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Stein Estimation: The Spherically

Symmetric Case

Ann Cohen Brandwein and William E. Strawderman

Abstract. This paper presents an expository development of Stein estima-
tion with substantial emphasis on exact results for spherically symmetric
distributions. The themes of the paper are: a) that the improvement possible
over the best invariant estimator via shrinkage estimation is not surprising
but expected from a variety of perspectives; b) that the amount of shrinkage
allowable to preserve domination over the best invariant estimator is, when
properly interpreted, relatively free from the assumption of normality; and
c¢) that the potential savings in risk are substantial when accompanied by

good quality prior information.
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1. INTRODUCTION

This paper presents an expository development of
Stein estimation with substantial emphasis on exact
results for nonnormal location models. The themes of
the paper are: a) that the improvement possible over
the best invariant estimator via shrinkage estimation
is not surprising but expected from a variety of per-
spectives; b) that the amount of shrinkage allowable
to preserve domination over the best invariant esti-
mator is, when properly interpreted, relatively free
from the assumption of normality; and c) that the
potential savings in risk are substantial when accom-
panied by good quality prior information.

Relatively, much less emphasis is placed on choos-
ing a particular shrinkage estimator than on demon-
strating that shrinkage should produce worthwhile
gains in problems where the error distribution is
spherically symmetric. Additionally such gains are

relatively robust with respect to assumptions concern- |

ing distribution and loss.

The basic problem, of course, is the estimation of
' the mean vector # of a p-variate location parameter
family. In the normal case (with identity covariance)
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for p = 1, the usual estimator, the sample mean, is the
maximum likelihood estimator, the UMVUE, the best
equivariant and minimax estimator for nearly arbi-
trary symmetric loss, and is admissible for essentially
arbitrary symmetric loss. Admissibility for quadratic
loss was first proved by Hodges and Lehmann (1950)
and Girshick and Savage (1951) using the Cramér-
Rao inequality and by Blyth (1951) using a limit of
Bayes type argument.

For p = 2, the above properties also hold in the
normal case. Stein (1956) proved admissibility using
an information inequality argument. In that same
paper, however, Stein proved a result that astonished
many and which has led to an enormous and rich
literature of substantial importance in statistical the-
ory and practice.

Stein (1956) showed that estimators of the form
(1 —a/(b+ | X[%)X dominate X for a sufficiently
small and b sufficiently large when p = 3. James and
Stein (1961) sharpened the result and gave an explicit
class of dominating estimators, (1 — a/|| X ||%)X for
0 < a < 2(p — 2). They also indicated that a version
of the result holds for general location equivariant
estimators with finite fourth moment and for loss
functions which are concave functions of squared error
loss. Brown (1966) showed that inadmissibility of the
best equivariant estimator of location holds for vir-
tually all problems for p = 3, and, in Brown (1965),
that admissibility tends to hold for p = 2. Minimaxity
for all p follows from Kiefer (1957).

Section 2 gives a geometrical argument due to Stein
which indicates that shrinkage might be expected to
work under quite broad distributional assumptions.
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Section 3 gives an empirical Bayes argument in the
normal case which results in the usual James—-Stein
estimator.

Section 4 presents Stein’s “unbiased estimator of
risk” in the normal case and develops the basic theory
for the standard James-Stein estimator in the normal
case. R

Section 5 describes a variety of extensions of the
basic theory to cover shrinkage toward subspaces,
Bayes minimax estimation, nonspherical shrinkage
and limited translation rules. Section 6 considers
extensions of the results of Sections 4 and 5 to scale
mixtures of normal distributions.

Section 7 presents generalizations to general spher-
ically symmetric families of distributions, while Sec-
tion 8 indicates the applicability of earlier results to
the multiple observation case. A technical lemma and
theorem to accompany Section 7 are given in the
Appendix.

Section 9 is concerned with results for nonspherical
quadratic loss and for nonquadratic loss, and Section
10 presents some additional comments.

2. A GEOMETRIC HINT

As in much of the development of the subject, the
following rough geometric argument is basically due
to Stein (1962). Consider an observation vector X in
p dimensions with mean vector 6 and independent
(or uncorrelated) components. Assume that the com-
ponents have equal variance, ¢ The situation is
depicted in Figure 1.

F1G. 1. Observation vector X in p dimensions with mean vector 6
and independent (or uncorrelated) components.

Since E(X — 6)'0 = 0, we expect X — 6 and 6 to be
nearly orthogonal, especially for large | 6. Since
E|X|?2 = po? + | 0]? it appears that X as an esti-
mator of # might be too long and that the projection
of  on X or something close to it might be a better
estimator. This projection, of course, depends on 6
and therefore is not a valid estimator, but perhaps
we can estimate it. If we denote this projection by
(1 — a)X, the problem is to approximate a.

One way to do this is to assume that the angle
between § and X — 6 is exactly a right angle and to
assume that || X||? is exactly equal to its expected
value 6’0 + po? and similarly | X — 62 is equal to
po?. In this case, we have

Y= [1X-06]*—a*lXI|*=pe® - @*| X|*
and
1YI2= l61>-@a-a’1X|*
= X|*-po® - (1 —-a?|X|?

from the two smaller triangles in Figure 1. Equating
these expressions, we obtain

po® — @ X|* = | X|* - po® — (1 — &)*| X|*
or
1 -20)1XI*= I1XI* - 2ps™

This gives @ = po?/|| X||* and the suggested esti-
mator is

po’®
X ||2)X'
The above development does not particularly de-
pend on normality of X or even that @ is a location
vector. Unfortunately, it fails to be a proof of the
inadmissibility of X, and also fails to distinguish be-
tween different values of p. It is, however, suggestive
that the possibility of improving on the unbiased
vector X by shrinkage toward the origin may be quite

1-aX= (1

_ general.

