods suggested in
the literature typically are not. In this review, only
the estimative predictive likelihood, L., and the boot-
strap predictive likelihood, L*, (both defined in Sec-
tion 2) are additive. To illustrate these properties,
consider again Example 2. Let m = n = 2 and as-
sume s = 1. Consider B = {0, 1}. Then fo(z € B|y) =
folz=0]y) + fo(z =1]y) = .3 + .4 = .7. Normal-
ized to be a probability distribution, L,(z]y) =
a - supy fo(y, 2), with a = 12%43, which gives L,(z =
0|y) = .314 and L,(z = 1|y) = .372. In contrast,
L,(z€B|y) =a - sup, {fo(y, 0) +fo(y, 1)} = .600.

From the fact that two predictive likelihoods are
equivalent if they are proportional (in z) to each other,
we can normalize L to be a probability distribution.
For instance, if § = 6, is known, the unique normalized
predictive likelihood is 1, (2, 60)/fs,(y) = fo,(2]y). In
general, this enables us to describe the predictive
likelihood in common distributional terms, as has also
been customary in the literature, and makes it easier
to compare different predictive likelihoods.

Also, one can consider a predictive likelihood as an
estimate of f,(z|y) (as done by Lejeune and Faulken-
berry, 1982; Levy and Perng, 1986; and Harris, 1989).

Then normalizing it to be a probability distribution is
indeed the prudent thing to do.

A normalized L will better fulfill the desired purpose
of serving as a basis for the prediction analysis. L
should play a similar role to the one played by the
posterior predictive density for the Bayesian ap-
proach, for example as a tool in constructing predic-
tors and confidence regions for z. With a normalized
L we can do exactly that. A confidence region P, for
2, called a (1 — «) predictive region and containing
the z-values with highest likelihood, can be con-
structed in the following way,

(1.1) P, ={z: L(z|y) Z k.},

where k, is determined such that

f L(z|y) dz( Y. L(z|y) in discrete case) =1—a.
Py

ZEP,

As an analogue to parametric inference, one possible
predictor that does not depend on L being normalized
is the maximum likelihood predictor (MLP), 2., the
value of z that maximizes L(z|y). However, as the
uniform and exponential models in Examples 4 and 7
show, the MLP can be undefined (in the sense of not
being unique) or obviously unreasonable even in sim-
ple models. This is quite contrary to the behavior of
MLE in parametric inference. With L normalized an
alternative predictor is the mean of L, the analogue of
the usual Bayes predictor. The mean of L will be called
the predictive expectation of Z and denoted by E,(Z).

The above considerations show that, not only is it
justified, but also advantageous to normalize the pre-
dictive likelihood. It also follows that one way to
evaluate a predictive likelihood L is to study how well
L performs the task of generating predictors and pre-
diction regions. Examples of such evaluations are
given in Lejeune and Faulkenberry (1982) and Butler
(1989). .

A predictive likelihood L should satisfy two funda-
mental properties. First, as pointed out by Butler
(1986, Rejoinder), L should be invariant to a 1-1
reparametrization of the model. That is, the form in
which a model is presented should not affect the
derivation of L. L, has this property which must be
regarded as a rather basic property of a predictive
likelihood. All but one of the predictive likelihoods
considered in this review are parameter invariant.

The second basic requirement deals with asymptotic
consistency properties and was first discussed by
Hinkley (1979) and Mathiasen (1979). When Y and Z
are independent these properties can be formulated as
follows for a normalized L:

(1.2) L(z|Y) 5> f,(z) asn— .
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Assume Z is sufficient for Y’, with respect to 6.
Then there exists {a,,} such that

13)  anL(Z]|y) > fi(y) asm — o,

where a,, may depend on y, but is independent of z.
(1.2) follows since 6§ is known in the limit as n — o
and L should converge to the proper normalized pre-
dictive likelihood in this case, f;(z). When m — oo,
predicting Z becomes equivalent to estimating 6, and
(an equivalent version of ) L should therefore converge
to the likelihood function of 6, f,(yy).

EXAMPLE 1 (continued). It is readily seen that L,
and fy, given by Lo, satisfy (1.2) and (1.3) with

an = a

= («@oo)“‘”““n_l/zexp{— % i (x; — 32)2}.

00 i=1
Further we note that
éml = EP(Z) = .72

EXAMPLE 2 (continued). By applying Stirling’s
asymptotic result, x!e*x™*(27x)™? = 1 as x — o, it
is straightforward to show that f; satisfies (1.2) and
(1.3) with a, = ()™ (m + n + 1)/(n + 1). Also
L, satisfies (1.2). However, as m — oo there exists
{b.}, independent of z, such that b,L,(Z|y) 5
fo(y)/[6(1 — 6)]2. Hence, there exists no sequence
{a..}, independent of z, such that (1.3) holds, and L,
is not quite consistent in m.

Based on f,, E,(Z) = m(s + 1)/(n + 2). For L,,
E,(Z) must be computed numerically for each case.
For instance with m = 2 and n = 3, L, results in
E,(Z) =19, .75, 1.25, 1.81 while f, gives .4, .8,1.2,1.6
for s = 0, 1, 2, 3, respectively. This illustrates the fact
that L, gives higher likelihood to z = 0, 2 when s = 0,
3 than does f,.

The history of predictive likelihood is short. Al-

though the concept seems to have initially been sug-
gested by Fisher (1956) in the binomial case, the first
, paper on the subject was Lauritzen (1974) considering
discrete random variables. Hinkley (1979) introduces
the term “predictive likelihood,” thereby expressing
the need and desire for a likelihood-based approach to
prediction. They propose very similar predictive like-
lihoods. Mathiasen (1979) studies several prediction
functions including the profile predictive likelihood.
This likelihood has also been considered by Lejeune
and Faulkenberry (1982) and Levy and Perng (1984).
Butler (1986) defines a conditional predictive likeli-
hood, from a geometric point of view, which is closely
related to the proposals by Lauritzen and Hinkley.
They are all based on conditioning on the minimal

sufficient R, and only applicable when R provides
a genuine reduction of the data. Leonard (1982),
Davison (1986) and Tierney and Kadane (1986) all
suggest Laplace’s approximation to the Bayes poste-
rior predictive distribution.

