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case prior opinion may be incorporated infor-
mally, subsequent to the analysis. In any case,
the distribution assigned to 8 and 6 should be
regarded as part of the model.

5. The posterior distribution of w (i.e., the condi-
tional distribution of w given y) may suggest

suitable point and interval predictors. With
the possible exception of the term posterior
distribution, which might be used in referring
to any distribution that is conditional on y,
the use of Bayesian jargon should be avoided.

Comment: The Kalman Filter and BLUP

James C. Spall

1. INTRODUCTION

Professor Robinson has given a wide-ranging ac-
count of best linear unbiased prediction with an
impressive array of examples and applications. In
this discussion, however, I will restrict my atten-
tion to issues regarding the Kalman filter and
BLUP.

For ease of discussion, let us restate the random
effects model in state-space form as given in Robin-
son, Section 6. The unobservable random effects
(state) vector, u,, evolves according to

(1.1a)

where w, is a noise term with mean 0 and covari-
ance matrix W,, and G, is the state transition
matrix. The second equation in the model relates
the state vector to the vector of observables y,:

(1.1b)

where v, is a noise term with mean 0 and covari-
ance matrix V,, and F, is the measurement matrix.
Equations (1.1a,b) can be expressed in the random
effects model form of Robinson by writing

u,=Gu,  +w,u,=0,t=1,2,...,n,

¥ = Fu,+ v,

y=2Z2Zu + e,
where y = (y7,5%,...,y0)T, Z =Dblock diaglF,,
F,,...,F), u=@?, uf,...,u")?, and e = (v7,
vZ,...,vI)T. The covariance matrix for u,G in the
notation of Robinson, is a function of G, and W,
t=1,2,...,n. The structure of this covariance ma-

trix allows for recursive algorithms of the Kalman
filter /smoother form to be used to form BLUP esti-
mates for the components of u. Incidentally, a
slightly confusing point in Robinson, Subsection
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6.4, is that it is a Kalman smoother, not filter, that
produces the BLUP estimate of u based on data y.
What Robinson had in mind, I presume, is the
common problem where one is interested in an
estimate of u, based only on data through time ¢
(not through some later time); the Kalman filter, of
course, is used for this problem. For the remainder
of this discussion, I will assume that the filtering
problem is the one of interest (although virtually
all of the ideas would also apply in the smoothing
problem).

A couple of other points are worth noting here.
First, Sallas and Harville (1988) address a slightly
broader problem than that considered above and by
Robinson: namely the estimation of random and
fixed effects via Kalman filter techniques. Second,
as noted by Robinson, the Kalman filter is not
entirely due to Kalman. The filter equations were
essentially derived by others prior to Kalman, but
it was Kalman who crystallized much of the think-
ing in the area and discovered several key relation-
ships to certain systems-theoretic concepts (see
Spall, 1988, for further discussion of this).

In the next two sections, I will discuss two prob-
lems that were given fairly light treatment in the
Robinson paper, but that are important from the

‘point of view of a practitioner. Section 2 describes

some problems associated with constructing uncer-
tainty bounds for the filter estimation error &, — u,
when the noise terms have an unknown distribu-
tion (as in the general setting of Robinson, equa-
tion 1.1). Section 3 elaborates on the brief discus-
sion of Robinson regarding uncertainty in the model
parameters 6.

2. UNCERTAINTY BOUNDS FOR i, — u, IN
DISTRIBUTION-FREE SETTINGS

Robinson presents the formula for the covariance
matrix of the BLUP estimation error in Section 1 of
his paper, and it is well known that this covariance
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matrix can be computed recursively as part of the
Kalman filter (or smoother, as appropriate). How-
ever, Robinson does not present any discussion as
to how this (or other) information can be used to
construct probability bounds or uncertainty regions
for the estimation error @, — u, in the distribu-
tion-free setting that is the basis for most of the
paper (in the case where w,,v, are normally dis-
tributed for all ¢, the estimation error is also
normally distributed for all ¢, which makes it
relatively straightforward to derive these quanti-
ties). We will outline below an approach to allow
one to construct probability bounds (and hence un-
. certainty regions) in the distribution-free setting.
Before presenting the approach, it is worth not-
ing that unlike many other estimators, the Kalman
filter estimation error is not asymptotically nor-
mally distributed. This follows because central limit
effects do not hold (as a result of the disproportion-
ate weight given to more recent terms in the sum),
as shown below. Thus standard asymptotic proce-
dures for uncertainty region calculation (such as
those that are used in maximum likelihood param-
eter estimation) do not apply. To establish this
asymptotic nonnormality, let us consider models
that are in standard uniformly completely control-
lable and observable (UCC and UCO) form (see,
e.g., Jazwinski 1970, pages 232-234; Spall and
Wall, 1984; or Anderson and Moore 1979, pages
68-82). Recall from the Cramér-Lévy theorem
(e.g., Feller, 1971, pages 525-526), that the sum of
two nondegenerate independent random vectors is
normally distributed only if both of the random
vectors are normally distributed. Straightforward
algebra shows that