3. AN EMPIRICAL BAYES ARGUMENT

The following well known empirical Bayes argu-
ment also leads to the James—Stein estimator. The
origins of this argument, which we only briefly sketch,
is unknown (to us). The argument itself has appeared
numerous times in print (e.g., Lehmann, 1983, page
299).

Let X have a p-variate normal distribution with
mean vector § and (for simplicity) covariance matrix
equal to ¢? (known) times the identity. Suppose the
prior distribution of # is normal with mean vector 0
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and covariance matrix equal to b times the identity;
here b is an unknown scalar. The posterior mean
(assuming for the moment that b is known) is

b o2
(02 + b>X a <1 R b)X'

One way to estimate the unknown scalar b is
the following. Since X — 6, conditional on 6 is normal
with mean vector 0 and covariance ¢2I, X — 6 and
0 are independent. Hence X = (X — 60) + 6 is
marginally distributed as a p-variate normal with
mean vector 0 and covariance (o2 + b)I. Therefore,
I X12/(b + ¢% has a central chi-square distribu-
tion with p degrees of freedom. It follows that margin-
ally, E(p — 2)/I1 X||®» = 1/(¢® + b) and hence
(1—=(p—2)c?/|l X ||*)X may reasonably be considered
an empirical Bayes estimator for the above normal
prior with unknown scale. This estimator, of course,
is exactly the usual James—Stein estimator.

4. SOME SPHERICAL NORMAL THEORY

Let X have a p-variate normal distribution with
mean vector # and covariance matrix equal to the
identity. The problem is to estimate 6 with loss equal
to

p
(41) L@, 0)=16—-0[1>= % (6 — 6:)>

i=1
Stein (1956) showed for p = 3, that the usual estimator
80(X) = X is dominated by §,,(X) = (1 — a(b +
| X|I?)~1)X provided a is sufficiently small and b is

sufficiently large.
James and Stein (1961) showed that

(4.2) %W(X) =10 —al XI7)X

dominates X for 0 <a < 2(p —2) andthata=p — 2
gives the uniformly best estimator in the class.

Their proof used the Poisson representation of the
noncentral chi-square distribution, but since the mid-
1970s the “unbiased estimation of risk” technique
of Stein (1981) has been used and simplifies proofs
substantially.

The technique, which we describe below, depends
on the following lemma.

LEMMA 4.1. Let Y ~ N(0, 1). Then E[R(Y)(Y — 0)]
= Cov(Y, h(Y)) = Eh'(Y) (provided, e.g., that h(Y)
is the indefinite integral of h'(Y),

limy_,+ h(y)exp[—%2(y — 0)?] =0

and all integrals are finite).

PROOF. Integration by parts gives

ﬁ Lo h(y)(y — O)exp —[*a(y — 6)*] dy

w N
__1_f df_ (1. _
=75 J h(y) dy( exp( 2(y 0)>>dy

1 1 AN
=~ h(y)exp(—§ (y —0) >

o0

1 ’ _l — 2
+ o _wh (y)eXp( 2 (y—0) )dy

—o0

= Eh'(Y). a

The following theorem gives an unbiased estimator
of the risk of §,(X).

THEOREM 4.1. (a) The estimator 6,(X) in (4.2) dom-
inates X for 0 <a < 2(p — 2) (for p = 3). The estimator
0p—2(X) = (1 — (p — 2)/X’X)X has the uniformly
smallest risk of any estimator in the class.

(b) The risk of 6,—5(X) at 0 = 0 is equal to 2 for every
dimension p = 3.

Proor.
R (8, 6.(X))
a 2
=F 1-F— | X—0
” < (P 2)
X'(X —0)
=E|X-0|%+a’E — 2aE
I X2 1x1°
1 (XX — 0,~)>
=p+a’E —2a E(—-—‘
Pretxp T A e
1 .
=p+a’E -2 ¥ E{——|5
(4.3) p X2 El <dxi <Z Xf))
(by the lemma)
P Y X2—2X?
=p+a’E 20 Y ES S
PrefxpE T LT Xy
[Pl X*=2]1X]7]
=p+a’E —20aE
P X2 (X

1

— 2 _ _ _

p+[a*—2a(p—2)]E X1

Note that the quadratic a® — 2a(p — 2) is negative
in the range (0, 2(p — 2)) and attains its minimum at
a = p — 2. Hence, part (a) is proved.

The proof of part (b) follows by noting that for 6 =
0, | X |1* has a chi-square distribution with p degrees
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of freedom and hence by (4.3)

1
= — — 2 v —
R(0, 6,-2(X)) =p — (p — 2)°Eo BAE
_ o\2
—p- 2=, O
p—2

Part (b) suggests, particularly for large values of p,
that very large savings in risk are possible over the
classical estimator in the region near § = 0 at no cost
of increased risk elsewhere.

Note also that, while substantial savings in risk are
possible, the James—Stein estimator is itself inadmis-
sible due to its strange behavior for small X’X. The
shrinkage factor (1 — (p — 2)/X’X) becomes negative
for X’X < p — 2. A better estimator is given by the
“positive-part” estimator (1 — (p — 2)/X’X).X.
Interestingly, this estimator is itself inadmissible
because it fails to be generalized Bayes, but to the
authors’ knowledge, no improved estimator has been
found.

5. MORE NORMAL THEORY

In the previous section, we showed that the James—
Stein estimator dominates the classical estimator in
the (identity covariance) spherical normal case and
that its risk at the origin is equal to 2 regardless of
the dimension of the problem. One may interpret this
result as saying that if your prior guess that the origin
is the true value is correct you may save substantially,
but if you are wrong you lose nothing. This suggests,
and it is obviously true, that a similar result holds for
any arbitrary origin 6,. That is, the estimator

-p — 2 )(X— )

5.1 b+l — ———
(65.1) 0 ( 11X — 6

will dominate the usual estimator and have risk equal
to 2 at 6, provided p = 3.