Davison proposes as a predictive likelihood this
approximate Bayes predictive distribution with uni-
form prior. This predictive likelihood can be regarded
as a modification of L, and is applicable also when R
does not provide a genuine reduction. It is, however,
not parameter invariant. Leonard (1982) suggests
tranforming 6 to the parameter p which gives the best
approximate normality to f(p |y, z), and then using
the approximate Bayes predictive distribution with
uniform prior on p. This predictive likelihood will
then be parameter invariant. Butler (1986, Rejoinder)
proposes a parameter invariant approximate condi-
tional predictive likelihood which can also be regarded
as an adjusted profile predictive likelihood, and a third
modification of L, is considered in Butler (1989).
These two suggestions by Butler (defined later by (3.4)
and (3.5)) seem to be the only parameter invariant
predictive likelihoods which will work reasonably well
in practice in situations where there are (1) no genuine
reduction of the data by sufficiency and (2) a large
number of unknown parameters. Harris (1989) consid-
ers what he calls a bootstrap predictive distribution,
which amounts to integrating [, (z, 6) with respect to
the distribution of 4, at 8 = 6.

We shall in this paper concentrate on the profile
predictive likelihood and its modifications, and var-
ious conditional predictive likelihoods, based on con-
ditioning on R. Butler (1986) also develops a marginal
predictive likelihood based on ancillary statistics. This
idea is closely related to the traditional approach to
prediction and will not be considered here. Other
predictive likelihoods based on ancillary statistics
have been suggested by Hinkley (1979) and Davison
(1986). Neither will these be considered here.

In Section 2, a historical view of the development
of sufficiency-based predictive likelihood is taken. We
compare the proposed predictive likelihoods and an
attempt is made to clarify some of the current miscon-
ceptions about these prediction functions. A unified
simplification, L., is suggested. Section 3 deals with
the profile predictive likelihood (which seems to play
a central role in prediction), its properties and some
modifications of L,.

In addition to being parameter invariant and
asymptotically consistent, a predictive likelihood
should also be invariant under scale changes of z. L,,
L. and the four predictive likelihoods suggested by
Davison (1986), Leonard (1982), Butler (1989) and
Harris (1989) all possess this invariance. However,
the conditional and approximate conditional predic-
tive likelihoods proposed by Butler (1986) are not
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invariant under scale changes of the predictand, as
shown by Examples 5 and 6 in Sections 2 and 3.

In Section 4 we compare, in the normal case, some
of the predictive likelihoods considered earlier by in-
vestigating properties of the predictive intervals they
generate. These intervals all satisfy (1.1). Also consid-
ered is the prediction function L, presented by Barn-
dorff-Nielsen (1980), the profile of the joint credibility
function [,(z, 6)/sup, fs(z|y). Ly is parameter invar-
iant and invariant under scale changes of z. Some final
comments are made, including a discussion about
model robustness.

2. SUFFICIENCY-BASED PREDICTIVE
LIKELIHOODS

Before we start discussing the various suggestions,
let us briefly mention the most primitive direct ap-
proach. The estimative approach to prediction is to
substitute 6 by 4§ in L,(z, ). Normalized this becomes

L.(z]y) = filz|y).

(see, for example, Rao, 1977). This is based on the
consideration that if 6 is known then f;(z|y) is the
unique normalized predictive likelihood, and when 6
is unknown it seems reasonable to substitute § with
an estimate. However, as emphasized in Aitchison and
Dunsmore (1975) and by Butler (1986), L, will be
misleadingly precise since it in effect assumes 6 = 6
and does not account for the uncertainty in the knowl-
edge of 6. Section 4 will clearly illustrate that L. is
inadequate for prediction.

Lauritzen (1974) considers discrete (Y, Z) and sug-
gests as a predictor for z the value Z that maximizes

(2.1) Li(z]ly) = f(ylr(y, 2)).

Hence z = Z,,,;, the MLP based on L, and L,(z|y) is
inherently used to assess the “likelihood” of the value
z in light of the data y.

Hinkley (1979) deals with continuous as well as
discrete random variables, essentially extending and
slightly modifying L, to cover both cases, although
requiring some conditions. This important paper is
the first major effort at constructing a likelihood-type
basis for prediction, and has since served as an inspi-
ration for much of the research in the area. Let us
first assume that Y and Z are independent, and let
S, T be the minimal sufficient reductions of Y, Z
respectively. Then R is a function r(S, T') of (S, T'),
where we here use r(-, -) as a generic symbol for the
minimal sufficient reduction of the enclosed variables.
Hence, r(y, z) = r(S(y), T(z)). It is assumed that

T is determined by (S, R);
(2.2) T = ¢(S, R).

Hinkley then defines the predictive likelihood for
T = t given that S = s by (2.1), i.e.,

(2.3) Lo(t]s) = f(s|r(s, t)).
The predictive likelihood of z is then

Ly(z]s) = f(z|t)Lo(t] s); t=t(2).
Finally, the predictive likelihood of z given y is
(24)  Ly(z|y) = f(y]s)La(z]s); s =s(y).
In the discrete case, when (2.2) holds, we have that
(2.5) Ly(z]y) = f(y, 2| r(y, 2)).

Also Butler (1986) suggests (2.5) for the discrete case.
(2.5) also holds for L,(z|y) when T = Z. However, as
will be seen later, when T # Z, L, and L, are not
equivalent. In the general case with Y, Z not neces-
sarily independent, let S again be sufficient for Y, but
let T' now denote a function of (Y, Z) such that R is a
function r(S, T') of (S, T'). Assuming that (2.2) holds
for this T and that

9.6 the minimal sufficient reduction of Z is
(26)  Getermined by (S, T),

Hinkley lets Ly(t|s) in (2.3) be the predictive likeli-
hood of T = t given s and lets

(2.7) L:(z|s) = f(z]s, t) - La(t]s).

Here f(z|s,t) =f(s, 2)/f (s, t) and t = t(s, 2).

There seems to be a widely held belief in the liter-
ature that L, and L,, given by (2.4), are identically the
same. The following example illustrates that such is
not the case when the minimal sufficient T # Z.

ExXAMPLE 3. As in Example 2, assume that all X;’s
and X;’s are independent Bernoulli variables with
success probability 6, but now let Z = Y’. Then the
minimal sufficient reductions are S = Y X;, T =
> X/ and R =S + T. Here Ly(z|y) = (74%)™" while
on the other hand

‘L( y_PY=ynT=t)_(m) [(m+n
G =—pr v ~\¢ s+t )

and these are not equivalent. That they can, in fact,
give quite different qualitative results is seen by con-
sidering m = n = 2 and s = 1. If these predictive
likelihoods are normalized to be probability distribu-
tions we get the likelihood values for the four possible
values of z shown in Table 1.