21) a,-u,=s, ,+ (K,F,-Nw, + K,v,,

where s, _, is the weighted sum of {w,,v,}7~;! and
K, is the Kalman gain matrix. Since UCC and
UCO imply that oyl <P, =cov(, — u,) < a,I
with 0 < &y < ; < o, we know that | K,F, - I|
= o, and | K,| = a, for some a, >0 and any
matrix norm (Jazwinski, 1970, pages 234-237;
Deyst and Price, 1968; or Deyst, 1973). Thus by
(2.1) the contributions of the w, and v, terms to
@, — u, will be nonnegligible as n = «. Then by
the Cramér-Lévy theorem &, — u, is not asymp-
totically normal. The implications of the above have
been examined in several simulation experiments
with uniformly distributed noise terms. Applica-
tions of the Kolmogorov-Smirnov goodness-of-fit
test (with a null hypothesis that &, — u, ~
N(, P))) yielded p values of less than 10 for a
variety of state-space parameter values, confirming
that it is dangerous to assume that &, — u, is even
approximately normal.

The approach to characterizing the uncertainty
in &, — u, is to bound the probability P(&, — u, €
E,) for rejection regions E, such that the comple-
mentary region E; is symmetric and convex. For
example, E, might represent the points outside a
g-dimensional spheroid, i.e., the values of a,—u,
such that ||Z, — u,|| = ¢ for Euclidean norm | - ||
and some ¢ > 0. Note that one easy bound is that
given by Chebyshev’s inequality, e.g., P(| &, —
u,ll = ¢) < E|a, - u,||?/c® = traceP, /c®. We
seek a bound that has the potential to be more
precise than the Chebyshev bound. Anderson’s in-
equality (Anderson, 1955; Tong, 1980, page 55)
provides a means to this goal.

Let us write

i

n " Up = Anwn + ann

= — (T ™T & _ (,T T\T
where w, = (wy,...,w))’, v, =@],...,v])T, A,

= (Anl’ An2’ crt Ann)’ Bn = (Bnl’ Bn2’ A Bnn)’
and A, , B,, are weighting matrices as derived
from the Kalman filter and the state equation (see
Spall and Wall, 1984, equation 2.2, for B,, and the
filter contribution to A,,). Suppose that either the
{w,} or {v,} process is normally distributed and
that the other sequence has an unknown symmet-
ric, unimodal distribution (the partial assumption
of normality is stronger than required for the tech-
nique, but is made here for ease of discussion). We
now create a surrogate expression that will be used
to form a probability that bounds P(&, — u,eE)).
By the fact that UCO and UCC imply that the
filter is exponentially stable (Jazwinski, 1970, pages
240-242), we have that || A ,|. = O(e~0*~9) and
| B,,|l = O(e™“1*~9) for some cy,c, >0as n— t—
o. To apply Anderson’s theorem, we leave the
weighting matrix sequence associated with the nor-
mally distributed noise process unchanged, but
modify the other sequence so that all of those
weighting matrices have (at least approximately)
magnitude equal to the largest magnitude matrix
in the sequence. For convenience, suppose that {v,}
is the Gaussian sequence. We then create a modi-
fied sequence A}, =a,,A,, where |a,| =1 and
| A%l = O(1). Then A*w, is approximately nor-
mally distributed by the Lindeberg-Feller form
of the central limit theorem and so A*w, + B,v, is
approximately normally distributed with mean 0
and covariance matrix A*block diag| w,,
Wy, ..., W,JA%T + B,block diag[V,, V,,. .., V,IB.
Since | a,,| = 1, an iterative application of Ander-
son’s theorem to each w, term implies