Suppose it is believed that 6 lies in V, an s dimen-
sional subspace of RP. Then letting the projection of
X onto Vbe Vand W = X — V, the projection of X
onto the ortho-complement of V, we have the follow-
ing result.

THEOREM 5.1. The estimator

(p—s—2)
on  [veli-25e=2)w]

dominates X, and has risk equal to s + 2 for all 0 in 'V,
provided p — s = 3.

This is perhaps most easily seen by considering a
canonical version, when V represents the first s coor-
dinates and W the remaining p — s coordinates. The

estimator (5.2) then uses the classical estimate on V
and the James—Stein estimate on the (p — s) dimen-
sional subspace W = RP? — V. In general, the result
follows by noting that Vand (1 — (p—s—2)/W' W)W
are independent (and orthogonal) and that the esti-
mation problem breaks up into two orthogonal com-
ponents (0 =v + w, v EV,w EW).

One particularly important application of this idea
is the estimator proposed by Lindley (1962), where

V=1{060=0=..=080)}dmV =1 and the
estimator (5.2) becomes
53 X1+(1-—P=3 __)x-x1)

' EY (X;— X)?

withl1=(, ---,1).

As the preceding discussion and Section 2 indicate,
there is a strong Bayesian connection to be made. In
particular, we indicated in Section 2 that the James—
Stein estimator could be viewed as an empirical Bayes
estimator for a normal prior with mean 0 and covar-
iance matrix ¢2, with ¢2 unknown and estimated
for the data. Strawderman (1971) established a moré
formal Bayesian (as opposed to empirical Bayesian)
connection along these lines. We now describe this
development.

First, an extension of the basic James-Stein result
due to Baranchik (1964, 1970) is helpful.

LEMMA 5.1. The estimator (1 — r(X’'X)/X'X)X
is minimax for the loss (4.1) provided 0 < r(-) <
2(p — 2), and r(-) is monotone increasing.

PROOF. The proof in the case r(X’X)/X’X satis-
fies the conditions of Lemma 4.1 essentially follows
that of Theorem 4.1. By Lemma 4.1

o r(X'X)
E(X = 0)'X —r
B r(X'X) r'(X’'X)
= (p= DE o + 2B —
r(X’'X)
=(p—-2FE XX
Hence
r(X’X) ?
— X —0
B ” <1 X'X >
_ r’(X’'X) X-0'X ,
=p+E XX 2F XX r(X’'X)
r(X’'X)
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This lemma allows smoother shrinkage factors
than the positive part James—Stein estimators and
opens the possibility that generalized Bayes and per-
haps proper-Bayes estimators may be found in the
class (other than X itself). To this end, consider
a two-stage prior for 6 such that at the first stage
6N ~ N@O, [Q@ — MN/AI), and at the second
stage A ~ (1 — b)A® (for b < 1). Then the Bayes
estimator is given by

E@0]X) = E[E@] X, N) | X]

1
o (et
=[1—-EN X)X
Lemma 5.1 may now be used to give conditions

under which the Bayes estimator (5.4) is minimax. O

THEOREM 5.2. (a) For p = 5 the proper-Bayes esti-
mator (5.4) is minimax provided b = Y%(6 — p).

(b) For p = 3 the estimator (5.4) is generalized Bayes
and minimax provided (6 — p) < b < Y (p + 2).

PRrROOF. A straightforward calculation gives

1
X) = +2 -
EOX) X'X [p 2-2

(5.5)

_ 2 exp(—1LX’'X)
Jo AV2P~bexp(—(A/2) X’ X) d\

_r(X’X)
X'X
where r(X’X) is defined to be the term in brackets on
the right side of (5.5). Since r(X’'X) = p + 2 — 2b,
and since [§ \/?P"%exp{(X’X/2)(1 — \)} d\ is increas-
ing, the conditions of Lemma 5.1 will be satisfied
provided p + 2 — 2b < 2(p — 2) or equivalently

(5.6) b= P

2.
Since in order for A~ (the second-stage prior) to be
integrable we must have b < 1, it is seen that (5.6) is
satisfied for such a b provided that p = 5. Hence, we
have result (a).

The proof of part (b) follows by noting that (5.5)
makes sense (i.e., the generalized Bayes estimator
exists) provided Ysp — b > —1, which is equivalent to
the right inequality. Note that the double inequality
holds only if p > 2. Strawderman (1972) showed
that no proper Bayes minimax estimators exist for
p<5. 0O

We briefly take a broader view and describe a result
of Stein (1981) concerning minimaxity of (general-
ized) Bayes estimators. If w(f) is the (generalized)

prior density, then the (generalized) Bayes estimator
is given by

f fe— /DI X-6 ||27r(0) de

0.(X) = I e—(1/2)IIX—‘9“27r(0) do

(5.7) =X+ V log f e~ WDNX=0171 () g

Vi(X)
f(X)

-, 8/0X,), and f(X) is the

=X+ Vg f(X) =X+

where V = (8/0X;, 8/0X,, - -
marginal density of X.

An easy application of Lemma 4.1 gives the follow-
ing very general unbiased estimate of risk for a nearly
arbitrary estimator of the form X + g(X).

LEMMA 5.2. Let 6(X) = X + g(X) be such that
g(-) is almost differentiable and such that

PLE|IVEX)|< o,
Then
EIlX+gX)—-90|?
=p+ E[llg(X)1* + 2V ° g(X)].
Hence if | g(X) |12 + 2V © g(X) < 0 for all X then
X + g(X) dominates X.

(Note that Theorem 4.1 and Lemma 5.1 are special
cases.)

Recall a function f(X) 1is superharmonic if
V#(X) = 0 VX. Applying Lemma 5.2 we have the
following neat result. ‘

THEOREM 5.3. If n(0) is superharmonic, then the
estimator (5.7) is minimax.