It is clear that ¢ = 1 is the most likely outcome, for
both L, and L,, but otherwise L, and L, give quite
different results. We note that Ly(z|y) is consistent
with the fact that L,(¢t|s = 1) = (0.3, 0.4, 0.3) for
t = (0, 1, 2) while L;(z|y) is not consistent with
L,(t|s=1) = Ly(t|s = 1). The difference between L,
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TABLE 1
L, and L, in the binomial case, m=n=2ands =1

z (0, 0) 0, 1) (1,0) (1, 1)
Li(z]y) Y14 Y4 Yha 14
Lo(z]y) %o %10 %10 %10

and L, is, of course, the factor f (z | t). We also observe
that the Bayes posterior predictive density f(z|y)
with flat prior on 6 equals L,(z|y), while L, is not a
Bayes predictive distribution for any conjugate prior.
The last statement follows since for any such prior we
have that

70, ) ]y) = f((1,0)]y)
< max{f((0, 0)]y), f((1, 1)|y)}.

The Bayesian uninformative approach may seem
like a possible non-Bayesian likelihood solution. How-
ever, a word of caution is in order here. There is
typically no unique ignorance prior for §. In this
binomial case it can be very difficult to make a reason-
able choice. Besides the flat prior, another
possible noninformative prior is the Jeffreys prior,
77197Y2(1 — 9)~/2. This means that the uninformative
approach necessarily involves choosing a prior and
hence is a Bayesian approach, while the rationale for
the likelihood approach is to provide a prediction
function without reference to a prior.

The Bayesian uninformative approach suffers from
the arbitrariness in the choice of ignorance prior, and
the likelihood approach will give no unique answer
either. This shows that there is a certain amount of
arbitrariness in how we can predict, and that the
problem of predicting the number of successes,
phrased as “the fundamental problem of practical
statistics” by Pearson (1920), is still subject to debate.

Consider now the independence case and definition
(2.3) of L,. It seems unnecessary to restrict L, only to
cases where (2.2) holds. For given ¢, s let r = r(s, t).
Then L,(t]|s) = f(s|r) is always well-defined and

constant on the surface {t": r(s, t ') = r}. If, however, -

(2.2) does hold and (S, R) has a joint density
then, with R = (Ry, ---, R,) and T = (T, ---, T,),
" f(s,r(s, t)) =f(s, t)/||9r/dt]|. Here | dr/dt| is the
determinant of the p X p-matrix of partial
derivatives dr;/dt;. This implies that L.(t|s) =
fs, t]r(s, t))/]1dr/ot|| and

fly, zlr(y, 2))

Ly(z]|y) = {Q’
.|| ot
(2.8)
__ W)
or
f(r(y, 2)) 3

Typically, R, S, T can be chosen such that R is linear
in T. Then Ly(z|y) is equivalent to f (y, z| r(y, 2)).

A general problem with L, is that it depends on the
choice of R, which is not unique, since any one-one
transformation of R is also minimal sufficient. So L,
is really a “sufficiency-based” predictive likelihood,
and a more accurate notation would be L*’ to indicate
this dependency on R. Another serious problem with
L, arises when for some values of (y, z), L,(t]s) is a
probability and for other values of (z, y) it is a density,
as illustrated by the next example.

ExXAMPLE 4. Let Xi, ---, X,, Z be independent
U(0, 6). Here S = max;=;=, X;, R = max(S, 2),
and P(S = r|r) n/(n + 1) and P(S = s|r) =
s"/(n + 1)r* if s < r. Hence, the conditional pdf is a
probability for s = r and a density when s < r. We
find

_In/n+1) if0=sz=s
(2.9) Ly(z]s) = {nsn—l/(n + 1)z" ifz>s.

Unless s = 1, L, has a jump at z = s. This indicates
that L, only works in the continuous case when f (s | r)
is a regular density.

For the definition (2.7) of L, in the general case the
conditions seem superfluous as in the independent
case, since L,(t|s) is clearly well-defined even when
(2.2) and/or (2.6) do not hold. In fact, Hinkley (1979)
applies this definition to two examples and in neither
one are (2.2) and (2.6) both satisfied. One problem
with this definition is the seemingly arbitrary choice
of T indicating that Ly(z|s) (for a fixed R) may not
be uniquely defined. If we in Example 4 use T' = 0 or
Z according to Z = S or Z > S then, as shown by
Hinkley (1979),

_jn/(n+ 1)s if0=z=s,
(210)  Lo(z]s) = {ns”'l/(n + 1)z" if 2> s.

This seems a more appropriate predictive likelihood
than (2.9), but implies at the same time that, at least
unless (2.2) holds, L;(z|s) is no longer uniquely
defined.

In view of (2.5), (2.8) and the remark after (2.8), it
seems at this point natural to suggest the following
modification of L, and L,, whether or not Y, Z are
independent:

L(z|y) = f(y, 2| r(y, 2))
= fo(y, 2)/fo(r(y, 2)).

If S and T are sufficient for Y and Z, respectively,
with R = r(S, T') then L.(t|s) = f(s, t|r(s, t)) and
L(z|y) =f(y, 2|s, t)L.(t]s) with s = s(y), t = t(2),
independent of the choice of (S, T'). However, there
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is really no need to introduce (S, T') other than for
simplifying the derivation of L.(z | y).

In Example 3, the binomial case, L. equals L, and
is therefore the Bayes predictive distribution with flat
prior. For the binomial model, the Bayes predictive
distribution under any conjugate prior equals a ratio
of gamma functions. We see now that this exact
functional form is also justified by the sufficiency-
based likelihood approach. ‘

We note that L, is parameter invariant. As with L,
however, L. is not invariant with respect to choice of
R in the continuous case. Hence, a more appropriate
notation would be L%, but for simplicity we shall use
L.. However, when deriving L, one should always state
which R is being used. As we shall see later (in (2.15)),
Butler (1986) shows how to derive a “canonical”
sufficiency-based predictive likelihood that does not
suffer from this lack of invariance.

In Example 4 straightforward calculation shows
that L.(z | s) is given by (2.10). In this uniform model,
the normalized L. becomes

_J(n=1)/ns ifz=s
Lc(zly) - {(n — ]_)s"_l/nzn if z>s.

In order to derive a predictor for z from L., we
first note that the MLP is not unique. A natural
choice of predictor based on L, is the mean, E,(Z) =
(n — 1)s/2(n — 2). E,(Z) is approximately equal to
E;(Z) = s/2.
Consider now the case where a prior f () is avail-
.able. Let f,,(-) = [ f4(-)f(6) d6 and let L(0]s) = fo(s)
be the parametric likelihood. Then the posterior den-
sity is f (0] s) = (0] s) f(0)/fm(s).

