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For n = 16, the maxima are K = 4.90 and K, +
K, = 4.51. Thus, there is only a slight loss in infor-
mation in using two independent loci.

To summarize verbally the above mathematics, a
locus with n alleles is maximally informative when
all alleles are equally frequent in the underlying
population. The condition of equally frequent al-
leles is admittedly extreme, but one might approxi-
mate it by the appropriate choice of test loci. Under
the assumption of maximum information, two loci
with Vn alleles each are jointly about as informa-
tive as a single locus with n alleles. If the more
informative single locus suffers from band overlap,
its information content is diminished. One can take
the approach of Berry and try to extract the most
information by dealing with the quantitative mea-
sures directly. By comparison, the FBI’s method of
preset bins loses some information in discretizing
the problem. According to the above mathematical
argument, these bins should be equally probable
rather than equally spaced.

In closing, let me stress that the rapid rate of
innovation in molecular genetics is apt to overcome
the technical problems such as band overlap associ-
ated with the current DNA fingerprint loci. These

Comment

Herman Chernoff

1. INTRODUCTION

Berry sets two objectives in his abstract. One is
to introduce the Bayesian approach to the forensic
use of DNA evidence, and the other is to compare
that approach with that of ‘“match/binning.” The
latter is criticized as giving results that are too
extreme and for failing to distinguish, in principle,
between results that barely fail to fall in the appro-
priate bin and those that are way out. As he points
out, two potential observations that are very close
to one another could lead to drastically different
conclusions. As I understand it, he seems to sug-
gest that the users of this approach may have
recognized this problem in the Castro case and
reacted by an ex post facto widening of the bin

Herman Chernoff is Professor of Statistics, Harvard
University, Science Center, 1 Oxford Street, Cam-
bridge, Massachusetts 02138.

D. A. BERRY

loci are typed by a procedure called Southern blot-
ting. The alternative PCR techniques advocated by
Weber and May (1989) and Budowle, Chakraborty,
Giusti, Eisenberg and Allen (1991) are exquisitely
sensitive to minute amounts of DNA and can avoid
the problem of band overlap. However, PCR sensi-
tivity can be so extreme that contamination by
exogeneous DNA is troublesome. It is not now clear
which technology will prevail. I prefer the PCR
technology since it permits more loci to be typed
from a small crime sample. As I have attempted to
argue, most of the controversies over Hardy- Wein-
berg equilibrium and, particularly, linkage equilib-
rium will dissipate with better defined loci. In any
event, we should welcome the inevitable improve-
ments in technology even if the statistical issues
become less interesting. Justice will be better
served by greater genetic clarity.
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when the observation barely failed to fall in a bin
suggesting guilt.

In my opinion the Bayesian approach is well
suited for this subject and deserves to be developed
as a useful tool. This approach has several difficul-
ties, some of which are addressed by Berry. One of
these is that of educating the members of the legal
system and the potential jurors. Another is the use
of density estimation to determine the frequency
distribution of band weights.

Several issues will be discussed here. The
match /binning approach, as described, doesn’t
make much inferential sense, and if the Bayesian
approach should be compared with something, it
should be with a more or less classical significance
or frequentist Neyman-Pearson (NP) competitor.
While binning does replace a continuous analysis
by a discrete analysis that leads to aggravating
discontinuities, one ought to evaluate the resulting
cost in loss of efficiency before outlawing the prac-
tice of binning. To do so, we shall review briefly
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some of the relevant, although asymptotic, proper-
ties of Kullback-Leibler (KL) information. These
. are relevant also to the argument, made in Lange’s
discussion, for the use of less polymorphic probes in
forensic DNA analysis. Finally we shall comment
on the handling of the problem of density estima-
tion, the choice of the reference population, condi-
tioning and the distinction between matching and

guilt.

2. SIGNIFICANCE APPROACH

One basic flaw in the match /binning approach is
that of multiplying probabilities. Aside from the
possible lack of independence, there is a misleading
implicit interpretation. If we have three indepen-
dent pieces of evidence, with probabilities of 0.1,
0.2 and 0.3, under the hypothesis of innocence, the
probability of the combination is 0.006. That proba-
bility could be reduced to an arbitrarily small num-
ber by adding additional pieces of “evidence” with
no relevance at all to the issue of guilt or inno-
cence. The resulting numbers have no inferential
meaning.