PROOF. An application of Lemma 5.2 to a (gener-
alized) Bayes estimator of the form (5.7) gives

2

R(0,6,,)=EHX+—V}7'£(—§%—0
R
5.38) o f(X)V"’f()IQ()—OII V(X | ]
oo TR

f(X)
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(Actually the penultimate expression can be simplified
to equal

V2V (X)
4F ——2
P
where
2 ‘ b9
VH(X) = ,:2'1 62X,~f(X)’

the Laplacian of f(-).)

Because convex combinations of superharmonic
functions are superharmonic, it follows that since = (6)
is a superharmonic prior,

e~ (/DI X-01?
f(X) = f W w(0) db

is also superharmonic. We thus have the desired
result. O

Incidentally, note that if =, (6) is superharmonic for
each v, then so is #*(§) = [ =, () dF(y) for any
distribution F(-). This opens up a nice class of mul-
tiple shrinkage minimax estimators due to George
(1986).

To conclude this section we present three examples
which illustrate the utility of Lemma 5.2.

EXAMPLE 5.1. From Stein (1981), let

_ . BAX
(5.9) 8(X) = X =
Then
Elo(X)-0)* -~
X'A%X BAX
—p+E|f ot gy o LEL
P E[ﬂ (X'BX): 2 X’BX]

X'A?’X 28trA  4B8X’'ABX
=p + E|p? -
P [ﬁ (XBX)!  X'BX ' (X'BX)?
(provided the expectations exist).
. If A is a fixed symmetric matrix, B = [(tr A)] —
2A]7'A% and 2A < (tr A)I (the largest eigenvalue of
A is less than % the trace of A), then

2 _ 2 _ ogyg X AX
EN5(X) = 01* =p + (8° = 28)E (5rp0s.
Hence § dominates X provided 0 < 8 < 2. Furthermore,
B8 =1 is the uniformly best choice.
Stein (1981) gives an interesting application of this
result to three term symmetric moving averages of the
form '

(5.10) 6; - X — MX)(X: — (Xioy + Xity)

where X, = X,,. Here

—% ifj—i==1 (modp),
1 ifj—i=0 (modp),
0 otherwise.

A,‘j =

The characteristic roots are 1 — cos(27(j/p) < 2 with
—[p/2] = j <[p/2] giving tr(A) = p. Hence forp = 5
(5.10) dominates X for A\(x) = AX/X’BX as in (5.9).

ExXAMPLE 5.2. From Berger (1980), let the gener-
alized prior density be given by

J; [det B(\)] 72

_ exp[_ ) ’;8‘21(%)(0 —u)]v-l_(m) .

where 3(A\) = A7'C — I for 0 < A < 1, C — [ positive
definite and n > 0. Here the distribution of 8 given A
is N(u, B(N\)) and reduces to the two-stage prior of
Strawderman discussed earlier in this section if C =
I. The (generalized) Bayes estimator is given by

5,(X)
. <1 (X =)' CT (x — ﬂ))C_1>
(5.11) # (X — w)'C X — p)
(X =
where
(V) = V [6 Nexp(—AV/2) dA

[6 A" lexp(—AV/2) dA

oo [ o520

It follows from Lemma 5.2 (as in Example 5.1) that if
(2 + n)ChpyxC! < tr C7! then 6,(X) is minimax.

EXAMPLE 5.3. Stein (1981) recalls that Efron and
Morris (1971, 1972) considered estimators which mod-

. ified the James-Stein estimator by requiring that no

coordinate move by more than a preassigned quantity
C. Stein gave an alternative “limited translation” rule
based on order statistics as follows. Let Z; = | X;| and
Zay<Zg < --- < Zy be the order statistics. Fix K a
positive integer (a large fraction of p) and consider
0(X) = X + g(X) when

gi(x)

a
2 (X7 A Ztg)

a
L (XF A Z)

where a A b = min(a, b).

X; if | Xi| > Z),

Ziysgn X; if | X;| > Z),
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Application of Lemma 5.2 gives
E[5(X)—06]?

1
=p+[a?—2(K—-2)a]E|=——————1|.
p*lot = 2(K = 2)a] [z X AZEK»]
Hence the estimator is minimax if 0 < ¢ < 2(K — 2)
and the uniformly best choice of a is K — 2.

6. SCALE MIXTURES OF NORMALS

Stein (1956) showed that the usual estimator of a
location vector could be improved upon quite generally
for p = 3, and Brown (1966) substantially extended
this conclusion to essentially arbitrary loss functions.
Explicit results of the James—Stein type, however,
were restricted to the case of the normal distribution.
Strawderman (1974) considered scale mixtures of mul-
tivariate normal distributions as follows. Let X have
density (|| x — 0| %) where

fllx=01%
Y f exp[_ 2%2 lx—8] 2]6“’ dG(o)

where G(-) is a known distribution function. The
object is to estimate 6 with loss (4.1).

Such a random variable X clearly has the interpre-
tation that given ¢, X is normal with mean vector 6
and covariance matrix ¢%I. The unconditional distri-
bution of ¢ is G(-). This interpretation together with
Lemma 5.2 allows the following calculation of the risk
of a smooth estimator X + g(X):

E|X+gX)-0]°
=E[EX" | X+8(X) - 07|07

=E°¢? EXI° )_{+g((X/U) . 0)_2 z -
o o o
1 X z
(6.2) =EUO'2EX|0|:p +? g<; .‘o'>

1 X
+2_VX/a . g<_ . 0’) GJ
g g
=pE’s”+E'EX (| ¢(X) |I*
+202V - g(X) | o]
where Vx,, - g((X/o) - )=V - g(u - 0) |u=x/0-
Expression (6.2) can now be used to give conditions

for minimaxity of James-Stein estimators in the mix-
ture of normals case.

THEOREM 6.1. Let X have the distribution (6.1) for
p = 3. Then the estimator (1 — a/X’ X)X dominates X
(for the loss (4.1)) provided 0 < a < 2/E,(1/X’X).