As emphasized by Hinkley (1979), it is important
that a predictive likelihood plays a similar role to the
predictive posterior density f(t|s) as I(8]|s) does to
f(0]s). Assuming f,(s, t) > 0= fy(r(s, t)) > 0 we have

f(t]s) = Le(t]s) fu(r(s, £))/fm(s),

showing a similar factorization. This does not in gen-
eral hold for L.

Let us now consider the exponential family where
the X; and X/ ’s are independent with common pdf

: k
(2.11) fo(x) = exp{Z c;(0)Ui(x) + d(6) + b(x)}.

Here § = (64, ---, 6,) and ¢ = (c1, - - -, cx) is assumed
to be a continuous function of 6.

Letting U = (U, ---, Uy), the sufficient statistics
for Y, Z and (Y, Z) are S, T and R = S + T where
S=Yr, UX;)and T =37, U(X] ). In the contin-
uous case, it is assumed that the densities for S and T'
exist (with respect to the Lebesgue measure on R*)

which typically means that m, n = k.

The two desirable consistency properties (1.2) and
(1.8) (with a.,, = 1) of a predictive likelihood L are (i)
L(t]|S) 2 f,(t) as n — o, and (ii) L(T|s) 5> f,(s)
as m — .

Recall that, in this context, § is the MLE of 6 based
on T alone. The asymptotic properties of L, can be
summarized using Theorem 5.4 from Mathiasen
(1979) and the fact that § — 6 = 0,(n""%) and § — 6 =
0,(m™"?). Under some regularity conditions on the
family (2.11) (see Mathiasen, 1979) we find that:

(a) Asn — o,
L(t|S) = fi(t) + Op(n™")
=f,(t) + O,(n7"?).
(2.12)
(b) Asm — o,
L.(T|s) = fi(s) + Op,(m™)
= f5(s) + O,(m™"?).
In particular, L, satisfies the two consistency require-

ments. (2.12) generalizes the result for & = 1 from
Hinkley (1979).

EXAMPLE 5 (The linear model). Y, Z are inde-
pendent and

nx1 nXp pX1 nx1

Y=C. .08+ ¢,

€1, - - -, n are independent N (0, o2),
mxXx1 mXp mX1

Z = Co . ﬂ + €0

€o1, - -+, €om are independent N(0, o?).

Full rank of C is assumed. ‘

We shall consider L.(z|y), normalized as a proba-
bility distribution. Let t*’(4) denote the k-dimen-
sional multivariate t-distribution with » degrees of
freedom and with variance-covariance matrix A, and

let (B, ¢%) be the maximum likelihood estimate of

(B, o%) based on Y. Define V= Co(C’'C)™'Cq + I. Let
3, be the MLE of 8 and let RSS, be the residual sum
of squares, based on (y, z). With R = (8., RSS,) we
find, after some algebra, that

L.(z]y) ‘
o <1 + (z — Coé)’ VA—I(Z — Coé)>-(n—p—2+m)/2’

nag?

which implies that L.(z | ¥) is such that
(213) (n—p — 2YAZ — Cof)/Vné ~ ti=»(V).

We note that the usual frequentist predictive pivot is
Jn = p(Z — CoB)/né, distributed as t{2,(V).
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We observe that the MLP and the vector of predic-
tive expectations both equal Co 8.

Using that T'(x) = e™ - x* V2(27)Y2(1 + O(x™))
and (1 + (x/n))*=e*+ 0((1/n)) it can be shown that

L.(z]Y) = fi(z) + Op(n7")
= fy(z) + O,(n7"?)

provided C’ C/n — D, a positive definite matrix.
For m =1, (2.13) means that

(214) Vn—p = 2(Z — CoB)/VnVé ~ tn_ps.

By utilizing the connection between the problem of
marginalizing [, and the problem of removing nuisance
parameters in parametric likelihood, Butler (1986)
introduces an interesting and novel geometric view-
point, inspired by the work of Kalbfleisch and Sprott
(1970, 1973) on parametric likelihood. Assuming the
existence of orthonormal coordinates u(y, z) that
are locally orthogonal to r(y, z) such that (y, z) —
(u, r) is one-one, the predictive likelihood is then
defined as L;(z|y) = f(u(y, 2)| r(y, z)). Assume z is
g-dimensional. Let r = (r;, --- r,) and let J be the
p X (n + ¢) matrix of partial derivatives of r with
respect to v, z. Then, for the continuous case

(2.15) Li(z|y) = L(z|y)| JJ ' | 72

For the discrete case the J-factor disappears and But-
ler (1986) suggests L, as the predictive likelihood. We
note that such an orthogonal and normed u may not
exist globally. For example, let Y, Z be independent
N(0, ¢*). Then r(y, z) = y* + 2? and no normed u
orthogonal to r exists (see Appendix). However, u
always exists locally, which is all that is needed
to define L;. If the transformation (y, z) — (u, r) is
not differentiable everywhere, then (2.15) is not
directly applicable and f (v | r) may differ from (2.15).
Consider again Example 4 with s as the data. Here,
u = min(s, z) and r = max(s, z), and the transfor-

mation is differentiable if z # s. When z # s,.

|JJ| =1 and (2.15) equals L.. However, f(u|r) =
n(r*' + u"")/(n + 1)r", which is not equivalent to
L. as a function of z. We also note that (s, z) — (u, r)
is one-one only locally, if z # s, and not globally.
Compared to L., f (u] r) has some disadvantages since
it cannot be normalized. Therefore, E,(Z) is not ap-
plicable as a predictor for z and the MLP equals s
which is not a sensible predictor. L; is invariant with
respect to choice of R. As mentioned earlier, L. does
not have this property, so L; can be regarded as the
invariant version of L.. L; is also parameter invariant,
since L. is. Usually the J-factor changes L. only
slightly, e.g., in normal models it typically has the
effect of adding one degree of freedom to L.. In Ex-

ample 5, with m = 1, L, is such that
(2.16) vn—p —1(Z — CoB)/VnVé ~ tn_p1,

while from (2.14) L. yields a ¢,—,—,-distribution.

It should be mentioned that it is possible, with a
nontraditional choice of R, to get a substantial contri-
bution from the J-factor. For details we refer to
Example 6.

Levy and Perng (1986) consider for this linear model
the class ¥ of prediction functions that depend on z
only through w = (z — C,8)/vVnd. Let Lo(z | y) be such
that vn — pW/ JV ~ tn—p. It is shown that L, is
optimal for estimating f;(z) in the sense that it mini-
mizes, uniformly in 6, E,{log(f,(Z)/L(Z|Y))}, for
L € V. The optimal L, gives the same answer as the
traditional frequentist approach, and L; is approxi-
mately optimal in ¥ in this information-theoretic
sense. It should in this connection be pointed out that
in deriving L; we did not restrict the prediction prob-
lem to consider only w.