The classical approach is to use significance tests
where one calculates the P values or probability of
achieving evidence, as measured by the value of a
test statistic, as strong or stronger than that ob-
served. It isn’t clear from Berry’s text whether the
Lifecodes probabilities were P values. The num-
bers he used were apparently P values based on
the test statistics corresponding to falling or not
falling in an appropriate bin. However they were
derived, the P values for the separate probes should
not be multiplied. One standard approach to com-
bining P values is to note that if the hypothesis
being tested is true and the P value has a continu-
ous distribution, then that distribution is uniform
and its negative logarithm, which can serve as a
test statistic, has the exponential or I'(1, 1) distri-
bution. One natural approach to combining n P
values is to use, as a test statistic, the sum of these
negative logarithms which has a I'(1, r) distribu-
tion, i.e., the distribution of half of the chi-square
random variable with 2 n degrees of freedom, when
the P values are continuously distributed. The
resulting P value is based on the product of the
individual P values but is larger, depending on r.

That approach is reasonable if the various P
values being combined correspond to comparably
powerful independent tests. As we shall point out
later, if the P values derive from tests with wildly
divergent powers, some adjustment would be in
order. Note that the presence of some experiments
that are not informative would tend to degrade the
apparent significance if the sum of the negative

logarithms is used and the hypothesis is false. An
alternative is tentatively proposed in the next
section.

3. KULLBACK - LEIBLER INFORMATION

The KL information for testing a simple null
hypothesis H,:0 = 0, against a simple alternative
H, :6 = 0, is defined by the equation

f ( X ’ 01) }
K Eoo{ log A(X.60) |
It has several relevant asymptotic properties for
likelihood-ratio tests based on n independent obser-
vations (see Chernoff, 1979). If the type 1 error,
i.e., the probability of rejecting the hypothesis H,,
when it is true, is kept fixed, the other error proba-
bility approaches 0 at the exponential rate in n
given by K. Related to this is the fact that the P
value for testing H;, versus H, will tend to be
roughly of the order of exp(— nK) when H, is true.
This asymptotic result can be extended to indepen-
dent observations with different distributions, cor-
responding to the use of different independent
probes, by applying the additivity of the KL num-
bers for combining different experiments. Thus the
use of KL numbers is of value in determining what
are good probes to use, i.e., in deciding how to
design experiments.

On the other hand, it is important to bear in
mind that KL refers to an asymptotic result and
should be applied with some reservations. For ex-
ample, two experiments with K = oo are not neces-
sarily equivalent, nor are they necessarily better
than one with a finite value of K in the finite
sample situation. If one tests the hypothesis that
an unknown probability p is 0 against the alterna-
tive that it is some specified value p*, the infinite
value in this case reflects the fact that, if p is not
zero, that will be determined with certainty in
‘some finite number of trails when an event finally
takes place. In this case, the power of the test will
obviously depend on the value p*. Furthermore, if
one were confined to only one observation, I might
prefer to test p = 0.2 versus p = 0.8 with finite K
rather than test p = 0 versus p = 0.01 with infi-
nite K. Nevertheless the value of K is a useful
measure for discriminating between experimental
setups, and Lange uses it to argue in favor of the
use of less polymorphic probes. It was introduced
here to provide a quantitative evaluation of the
practice of binning, so that we need not depend on
vague qualitative arguments in an area where
technology is bound to change rapidly the parame-
ters of the discussion. In extreme cases such as the
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one illustrated, a better understanding of the value
of the experiment comes from a study of the proba-
bility distributions of the likelihood-ratio under
both of the relevant hypotheses.

Suppose that the hypothesis H,, states that there
is matching on each of k separate items and the
alternative is that, for each of these, the two vari-
ables being observed are independently selected
from the same reference population. Then some
theoretical considerations, on which I won’t elabo-
rate, suggest the use of the following test statis-
tic based on the individual P values and the
corresponding KL numbers

X KMa\(R)
(X k)"

where @ is the standard normal c.d.f. and K, is the
KL number for the ith item.

Assuming continuity of the distributions of the
individual P values, this test statistic is normally
distributed with the mean 0 and variance one if the
hypothesis is true. My inclination is to stick with
the simpler test suggested previously unless there
is a considerable mismatch in the powers of the
individual tests.

’

4. THE EFFICIENCY OF BINNING

Two types of binning were described. The kind
practiced by the FBI is essentially one similar to a
crude rounding off of the data. There does not seem
much point to it in our context, but it may make
sense as a data compression device if it is part of a
practice being used for other purposes or if there
are some other practical considerations involved,
which are not discussed by Berry. The method used
by Lifecodes is substantially different.

To discuss the efficiency of the various forms of
binning, let us consider two hypotheses. The
matching hypothesis, H,,, typically associated with
guilt, is that two variables X, and X, are noisy
observations on a common random variable, ran-
domly selected from some reference population. The
nonmatching hypothesis H, is that both X; and
X, are independently distributed with the same
marginal distribution as under H,,. Then the KL
information is

fz(Xv Xz)
f(X)F(X3) )’

where f, is the joint density under H,, and f is the
corresponding marginal.