PROOF. Here, g(X) = — a¢/X’X and V . g(X) =
—a(p — 2)/X’X. Hence, (6.2) becomes

s

= pE°s® + E"EX'”[

2

a? _2a(p—2) ,
X'X x'x ¢

2

a? o

=pE°¢* + E"[(; - 2a(p — 2)>EX"’<X,X a>].

Note that X’ X/¢? given ¢? is distributed as a non-
central x* with p degrees of freedom and noncentrality
parameter 6’0/c>. Therefore, EX'*(¢2/X’X | ¢) is an
increasing function of ¢% Since a?/¢% — 2a(p — 2) is
decreasing in o2 we have

B (1- s

a?
<pE°e® + E°|— — 2a(p — 2)
o

2

(6.3)
2
. o X|o o
E°E [X'X (T:l
< pEo?
provided
0<ax< 2p=2) _ 2

E°(1/6%)  E,1/X'X)"
The result follows. O

It is interesting to note that this result reduces to
Theorem 4.1a if the distribution of ¢ is degenerate
at ¢ = 1. Furthermore, the shrinkage factor a =
2/Ey(1/X’X) is an upper bound for any distribution
such that each coordinate has mean 0, as an easy
calculation shows. What is remarkable about Theorem
6.1 is that if the shrinkage factor is interpreted prop-
erly, the James—Stein result extends directly to the
entire class of scale mixtures of normal distributions.

Note that this class includes (if 1/¢2 ~ x2/m) the
family of multivariate —¢ distributions with tails of
the order (1 + 6’6)~?*™/2 a5 well as the family of
normal distributions.

The geometrical argument of Section 2 which hinted
at shrinkage factors of the order of ps? regardless of
normality is thus validated for a wide class of distri-
butions. Chou and Strawderman (1986) extended this
result to include estimators of the type studied in
Lemma 5.2. Here is a simple form of their result.
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THEOREM 6.2. Let X be as in Theorem 6.1, and let
2(X) be such that

(@) 1gX)[?+2V - g(X) =0,

(b) g(bX) = (1/b)g(X) (i.e., g(-) is homogeneous of
degree —1),

(c) {X: 18(X) |2 > ¢} is convex for each ¢ = 0.

Then X + ag(X) dominates X for 0 < a < 2/E(1/c?).

PRrOOF. By (6.2)

E|X+ag(X) - 0]”
= pEos® + E°E*""[a* || g(X) |* + 2a0°V - g(X)| o]
= pEd® + E’E*""[|| ¢(X) | *la® — 2a0”]| o7]

o2) | 155

The last inequality follows since E || g(X/0o) || is in-
creasing in ¢ (by Anderson’s theorem) and [a®/¢® —
2a] is decreasing in ¢? and E[a/s? — 2a] < 0if 0 <
a<2/E(1/5%).

Hence versions of the estimators of Example 5.1,
5.2 and 5.3 extend to the scale mixture of normal
families.

= pEo’ + E"EX"’[

< pEd*

7. OTHER SPHERICALLY SYMMETRIC
DISTRIBUTIONS

Extensions of James-Stein type results to distri-
butions other than scale mixtures of normal distribu-
tions are due to Berger (1975), Brandwein and
Strawderman (1978), Brandwein (1979) and Bock
(1985).

Brandwein’s result gives a shrinkage factor for p =
4 which holds uniformly for all spherically symmetric
distributions such that EX’X < o and E(X’'X) ! is
fixed. The factor given is the best possible and is
actually attained for uniform distributions concen-
trated on a spherical “shell” of radius R.

The spirit of the proof is to first obtain the result
for spherical shells and to extend it by use of a tech-
nical lemma to mixtures of such distributions. Since
the class of spherically symmetric distributions is
precisely those obtained by scale mixtures of spherical
shells, the desired result follows and is stated in the
following theorem.

THEOREM 7.1. If X has density f(||lx — 0]?
and E|X|? and E|X| ™2 are finite then for
p =4 (1 — a/X’'X)X dominates X for 0 < a <
2((p — 2)/p)[Eoll X || %] 7" for loss (4.1).

We have noted that the factor

2((p = 2)/p)/Eol X |7

is the best possible constant which holds uniformly
for all spherically symmetric distributions with
E,|| X | ~? fixed. For specific distributions, obviously,
better results are possible (see Bock, 1985). It is re-
markable, however, that the best possible constant for
any distribution can be no larger than 2/E,| X || 2 as
can be easily seen by calculating the risk at 0. Hence
the factor given in Theorem 7.1 which applies uni-
formly is surprisingly close to the best that can be
attained for any given distribution.

Brandwein’s proof of Theorem 7.1 was very tech-
nical. A new, less technical proof of a slightly weaker
theorem is given in the Appendix. With this new proof
we obtain minimax estimators which dominate X for
0<a=[2(p—4)/(p—2)]E| X|* " andp = 5.

We note for completeness that the results of Theo-
rem 6.1 for mixtures of normals and Theorem 7.1 for
spherically symmetric distributions can be extended
to prove minimaxity of estimators of the form (1 —
ar(X’X)/X’X)X. The conditions on a are as in their
respective theorems and the conditions on r(-) are:
(a) 0<r(-) <1; (b) r(Y) is monotone nondecreasing;
and (c) r(Y)/Y is monotone nonincreasing.

8. MULTIPLE OBSERVATIONS

So far we have concentrated our attention on im-
proving the estimator X based on a single observation
from a population with density f (|| x — 6 || ?). Suppose
we have a sample X, ---, X, from such a population
and the problem is to estimate the p-dimensional
vector 0 with loss (4.1).