Let us finish this section by considering a way to
adjust the estimative approach, L., to account for the
uncertainty in 6. Harris (1989) considers independent
Y, Z and integrates L, with respect to the distribution
of 6, computed at § = 4:

L*(z|y) = E¢{L.(z] Y)}

=fft(z)f,;<0‘=t) dt

. (Z f:(2) fg(é = t) in discrete case).

Harris calls this the bootstrap predictive distribution
and shows it is typically an improvement over L, when
considered as an estimate of f,(z). L* will usually not
be on a closed form and can be rather complicated to
compute numerically in simple models. Besides com-
paring it to L., properties of L* have not been studied.
It is readily seen that L* is parameter invariant and
invariant under scale changes of z. L* does not work
well, however, in the U(0, 6)-case of Example 4 where
it will give zero likelihood to all z > s. Still, this is
clearly an interesting concept and deserves further
attention.

3. THE PROFILE PREDICTIVE LIKELIHOOD
AND MODIFICATIONS

Mathiasen (1979) considers the case where Y and Z
are independent and looks at several prediction func-
tions: L,, one based on the plausibility function (see
also Barndorff-Nielsen, 1980), and the following
likelihood-based function

Lo(z|y) = L,(z, 0,) = supsfy(y, 2).
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L, is also considered by Lejeune and Faulkenberry
(1982) and Levy and Perng (1984) and is, of course,
well-defined also when Y, Z are not independent. L,
is motivated by an intuitive appealing idea. With z as
the “parameter of interest” and 6 as the nuisance
parameter the most likely value of 4, given (y, 2), is
determined and L,(z|y) is the resulting likelihood.
This corresponds to the profile likelihood in paramet-
ric inference (see, e.g., Kalbfleisch and Sprott, 1970)
and L, will be called the profile predictive likelihood.
If 0 has high dimension L, can be misleadingly precise
as mentioned by Butler (1986) and Aitkin (1986). This
was also noted by Kalbfleisch and Sprott (1970) for
the parametric profile likelihood. Otherwise, this pre-
dictive function can be applied in most situations.
Also, as mentioned in Section 1, L, is clearly param-
eter invariant.

EXAMPLE 6. Let the X;’s and X/ ’s be independent
N(u, 0*), and Z = ¥ X/ . Then, from Lejeune and
Faulkenberry (1982), L,(z| y) is such that

Z — mx

(m + (m?/n))"%s
Here 62 is maximum likelihood estimate of o2 based
onyand x =3 x/n. Let o, = (nX + Z)/(n + m)
be the MLE of u based on (Y, Z), and let RSS, =
> (Xi - )P+ U/m)(Z - mu): With R =
(., RSS,), L.(z ] y) is found to give

n-3\"  (Z-mi) .

n (m + (m*/n)%6 "%

The R-invariant modification of L. results in

< (z—mE)2 [T
Ll(zly) & [1 + m(m + n)&2

_ - —1/2
. [1 + 8 —(z mi)’ }

m(m + n)é?

~ t,.

(3.1)

where 8 = (m + n)/(m + mn). Whenm =1,8=1
and L; is such that

(n - 2>”2 Z-1
n 1+ (1/n)26

When m = 2, L; does not lead to a ¢-distribution.
We note that 0 < 8 < 1. Since the zero-value corre-
sponds to a ¢, s-distribution for +vn —3(Z -
mx)/¥m(m + n)a, we see that L, differs only slightly
from L., one might say the difference is “less than”
one degree of freedom.

At this point we should note that with another
choice of R, L, and L; may differ drastically. Suppose
we choose R = (i,, RSS!). Then the |JJ’ |72
factor is enormous, L. is nonsensical, while L; of course
does not change.

The result (3.1) reveals a problem with L; that does
not exist with L, or L, A predictive likelihood L is
invariant under scale changes of z, z — cz = z,, where
¢ is a constant, if the normalized L(z|y) is the same
whether L is based on (y, z) or (¥, 2,). L, and L, are
invariant in this way. It seems that this form of
prediction invariance must be regarded as a rather
fundamental type of invariance for a predictive like-
lihood. This normal example shows, however, that L;
is not in general invariant under scale changes
of z. This is seen by transforming z to z, = z/Vm.
Then (Y, Z,) satisfies the linear model in Example 5.
Hence, from (2.16) we get that L;(z,|y) is such that
vn—2(Z,— «/EJZ)/\/m + ne~ t,_, le.,

n —2\* (Z — mx)
(82) < n ) (m + (m¥n)) g~

We shall call this the transformed L;, denoted by L},
for predicting z. Since L} differs from L;, it means
that L; is not invariant under z — 2/ Jm.

For all predictive likelihoods considered in this ex-
ample we see that 2, = E,(Z) = mx.

An interesting feature of L, is its close connection
to the Bayesian posterior predictive density with flat
prior, first observed by Leonard (1982). Consider the
case where Z = Y’ and all the X;’s and X/ ’s are
independent, with 8 = (6,, -- -, ;). Let 1(8) and I%(6)
be the observed information-matrices based on y and
(¥, 2), respectively. That is, I°(9) = {I7(0)}® with
I;(0) = —d%log f4(y, 2)/36,30;, and similar for 1(6).
Davison (1986) shows that, provided f;(y) and f;(y, 2)
have well-defined modes as functions of 4, Laplace’s
approximation method for integrals gives that the
Bayesian posterior f (z | y) with flat prior equals

Lal(ZIy){l + 0p<—l—)}>/ {14+ 0p,(n7")},
m+n

where

L(z|y) | I(§)]*
fi(y) 1 I2(0,) |

o« Ly(z|y) | I*(0,) | 72,

is suggested by Davison (1986) as a predictive likeli-
hood. Leonard (1982) suggests (3.3) for the repara-
metrization § — p that obtains the best approximate
normality to f(p |y, z). Let us denote this parameter
invariant predictive likelihood by L;. These two au-
thors, as well as Tierney and Kadane (1986), suggest
also for a general prior the same Laplace approxima-
tion to the Bayesian predictive distribution. We see
that L,; and L%, can also be regarded as modifications
of L,. L, and L., are both invariant under scale
changes of z.