If X, and X, have a bivariate normal distribu-
tion with correlation coefficient p, then K = —0.5
log(1 — p?). If we replace X by X* representing

one of the 2k bins with end points u, p * do,
p+280,...,u+ (k—1)d0,+ o, we achieve val-
ues of K depending on k, 8, and p. By selecting &
so that (k — 1)6 = 3, we can tabulate the corre-
sponding values of K, in Table 1. The use of contin-
uous data is referred to by k = .

In the method used by Lifecodes, the bins are not
applied to X, and X,, but to | X; - X, |, yielding
a 0 or 1 value representing in or out of the bin.
Presumably, Lifecodes planned to use these bins in
an exclusionary way, so that any probe which leads
to an “out” value would determine nonmatching
(innocence) for the whole case. Let us be less abso-
lute about it, and we must be so if we use several
probes with a large relative error in measurement.
Then the result of the bin is a one or zero with the
probability of a zero being p,, or p,, depending on
which hypothesis is correct. Our test criterion may
require more than one ‘“out” value or 1 to be
observed to declare nonmatching or innocence if
many probes are used. Here, we have for a given
probe,

Pum Pum
K =pylog — + (1 — pyy) log .
w log —= (1 - Pu)log —— o

The Lifecodes method is basically a crude bin-
ning method and it is no surprise that the ensuing
loss of efficiency can be substantial. Table 2 pre-
sents the optimal values of § and the resulting KL
numbers, for the various values of the correlation
p, assuming the bivariate normal model, and using
the threshold dox _y,. The loss of efficiency com-
pared to the use of continuous data (k = o in Table
1), is relatively small when the correlation is large.
In contrast, the FBI type of bins degrade relative to

= oo when p is large.

It would be more appropriate to use a model with
a normal noise imposed on the histogram for
D17S79 exhibited in Berry. Note that for that case,
with the model X = Y + Z where Z is the error in
measurement with standard deviation of about
0.0168 and the standard deviation of Y is about
0.34, the value of p is 0.9976. Here the unbinned

TaBLE 1
Kullback- Liebler information for bivariate normal with
correlation p using 2k bins and continuous data (k = )

kNp 000 040 080 090 095 0.99 0.999

0.00 0.04 019 0.29 0.37 0.52 0.64
0.00 0.06 030 045 0.57 0.80 0.98
0.00 007 039 059 0.75 1.04 1.28
0.00 0.08 044 067 087 1.21 1.51
0.00 0.09 050 079 108 1.64 2.10
0.00 0.09 051 083 116 196 3.11

g 5 ukm N
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TaBLE 2
Optimal values of § and KL using bins | X, — X, | < dox,_x,
for the bivariate normal with correlation p

I3 0.40 0.80 0.90 0.95 0.99 0.999
é 1.51 1.65 1.75 1.84 2.02 2.18
KL 0.005 0.14 0.33 0.57 1.26 2.35

KL number is 2.52, which differs little from the
normal model value of 2.67. I was surprised, for I
would have expected a somewhat larger value for
the bumpy distribution.

5. DENSITY ESTIMATION

Because the Bayesian approach does not provide
a simple estimate of the distribution of the data for
the reference population corresponding to one of
the probes, Berry uses a simple kernel estimator,
which tends to smooth the observed distribution.
One excuse for using the smoothing estimator is
the danger of overreacting to an observation that
occurs in a region that is relatively empty because
the density is low there and our sample size is not
infinite. But that treatment does not address the
problem directly. The fact is that the observed
density is the convolution of the ‘“true” density,
which is probably quite discrete and bumpy, with
the distribution of the noise due to the measure-
ment error, and is already smoothed. What is called
for in the density estimation is not a smoother, but
a deconvolution operation that would operate in the
opposite fashion. In fact, the use of a smoother
tends to put the accused at greater risk, because it
is more likely that the specimens will be at loca-
tions of high density, which will be reduced in the
estimation by a smoother. In that case, the evi-
dence will seem stronger for matching than it
should.

The possibility that we are dealing with a loca-
tion that has positive probability but is not repre-
sented in the sample is a real problem. But that
could be faced more directly by the technology of
coverage probability (see Robbins, 1968). According
to that theory, the total population probability allo-
cated to intervals that have no observations can be
estimated by the proportion of observations which
fall into singleton cells, i.e., cells which have only
one observation, because both of these variables
have the same expectation. Thus, in the case of
D2S44, there are 13 singletons out of 295 observa-
tions and hence about 4.5% of the total population
for the (convolved) distribution has yet to be repre-
sented. This gives an estimated upper bound to
how much should be allocated in the equation for
H, in Berry.