In this case, the natural estimator is Pitman’s esti-
mator, one version of which is given by 6(X, Y) =
Xl - EO[XII Y]3 where Y = (Xl - Xny X2 - Xny Tty
Xn-1 — X,). This estimator which is minimax and
best among equivariant estimators is inadmissible if
p = 3. For n > 2, X, the vector of sample averages, is
Pitman’s estimator if and only if the population is
normal. For nonnormal populations, Pitman’s esti-
mator is typically difficult to calculate and its distri-
bution tends to be analytically intractable. A variety
of other estimators such as X, or the M.L.E. might be
used instead. These estimators are in the class of
estimators equivariant under the orthogonal and lo-
cation groups. In fact, for any estimator é such that

6(Q)(l - ¢ QXZ —C cr, QXn - C)
= QB(XD ] Xn) - C

where @ is an arbitrary orthogonal matrix and c is
an arbitrary vector, the sampling distribution (when
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sampling from a spherically symmetric distribution)
is itself spherically symmetric. Hence, Theorem 7.1

applies and we may conclude that 6(X;, ---, X,) is
dominated by
<1 - a )6(X X.,)
16(Xy, -, X120 77"
for 0 < a <[2(p — 2)l/[pEoll 8(X3, - -+, X)) | 7]

"~ 9. OTHER LOSS FUNCTIONS

There are two major lines of development relating
to generalizations concerning the loss function (4.1).
The first is to consider general quadratic loss given by

9.1) L(,0)=(6—-6)'D6—0)

where D is a given p X p positive definite matrix. The
second relates to nonquadratic loss.

The earliest results for loss (9.1) in the normal case
are due to Bhattacharya (1966). An early representa-
tive result is the following due to Bock (1975). Let

9.2) 8X) =[I —aDV2CDV? | X| 7YX

where C is a known positive definite matrix. Let &
be the largest eigenvalue of D?CD'? and A, be the
largest eigenvalue of D2C2D'/2,

THEOREM 9.1. Let X ~ N, (8, I). Then the estimator
(9.2) dominates X under loss (9.1) provided 0 < a <
2[tr CD — 2¢L]/v1-

Proor.
R, X) — R(, o)
X/DI/ZC2D1/2X
= 2 e —
a E[ X'X)? ]
X'DY*CDY*(X — 0)
2aE[ X'X)
_ a2E X/D1/202D1/2X B D1/2CD1/2X
- (X'X)*? (X'X)
(by Lemma 4.1 as in Example 5.1)
X/D1/2c2D1/2X
= a2 —_—
] E[ X'X)? ]
_9 [X'X tr DY?2CDY? — 2X’D1/2CD‘/2X]
¢ (X'X)?
<FE X%X [a2'yL - 2a(tr CD - QEL)]
<O0.. ]

There are a number of results of this type for
estimators of the form

©9.3) [ _ ar(X)B]X

X'CX

which may be proved in much the same way.

It is worth noting that the problem of estimating
the mean vector § when X ~ N, (6, ) with 2 known,
loss given by (9.1), and estimators of the form (9.3) is
essentially reducible to the case £ = I. In this more
general setting, a variety of justifications for different
choices of B and C in (9.3) have been given from the
robust Bayesian perspective (Berger, 1982), from the
ridge regression perspective (Thisted, 1976; Strawder-
man, 1978; Draper and Van Nostrand, 1979; Casella,
1980), and from an empirical Bayesian perspective
(Efron and Morris, 1973b, 1975; Morris, 1983) among
others.

A variety of results covering nonnormal situations
have been found by Berger (1975) and Chou and
Strawderman (1986) in the scale mixture of normal
case, by Brandwein and Strawderman (1978) in the
spherically symmetric unimodal case, and by Brand-
wein (1979) in the spherically symmetric case.

In particular, Brandwein’s (1979) result for X from
a spherically symmetric distribution replaces the up-
per bound for a in Theorem 9.1 by

I% (tr CD — 2)7 2 [Eo(X'X) ]

In the normal case, this is (p — 2)/p times the upper
bound in Theorem 9.1 and, again, the degree of shrink-
age allowed is relatively unaffected by the assumption
of normality.

Results concerning extensions to nonquadratic loss
are relatively few. Berger (1978) has results in the
normal case for polynomial loss. Hwang (1985) has
results for simultaneous domination under a broad
class of loss functions. Brandwein and Strawderman
(1980) and Bock (1985) have results for losses of the
form

(94) L, 8 =f(ls—01%

where f(-) is an increasing concave function. Here is
a version of Brandwein and Strawderman’s result.

THEOREM 9.2. Let X have a spherically symmetric
distribution with p = 4. Then 6(X) = 1 — ¢/X' X)X
dominates X for the loss (9.4) provided 0 <
Ecsf'(R*) < » and 0 < a < [2(p — 2))/[pPExR™¥]
where G(-) isthecdf of R= || X — 0| and

JE £7(s?) dG(s)

HR) = 16767 dG(s).
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E¢ and Ey denote expected values under the cdf G(-)
and H(-) respectively.

PROOF. We use the fact that f(-) concave implies
fAX=01P+w <fUIX =01 +uf' (1 X—0]?

to obtain
R(0, 6) — R(6, X)

- E[f(ll X 01+ sy - A IX)
— fUIX - 0u2)]
©9 E]'f’( I1X—0 u%[;,; ——— X]}
_ EE[( a; _ 2a()§( I—Xa)'x>

fRYI X -0l =R]

But it follows from Theorem 7.1 that the last
expression in (9.5) is negative provided 0 < a <
2(p — 2)/[pExR™%]. Hence the theorem follows. [

The proof for estimators of the form
1-ar(X'X)/ X' X)X,

where r(.) satisfies the conditions of the remarks
following Theorem 7.1, is essentially identical to the
above proof.

As an application of this result to the spherical
normal case, let X ~ N,(0, I), L6, 8) = [|é6 — @]9,
0<q<2. Hencef(u)=u?f"(u) =(g/2) u"?/? and
since

R*=]X-01*~ x5,

EGR—2+q—2

E.R —(Pra-47

EHR_2 =
Hence we are assured that the estimator
(1 = a/X’X)X dominates X for 0 < a <
2(p—2)(1—(4—q)/p), forp = 4.