Lai(z]|y) =
(3.3)
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One rather fundamental problem with L,, is that it
is not invariant to a one-one reparametrization of the
model. Butler (1986, Rejoinder) points this out and
suggests instead an approximate conditional predic-
tive likelihood, L., that is parameter invariant, and
can also be regarded as a modification of L,. L,s(z | y)
is an approximation of the conditional density of the
locally orthonormal coordinate u to 8, in (y, z)-space,
given 6,, and can be expressed as

Lo(z|y) | I7(8)] "
| H.H/. |

Here H, = H,(0.), and H.(6) is the k X (n + m) matrix
of second-order partial derivatives of log f;(y, z) with
respect to 6 and (y, z). Barnard (1986) proposes the
use of pivotal distributions for prediction. Butler
(1989) shows that, under certain conditions, L,, can
be regarded as an approximate predictive pivotal dis-
tribution. Also, from Butler (1989), L., is a saddle-
point approximation to L; in the case of a regular
exponential family. In the normal cases of Examples
5 and 6, L,; equals L;, which implies that L,,, like L;,
is not in general invariant under scale changes of z.

Of course, L,, L., L,; and L,, are all applicable
even when sufficiency does not provide a genuine
reduction of the data, and also when Y and Z are not
independent. A third parameter-invariant adjustment
of L,, L,;, that is also invariant under scale changes
of z, is proposed by Butler (1989). L, is a predictive
analogue of the modified profile likelihood in para-
metric inference, suggested by Barndorff-Nielsen
(1983), and obtained as an approximation of f;(z | 6,).
Assuming the transformation (z, 6) — (2, 52) 1s
one-one, L, is given by

(3.4) Lox(z]y) =

b
40,

(35) Las(z|y) = Lo(z|y) | I?(8.)|

Here, 607}9(52 is the matrix of partial derivatives of § =
(01, -+ -, Or).

The expressions (3.3)-(3.5) and the accompanying
discussion indicate that L, plays a rather fundamental
role in prediction. L,; is clearly the most natural way
of making L,, parameter invariant. Also, Butler (1989)
shows that, if X;, X,, ---, X, Z are iid with density
belonging to a regular exponential family, then L,; is
Laplace’s approximation to the Bayesian posterior
f(z|y) with flat prior on E,(X;).

L., is not z-invariant in general, and L,; is not
applicable when 6 is not a function of (52, z) (e.g., the
uniform case of Example 4). Still, in situations where
there are (1) no low dimensional sufficient statistics
and (2) a large number of parameters, it seems that
the only parameter invariant predictive likelihoods
which work in practical terms are L., and L,;.

The asymptotic properties of L,, for the exponential
model (2.11), are similar to those of L.. More precisely,

again from Mathiasen (1979, Theorem 5.4), we get
(a) Asn— o,

(3.6) Ly(t|S) = fi(S) fi(t){1 + Op(n™H}.
(b) As m — o,

L,(T|s) = fi(s) fi(T){1 + O,(m™")}.

(3.6) implies that L, (t, | S)/Ly(t2| S) -5 fo(61)/fs(t).
Lejeune and Faulkenberry (1982) show that this can
be strengthened to almost sure convergence. Also,
from part (a) of (3.6), it follows that a proper normal-
izing constant for L, as n — o is f3(S) and

Ly(t]S)

S fi(t) + Op(n™")

= fot) + O,(n7"?),

implying, from (2.12), that L. and L, are asymptoti-
cally equivalent as n — .

We can also use L, and L,; to approximate L.. For
the model (2.11), Mathiasen (1979) shows that, pro-
vided some regularity conditions hold and R has a
density,

1 1 (1402
[2r(m + n)]¥2 | Vi |12 P\m+n/)’

Here, V, is the variance-covariance matrix for U.
Let us now reparametrize (2.11) to canonical form
0 —n="(c(0), ---, ck(d)). Then V;, = V; and V, =
I1°(n)/(n + m), where now

I3 (n) = —8°log f,(y, 2)/0n:0m;.

Moreover, from Butler (1989), in this case L,3(z | y) =
L,(z|y)|I*(n,)|Y% 1t follows that L.(z|y) =
Lus(z|y){1+ 0,(1/(m + n))}. Another approximation
to L. is L., given by (3.3), which Davison (1986)
claims is accurate to O,(1/(m + n)) in many cases,
although no general result to this effect exists for L,;.
Also, L,; is parameter invariant in contrast to L,;.

fi.(r) =

EXAMPLE 6 (continued). Let m = 1. It is readily
shown that the normalized L,, is identical to L.. With
0 = (u, o), then L, is such that (n — 2)"*(Z — x)/{(n
+ 1)"26} ~ t._s. If we use 8 = (u, o) as parameters
L, leads to (n — 3)Y*(Z — x)/{(n + 1)Y26} ~ t._s,
illustrating the lack of parameter invariance for L,,.
As mentioned earlier, L, is identical to L;.

ExAMPLE 7. Let X,, ---, X,, Z be independent
with common pdf f,(x) = (1/8)e ™, and let S = ¥ X;.
All predictive likelihoods we consider are in normal-
ized form as probability distributions. With R =
S + Z, L(zly) = (n — 1)s"'/(s + 2)", while
L,(z|y) = ns"/(s + z)""'. Hence, L. is such that .
(n — 1)Z/s ~ Fs2-1), and L, is such that nZ/s ~
Fy,,. For comparison, we note that the frequentist
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pivot nZ/s is distributed as Fss, - L; and L,;, for
i =1, 2 3, all equal L.. For L,, Leonard (1982)
suggests the transformation p = log(1/6). Then L,
equals L,. For these predictive likelihoods we note
that the MLP 2z, = 0, illustrating how poor Z,,; can be
as a predictor even in a simple parametric model. An
alternative predictor is E,(Z) which equals s/(n — 1)
for L, and s/(n — 2) for L.

If the model is reparametrized as fe ™ we find that
La(z]ly) = (n + 1)s™/(s + 2)"*?, again illustrating
that L,; depends on how one chooses to index the
family of distributions.

As these examples illustrate the L,;’s are typically
very accurate approximations to L. and L;, again
underlining the central role of L,.

A situation of general interest is Z = ¥, X/ when
X{, -+, X, are independent with common distribu-
tion and Y, Z are independent. As we have seen the
various predictive likelihoods are all rather slight mod-
ifications of L,, so let us now concentrate on L,.
Finding f,(z) can be rather complicated and in some
cases next to impossible. The idea is now to approxi-
mate L,(z|y) by first approximating f;(z) and then
taking sup. The normal distribution is, of course, one
approximation, but a much better one is the saddle-
point approximation (see Barndorff-Nielsen and Cox
(1979) for regularity conditions). Let M,(\) =
E,(e™) and K,(\) = log M,(\). A = Xg is the solution
of the saddle-point equation mK,(\) = 2z, where
K{(X\) = 0K/o\. Then fy(z) = fFf(2){1 + Op(m™)}
where the saddle-point approximation f* is given by

exp{ng(f\) - zf\}
“2mmK] (M) V2

fi(z) =

f¢ (z) is amazingly accurate and usually much more so
than the O,(m™")-term seems to indicate. If X/ ~
N(u, 0%) f#(2) = f4(2), and if X/’ is gamma distributed,
the normalized f§ equals f; (noted first by Daniels,
1954). Essentially the same happens in the binomial
and Poisson cases where fif(z) amounts to using
Stirling’s approximation for (7 ) and z! respectively.
The approximate profile predictive likelihood is now

Liz|y) = sup (fo(¥) f& (2)).