P(&, - u,eE,) =1 - P(A,w, + By, e Ef)
(2.2a) <1- P(A%w, + B,v,€ES)
= P(A%w, + B,3,€E,).
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TABLE 1
Probability values for {| &g — ug| = c}

c Normal " Chebyshev Bound (2.2a)
Py .32 1.0 .56
2,/P, .05 .25 24
3P, .003 11 .08
4./Py ot .06 .02

Similarly if {‘wt} has a normal distribution and {v,}
has an unknown distribution, we have

(2.2b) P(#,- u,cE,) < P(A,w, + B, €cE,),

where the { B},} are chosen in the same manner as
{ A%,} above, and A,w, + B}y, is approximately
normally distributed with mean 0 and the obvious
covariance matrix.

For bounded E; (the usual case) and large n, the
probability bounds in (2.2a,b) may not be satisfac-
tory since they will approach unity due to the fact
that A%w, and B}v, are of order n. However, for
shorter realizations (but long enough to achieve
practical central limit theorem effects) the bounds
may represent an improvement over the Chebyshev
inequality, as illustrated below.

For a scalar u, and y, setting, Table 1 compares
the bound of (2.2a) (using A%, = max,| A,,| V?)
with the probability values resulting from an as-
sumption of normality for all noise terms (so i, —
u, is normal) and from an application of the Cheby-
shev inequality. All state-space parameters (G,, W,,
F,, and V,) were taken to be unity and, as with
Robinson’s first-lactation example, n = 9. As ex-
pected, the probability values for bound (2.2a) lie
between those of the Chebyshev inequality and
those resulting from the normal distribution as-
sumption for @y — u,.

3. ESTIMATION OF MODEL PARAMETERS

As noted by Robinson, the problem of estimating
variance parameters in linear models has received
considerable attention. In the context of the state-
space model (1.1a,b) this “identification” problem
has been treated extensively in the statistics and
(especially) control systems literature, including
several special issues of the IEEE Transactions on
Automatic Control and Automatica (most recently
the January 1990 issue of Automatica).

One of the beauties of the state-space formulation
of the random effects model is that under the as-
sumption of normally distributed noise terms the
Kalman filter can be used for calculating the log-
likelihood function and its derivatives, in addition
to its usual application to state (u,) estimation.
This is achieved by writing the log-likelihood in
terms of the independent ‘“‘innovations” sequence
{y. - F,G,i,_,} ;. This process has been described
in many places (e.g., Goodwin and Payne, 1977,
pages 158-159; Sallas and Harville, 1988). As part
of this process, Kalman filter type recursions yield
the Fisher information matrix, which, when in-
verted, can serve as an approximation to the covari-
ance matrix of the parameter estimation error.

As suggested by Robinson, the uncertainty in
model parameters should be reflected in the uncer-
tainty of the BLUP estimate. This may be viewed
as a problem in nuisance parameter analysis, i.e.,
the estimation of quantities of interest in the pres-
ence of uncertainty in other terms within the model.
Several authors have considered this problem in
the context of state-space models. Ansley and Kohn
(1986) present an expression for the asymptotic
mean square error for the Kalman filter state esti-
mate &, in the presence of uncertain model param-
eters. Spall and Garner (1990) consider how uncer-
tainty in certain model parameters (e.g., uncer-
tainty in a scale factor such as o2 in the model of
(1.1) in Robinson) will affect the precisions for esti-
mates of other nonrandom parameters (e.g., esti-
mates of 0 or the fixed effects 8 in the Robinson
Model). Both the Ansley-Kohn and Spall-Garner
approaches rely on Kalman filter type recursions,
the former on differentiated state estimates and the
latter on a differentiated log-likelihood function and
score vector.

4. CONCLUDING REMARKS
Although largely in the domain of the control

‘and aerospace engineering communities until the

early 1970s, the Kalman filter has now been em-
braced by the statistical community as the method
of choice for a wide range of time series problems.
The Kalman filter/state-space approach has been
successfully applied in countless problems drawn
from perhaps every major branch of the physical
and social sciences. For these reasons, I think that
the Kalman filter approach is, in the sense of
Robinson, “a good thing.”