The most important results for nonquadratic loss
are those for confidence set estimation. Hwang and
Casella (1982) showed that the usual spherical confi-
dence set centered at X may be dominated by one
centered at an appropriate' (positive-part) James—
Stein estimator. Hwang and Chen (1986) extend dom-
ination results for confidence sets centered at positive-
part James-Stein estimators to nonnormal settings.

10. COMMENTS

10.1 Unknown Scale

We have assumed throughout that the scale is
known. For the N, (6, ¢*I) distribution, if an estimator
of ¢ is available which is distributed as a multiple of
a chi-square distribution independently of X, this case
causes no difficulty. The original James-Stein paper
treats this problem as do several others. Bravo and
MacGibbon (1987) have results in the mixture of
normal case if an independent estimate of the scale is
known. Cellier, Fourdrinier and Robert (1988) treat
the general spherically symmetric case.

10.2 Nonspherically Symmetric Distributions

Most of the material of this paper can be extended
to handle distributions of the form f((x — 6) '™ (x —
0)), where 2 is a known positive-definite matrix by
working with the random vector =~*/2X which has a
spherically symmetric distribution. In cases where the
whole problem is not spherically symmetric, a tension
between “being Bayes” (doing well on the average)
and being minimax (never doing worse than the best
invariant estimator) often develops. It typically hap-
pens that minimax estimators will shrink coordinates
with larger variances relatively less than will Bayes
estimators. The phenomenon is complicated by the
fact that for quadratic loss, the minimax estimator
will depend on the choice of D in (9.1) while the Bayes
estimator will not. See Berger (1985) and references
therein for more details. The current recommenda-
tions for choice of shrinkage procedures in such situ-
ations seems to favor a Bayesian or empirical Bayesian
basis as opposed to a purely minimax one, even among
more classically oriented decision theorists. This
seems to be at least partly on the grounds that
minimaxity may be too strict a requirement here,
and that relaxation to something like e-minimaxity
might preserve the large gains possible (near the
origin, say) at a slight cost for “large” values of # in

" certain directions.

10.3 Independent Coordinates

It can be argued that a much more natural class of
problems than the ones we have been considering are
those nonnormal location problems where the coor-
dinates are independent. Since sphericity and inde-
pendence imply normality, we have unfortunately
described no results for the nonnormal case. Shinozaki
(1984) and Miceli and Strawderman (1986, 1988) have
some results for independent nonnormal observations,
but the results are not nearly as extensive as for the
spherical case.
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10.4 Robustness of Stein Estimation

We have shown that James-Stein estimators dom-
inate the best equivariant estimator in a wide variety
of settings. Also, when properly interpreted, the allow-
able amount of shrinkage is relatively robust with
respect to assumptions concerning distribution and
loss. Let us briefly take a somewhat more detailed
look at the possible shrinkage and potential improve-
ment for multivariate-t families.

A multivariate-t distribution with m degrees of free-
dom can be defined as a scale mixture of normals
where the mixing distribution, G(-), in (6.1) is that of
vm/x2. Alternatively we may write X = (Z/W) + 6,
where W is independent of Z and W? is distributed as
x2,/m. It follows then that E, X’ X = pm/(m — 2) and
E,(1/X’X) = 1/(p — 2). The variance of a single
component is ¢ = m/(m — 2). Hence, by Theorem
6.1, the range of allowable shrinkage values to preserve
minimaxity (for m > 2) is 0 < a < 2(p — 2). Note that
this is the same as the range of shrinkage values for
X ~ N, (0, I) and is independent of m. In terms of o2,
the variance of a single component, the range of
shrinkage values is 0 < a < 2(p — 2)((m — 2)/m)o>.
This upper bound will be greater than the “usual”
choice (p — 2)o® provided m = 4. Hence, the
“usual” James-Stein estimator will be minimax
for m = 4.

The maximal savings in risk occurs at the origin,
6 = 0. The following argument indicates that the
maximum possible savings in risk is substantial for
the multivariate-t families. As already noted, the risk
at § = 0 for a N,(0, I) family is 2 regardless of the
dimension (for p = 3). Therefore, the maximum
relative (to X) savings in risk is (p — 2)/p for
X~ N(0, I).

In the case of a multivariate-t distribution, the risk
of the usual estimator X is pm/(m — 2). The optimal
shrinkage constant is @ = p — 2, and the risk of
the James-Stein estimator at § = 0 is E,X'X —
1/E,(1/X’X) = [m/(m — 2)]p — (p — 2), giving a

maximum relative savings of ((p — 2)/p)((m — 2)/m). -

For m even moderately large, the relative savings
. compares favorably with the normal case. Even if
the nonoptimal shrinkage factor a = (p — 2)¢® =
(p — 2)m/(m — 2) is used, the maximum relative
savings is ((p — 2)/p)[(m — 4)/(m — 2)], which again
for moderate m is nearly as large as in the normal
case.

It is straightforward to show in general that the
relative savings at § = 0 for the choice of shrinkage
factor a = 1/E,(1/X’X) is given by

[Eo(X'X)Eo(1/X' X)] 7"

As an‘illustration, Table 1 gives a summary of the
optimum shrinkage values, “usual” shrinkage values,

TABLE 1
Relative savings at 0 = 0 of James—Stein estimators for
multivariate-t distributions: dimension p = 5

Degrees of  Optimal “Usual” Relz?tlve Relgtwe
freedom  shrinkage shrinkage savings  savings
m a=p—-2 a=(p—2)d* for for

optimal @ usual a

3 3 9* 0.1998 —-0.6

4 3 6 0.3 0

5 3 5 0.36 0.1998
10 3 3.75 0.48 0.45
20 3 3.33 0.54 0.53
50 3 3.125 0.576 0.575
o 3 3 0.60 0.60

* Not minimax.

and relative savings at § = 0O for the two shrinkage
values for p = 5.