We note that L} is parameter invariant and invariant
under scale changes of z. L} (normalized) equals L, in
the normal and gamma cases. In Example 2, the
binomial case with Z = ¥ X/, L} differ from L, only
in the evaluation of (7), using Stirling’s formula. The
Laplace approximation L,; to the Bayesian predictive
distribution f,(z | ¥) with flat prior and the two param-
eter invariant adjustments of L,;, L,» and L, are all

identically the same (normalized) and proportional to

(3.7) (ZL)(S +2) 2 (n 4 m — s — )TN
s= x;.

Moreover, Stirling’s approximation of (3.7) gives
fo(z]y) which also equals L. in this case. So the
approximation to fy(z|y) provided by Laplace’s
method is virtually as accurate as the saddle-point
approximation to L,.

We finish this section by returning to Example 5,
the linear model. Levy and Perng (1984) have shown
that

L,(z|y)
oc <1 + (z = COB)/ VA_I(z — Co,é)>_(m+")/2

neg?

and
L,(z|y) = fi(z) + O,(n™")
= f;(2) + O,(n7*?),

provided C’ C/n — D, a positive definite matrix. This
implies that vn(Z — CoB8/vVns ~ t{™ (V) and that L,
and L. have the same asymptotic (in n with p fixed)
property. However, L, ignores the number of param-
eters in the degrees of freedom and can be excessively
accurate if p is large compared to n. With m =1, L,
is such that (Z — COB)/ VVé ~ t,. In this case, the
two parameter-invariant modifications of L, suggested
by Butler (1986, Rejoinder; 1989) are found to be
Loy (z|y) = Li(z]y) and Ls(z]|y) = L.(z|y). Hence,
from (2.14) and (2.16), L., leads to a t,—,—,-distribution
while L,; leads to n — p — 2 degrees of freedom, and
they both adjust L, by taking into account the number
of parameters in the model. :

4. COMPARISONS AND FINAL COMMENTS

One way to compare different predictive likelihoods
is to see what kind of predictive intervals they gener-
ate. Assuming a given predictive likelihood L is nor-
malized to be a probability distribution in z, a (1 — «)
predictive interval is given by [Z(a), 2(a2)], @z — oy =
1 — «, where z(«a;) is the a;-quantile of L. The confi-
dence level is Cl(0) = Py{2(ay, Y) = Z < Z(ay, Y)}.
Although we have no guarantee that Cl is close to
1 — o we do expect [2(ay), Z2(a2)] to be an informative
interval for Z. Lejeune and Faulkenberry (1982) con-
sider L, for binomial and Poisson sampling and show
that [2(«/2), 2(1 — a/2)] has Cl1(f) very close to 1 — a.
Let us now consider the normal model in Example 6,
with X;, X/ independent N(u, %) and Z = ¥, X/ . Let
u(e), t,(¢) be upper e-quantiles in the N(0, 1) and
the ¢,-distribution, respectively. Since L.(z|y) is
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TABLE 2
Confidence levels for P., P;and P,

Cl. Cl, Cly
l1-«
5 10 20 50 5 20 50 5 10 20 50
0.90 0.986 0.940 0.919 0.907 0.854 0.890 0.896 0.947 0.920 0.909 0.904
0.95 0.996 0.975 0.962 0.955 0.917 0.944 0.948 0.979 0.963 0.956 0.952

N(mzx, mé?), it follows from Example 6 that the sym-
metric (1 — «) predictive intervals for L., L, and L.,
denoted by P., P,, P., are all of the form

(4.1) mi + dVmg,
where the constant d is equal to
de = ta-s(/2){(n/(n = 3))(1 + m/n)}'/?,

d, = t,(«/2)(1 + m/n)** and d. = u(a/2) for P,, P,
and P,, respectively. The frequentist interval P; has,
of course, d equal to

d; =ty (a/2){(n/(n — 1))(1 + m/n)}"%

As we have seen from (3.1), L; does not lead to a
t-distribution, but differs only slightly from L.. How-
ever, the (1 — «) symmetric P} interval based on L},
given by (3.2), is also of the form (4.1) with d equal to

o= (G2

The approximate conditional predictive likelihood L,
equals L;, given by (3.1). (3.1) will give intervals close
to the intervals based on the ¢,_.- and ¢, s-distribu-
tions. To simplify and unify the comparison, we shall
therefore consider the interval P} instead of the one
derived from (3.1). We also note that L,; equals L.

There are in the literature, it seems, only three
predictive likelihoods that are parameter invariant,
invariant under scale changes of z and applicable in
most parametric models. Two of these are L, and L.
The third one is a prediction function suggested by
Barndorff-Nielsen (1980) which can also be consid-
" ered as a slight modification of L,. The following joint
credibility function for z and 6 is used:

fo(y, 2)
sup, fi(z =2 |y)’

Cy(z, 0) =

The suggested predictive likelihood is then the profile
of C,,
Ly(z|y) = si;p Cy(z, 0).

(Strictly speaking, L,. is not a predictive likelihood
since it is based on C, instead of /,.) In this normal

case, L, is such that
vn — 1(Z — mx)/{ivm(m + n)a} ~ t,—1.

Hence the predictive interval based on L, equals P;.

All intervals considered satisfy (1.1) by containing
the z-values with highest likelihood.

Now, P, C P, C P;C P;C P, and CI() is independ-
ent of 9 for all intervals. Since Cl; = 1 — «, Cl. >
1 — aand Cl; > 1 — a while Cl, <1 — « and
Cl, <1 — a. To illustrate how much Cl,, Clj, Cl, differ
from 1 — «, we consider the cases 1 — o = 0.90, 0.95,
and observe that these confidence levels only depend
on n (Table 2).

Cl, depends on both m and n. That the accuracy in
L, is very misleading is clearly illustrated by Table 3.