10.5 Applications

We have said little about applications of James—
Stein estimation. Efron and Morris in a series of
papers (1971, 1972, 1975, 1976, 1977 and others) fos-
tered the application of shrinkage estimation and ad-
dressed a number of practical considerations including
the unequal variance case, shrinkage in groups and
limited translation estimators. Most of the published
applications have had an empirical Bayes orientation.
For some examples, the reader is referred to Efron
and Morris (1973a, b, 1975), Casella (1985), Green
and Strawderman (1985, 1986) and Braun, Jones,
Rubin and Thayer (1983).

A. APPENDIX

LEMMA A.1. Suppose U has a p-variate spherically
symmetric density of the form f (|| u||?) and 0 is a fixed
vector.

(@) If V=0'U/I6III U|l)? = (cos(8, U))* then V
has a Beta (Y2, (p — 1)/2) distribution independent of
Ry

(b) If p(v) is the density of V then

4 —1
py(v) = C(v)p(v)[l +tr -7 107]
and
£(0) = (v )[1+ - 47"]_2
py () =c*(v)p( YTy

have monotone likelihood ratio increasing for 0 <
v < 1 and decreasing for 1 <y < oo,

PRrROOF. (a) Straightforward (see Dempster, 1969,
page 272). (b) Easy calculation. [
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THEOREM A.1. If X has density f(||x — 0| and
E|X||? and E| X| ™2 are finite then for p = 5,
1-a/X'X)X dominates X for

0<a< 2("’;4)[& Bls
p—2
and loss (4.1).

ProOOF.

R<0’ (1 - Xc'l >X>

R ([N

2]

1
=E|X—-0|*+a®
I1X =60+ a'E o
X'(X -9
2aF XX

Let X = U+ 6, U’'U = R? and use the fact that the
distributions of U and —U coincide to get

oo 1))

2
=EU’U+E[%[ L

U'U+ 6’6 +2U'6

1
TUU+ 00— 2U’0]
2_(1[ U'U+U's
2 [U'U+6'0+2U
L _Uu-uy
- U'U+6'0-2U'6
a*(R* + 69)
(R® + 0'0)% — 4(9'U)?
_ 2a[R*R* +6'0) — 2(6'U)’]
(R*+60'0)> — 4(9'U)?

(A.2) -

= ER? +E{

Since R(0, X) = E|| X — 0 ||> = ER?, we have, letting

_ (0,U)2
lenznui®

a
o2 )x) - o

i-4
A3 =
A3) E {(R2 +00)? — 40’0R2V}

- EE{a2 — 2aR¥(1 - 2V) , R}
B

_ EE{az/Rz _ 2;(1 —2V) , R},

0= Vs 1),

where
& = a*(R* + 0'0)
— 2a[R*(R* + 6'60) — 20'6R*V],
Z# = (R*+ 0'6) — 49’6R*V[6’ 6 + R*]™,

’ 9’0 90|
g=1+%g_4ﬁ3v[l+ﬁ] .
Now using Lemma A.1(b), if p(v) is the density of
V then

c(6’8/R*)p(v)
1+ 0’0/R*> — 4(0’6/R*v[1 + 6’0/R%]™!

= pa'e/Rz(U)

has monotone increasing likelihood ratio if y =
6’0/R? < 1 and monotone decreasing likelihood ratio
if y =6’0/R%* > 1, to conclude that

1
J; Upo'o/Rz(U) dv

_ E[V/¥|R]
AD =B/ R
<J~lvp_(v)dv=L
- o y=1 p _ 2 ’
where

’ ’ /0_1
M:HM_MV[HL].

R? " R? R?

The last inequality follows, since by Lemma A.1(a)
Dy=1(v) has a Beta (%, (p — 3)/2). Hence combining
(A.3) and (A.4)

R<0, <1 -2 >X> — R, X)
 (A5) X

. {a2/R2 = 2al(p = 4/(p = 2)] ' R},

where

’ ’ ’ -1
R EYL PR
We will show below that
B 1
1+ 60’0/R*> — 4(0’6/R®)V[1 + 0'6/R?™*

d

is decreasing in 6’6/R* and hence increasing in R?
for fixed || 6% This, together with the fact that
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a®/R?® — 2a[(p — 4)/(p — 2)] is decreasing in R?, implies
that

a
R(o, (1 -5 )X) - R(, X)
2 —4
< E[k- _ za(f;——_ 2)}

- E

1
1+ 0'0/R® — 4(9'0/RDVIL + 0'0/RT "

provided a?E(1/R?) — 2a[(p — 4)/(p — 2)] < 0 and
p = 5. The theorem follows since E,(1/]| X||?) =
1

E(1/R?).
It remains to show
E[ ’ 2 ’ 2 ’ 21-1 R
1+6'0/R*—4(6’8/R*)V[1+ 6'6/R?]
is decreasing in 6’6/R? to complete the proof. Note
first

0

1

d p(v) dv
dy Jo 1+ —4yu[l + 4]
1
(A.6) R IEvE

1 - (y+1)°
‘ J‘; [1+ v —4yv[l + ]2 p(v) dv.

Clearly if v = 1 this derivative is negative. To prove
(A.6) is negative in the range 0 < vy < 1, use Lemma
" A.1(b) and show

*()fl 4v — (y + 1)2
e Ay = 4ol + 41

1
4v -1
*
c('y)‘fo [1 4+ v —4yv[1 + v]
4

1
1
SJ; mp(v)dv—l

4 p
(p—4)

*if p = 5 where

w7 p() -
= U [1+ 7 — 4yo[l + 4177 d"] '

This completes the proof. [

S p(v) dv

IA

_llzp(v) dv
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