An important property is the conditional level given
the data, Cy(y) = Polé(aa, y) = Z = 2(as, ¥) |y}
Following the terminology in Aitchison and Dunsmore
(1975), C,(y) is called the cover of the interval. A
measure of the quality of an interval’s coverage is the
guarantee of coverage 1 — «, defined as g(1 — «) =
inf, P,(Cy(Y) = 1 — «). The distribution of the cover
is independent of # for all the intervals. Let u =
nY?(x — u)/o and v = né?/¢?, and define C(u, v) =
®{(m/n)"?u + d(v/n)""*} — @{(m/n)"*u — d(v/n)"*}.
Here ®(x) is the cdf of N(0, 1). Then C(u, v) with
appropriate d is the cover for the various intervals.

Consider first the asymptotic case: n — o and
m/n — X > 0. Then g.(1 — «) — 0 while for P., Pj,
P, P and P, f

gl —a) > gl —a)=PCWU) =1~ a),
where
Cou) = ®{AY2u + u(a/2)(1 + N)Y?)
— N2y — u(a/2)(1 + \)V2).

TABLE 3
Confidence level for P, n =10

m

11—« 1 2 5 10 20 100

0.90 0.829 0812 0.765 0.701 0.609 0.351
0.95 0.890 0876 0.837 0.779 0.689 0411
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TABLE 4
The asymptotic guarantee of 95% coverage for the 95% predictive intervals from L., L}, L, and for P

A 0.1 - 0.2 0.5 1

2 3 10 50 100

8,(0.95) 0.687 0.692 0.709 0.740

0.784 0.811 0.875 0.919 0.929

& (1 — «a) can easily be calculated. Table 4 is for
£,(0.95).

We also see that lim,_,. gx(1 — «) =1 — «. This is
relevant and interesting for cases where m > n, e.g.,
survey sampling.

For fixed m, n g(1 — «) is more difficult to calculate.
If m/n << 1 we can use approximations developed by
Howe (1969). Two cases are given in Table 5.

This example suggests that L, is practically useless
for prediction while the other predictive likelihoods
mentioned in this section have good properties in
terms of prediction intervals in this normal case,
especially when m/n and n are large. This is a situation
that occurs often in survey sampling.

Lauritzen (1986) makes the point that exact meth-
ods can be very sensitive to the exact formulation of
the model. The conditional likelihoods L. and L;, being
tied to sufficiency, are clearly sensitive to model for-
mulation, since two similar models can have vastly
different sufficiency structure. The following illustra-
tion shows that L, and the two modifications L,2, L,s3
tend to be of a more robust nature, with respect to the
model.

Let Log(u, 7) denote the logistic distribution with
mean u and variance 7. Consider the following two
models:

I: Y, Z are independent N (g, 1).
II: Y, Z are independent Log(u, 1).

These two distributions are very similar (see, for ex-
ample, Johnson and Kotz, 1970), but the two models
have very different sufficiency structure. For Model 1,
L,, L.,L;, L,y and L,3 all give the same predictive
likelihood, N(y, 2). In Model 2, sufficiency provides
no reduction and L.(z|y) = L;(z|y) = 1, i.e., L, and
L, do not work here. Also in Model 2, 4, = %(y + 2),
which leads to

2 ,—a(z—y)

a‘e
Lp(ZIy) = [1 ¥ e_(a/z)(z_y)]4 ,y a4 = 7"/\/5‘

TABLE 5
Approximations to g(0.95) for P, P4, P;, P,and P,

(n,m) £.(095) £;(0.95) (0.95) £,(0.95) £.(0.95)
(10,1)  0.85 0.76 0.66 0.56 0.29
(10,2)  0.84 0.75 0.66 0.56 0.26

Normalized to be a density L,(z|y) equals

3ae =)
[1 + e—(a/2)(z—y)]4 :

This somewhat resembles the Log(y, 2)-distribution.
L.» and L,3 give the same predictive likelihood which
in normalized form equals

4/ \/g ) e~ (B/9az=y)

[1 + e—(a/2)(z—y)]3 .

This is slightly wider than L, and is, in fact, extremely
close to the N(y, 2)-distribution.

Let us at this point mention the approach suggested
by Fisher (1956) for the binomial case (Example 3),
Ls(t|s) = Ly(t|s)/{fi(s) fa(t)} = Ly(t|s)/fs(t). This
suggests using Ly (2| y) = L,(z | y)/{ fi(¥) fi(2)} in gen-
eral when Y, Z are independent. It follows that
Ls(z|y) = Ls(t|s), missing the factor f(z|t). More
importantly, L; can break down in simple situations
like Example 3 (where fj(z) = «). Mathiasen (1979)
and Barndorff-Nielsen (1980) consider other aspects
of Ls that illustrate its inadequacy.

Finally in this section we consider the usual fre-
quentist approach to prediction. It consists of finding
a pivotal statistic U = U(Y, Z), i.e., U is ancillary,
and then constructing a prediction region for Z based
on the (pivotal) distribution of U. As mentioned ear-
lier, the approximate conditional predictive likelihood
L,s, given by (3.4), is in certain situations an approx-
imation to the pdf of such an ancillary statistic.

In normal models the pivotal distributions and the
usual predictive likelihoods are typically quite similar.
However, as indicated by Barndorff-Nielsen (1980),
this is really more the exception than the rule. When
pivotal solutions cannot be obtained one can use, if n
is large and m is small, the approximate method
suggested by Cox (1975). This approach, however,
tends to get complicated in realistic examples.

There are situations, e.g., in time series, where
pivotal solutions are not available, but where predic-
tive likelihood can be used. Some examples are given
by Barndorff-Nielsen (1980), one being the first-order
autoregressive process, using L,. In general, time
series and forecasting constitutes a major area of
application for predictive likelihood. This should be a
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fruitful area of future research, although the technical
and numerical problems could be quite complex.

APPENDIX: ON THE NONEXISTENCE OF
ORTHOGONAL AND NORMED u

Let (y, z) € R* and r(y, z) = y? + 22 Define K =
(0u/dy, du/dz) and J = (dr/dy, dr/dz) = 2(y, z).
According to Butler (1986), u = u(y, z) must satisfy
two requirements:

(1) KK’ =1 and
(ii) KJ’ =0.

Letting u; = du/dy and u, = du/dz (i) and (ii) can be
expressed as

(1) u?+u3=1 and
(ii) yu; + zu, = 0.

The solutions are uf = +z/(y? + 2*)V? and ud =
Fy/(y* + 22)V2. Hence, from u! we have that

u(y, z) = £z log[C,(2){y + (¥* + 2%)"?} + C.(2)].

It is clear that du/dz # uj and hence no u satisfying
(i) and (i) exists.

It should be mentioned that an orthogonal u is
u = tan'(z/y). However, (u, r) is then not one—one
with (y, z).
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