The 4.5% seems rather high and conservative.
One can reduce that estimate by using the number
of doubletons, because the sum of the squares of the
probabilities for the underrepresented cells is esti-
mated by twice the number of doubletons divided
by the square of the number of observations. In this
case, there are seven doubletons and the estimate
is 0.00016, which suggests that the largest proba-
bility for an unrepresented cell would not be any
greater than 0.013. Without pursuing the issues of
accuracy and methods of deconvolution further, it
is reasonable to expect that these represent a more
direct attack on the issues than does the ad hoc
smoothing techniques suggested by Berry.

6. MISCELLANEOUS

We conclude with brief mention of three miscella-
neous issues.

Reference Population. The choice of the refer-
ence population raises some puzzling issues. Berry
states that one should use that of the criminal, but
generally the criminal is not known. Usually it
would make sense to use the population to which
the suspect belongs, if the issue is whether the
DNA belongs to the suspect. Using the suspect’s
reference population would tend on the average to
make the evidence seem weaker than if some other
population were used and would lead to conserva-
tive results favoring the suspect. That is only fair
for if the suspect were guilty this is the correct
reference population, but if he were innocent, one
would wish to be as conservative as possible.

In the Ponce case the issue was whether the
blood belonged to the victim, and there the natural
reference population is that of the victim.

The above discussion has assumed implicitly that
there is a natural reference population for each
individual. That is questionable. Should one lump
all Hispanics together, or separate Cubans from
Puerto Ricans and from Argentineans, etc.? If we
do this, we start to lose the sample size necessary to
estimate the distribution of band weights. I would
conjecture that pragmatic answers to this question
might be easier to obtain if probes with few alleles
were used. In any case, this represents a theoreti-
cal issue that is worth exploring.

Guilt versus Matching. Several hypotheses have
to be distinguished in a careful discussion. These
are Guilt, Matching of the DNA, and Matching of
Band Weights for several probes. (For convenience
in discussion, Berry has identified these hypothe-
ses.) Matching of the DNA strands may not imply
guilt. Even if Ponce’s blood were on Castro’s watch,
it would not, by itself, constitute proof positive of
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guilt, although it would be very strong evidence. If
there were identical twins involved, or even sib-
lings, the force of evidence might be reduced.
Matching of band weights for several probes does
not imply that the entire DNA system is the same.
In fact, if only a few probes with few alleles
matched, the evidence could be far from over-
whelming, even in those cases where there is no
error in measurement.

It should be remarked that if Lifecode type bins
are used in a nonexclusionary fashion, apparent
matching on almost all of the highly polymorphic
probes could be strong evidence, even if there were
apparent failure to match on one or two probes.
The strength of the evidence would depend on the

bin sizes and the relative magnitude of the errors of
measurement.

Conditioning. One advantage of Bayesian anal-
ysis over NP analysis is that, in the former, we can
examine the evidence as it arrives. A partial reply
involves the use of conditioning. The force of classi-
cal inference is sometimes strengthened by using
conditioning appropriately. That could be done here,
too. For example, once we had measurements on
Ponce’s blood, we could use those data to help select
what constitute effective probes for the comparison.
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Comment: Uncertainty in DNA Profile

Evidence

D. H. Kaye

Donald Berry’s article on inferring identity from
DNA profiles presents a method for ‘“direct calcula-
tion of the probability that the suspect is guilty”
and ‘“the probability that an alleged father of a
child is the true father.” The method is Bayesian.
Berry computes the posterior odds of guilt as the
product of the prior odds (assessed on the basis of
all the evidence apart from the electrophoretic mea-
surements) and a likelihood ratio for the DNA
results. The specific likelihood ratio (R) that he
skillfully derives for single-locus restriction frag-
ment length polymorphisms accounts for ran-
dom measurement error in electrophoresis and for
sampling error in a laboratory’s data base on the
distribution of fragment lengths in the population.

This comment examines, from the perspective of
a lawyer, two connected issues: the forensic impor-
tance of quantifying measurement and sampling
error and the desirability of combining likelihoods
and priors for jurors or judges. I try to place Berry’s
treatment of these matters in the context of the
emerging case law on DNA profiling, and I specu-
late about the advisability of bringing Bayes to the

D. H. Kaye is Regents Professor, Arizona State Uni-
versity, College of Law, Tempe, Arizona 85287-7906.

bar. Proceeding on the premise that Berry’s mathe-
matics is impeccable, I conclude that if “To bin or
not to bin?” is the question, then Berry has the
answer.

1. LABORATORY MEASUREMENT ERROR

Berry’s analysis handles normally distributed
(and log normal) laboratory errors in measuring
the position of a perceived band, and he notes that
a more complex analysis could handle other contin-
uous error distributions. Yet, much of the criticism
of forensic DNA work emphasizes other threats,
such as contamination and degradation of samples.
Thompson and Ford (1991, page 138), for example,
report that missing bands, extra bands and system-
atically shifted bands are “quite common in the
forensic casework.”

These types of experimental error have received
considerable judicial attention. Virtually all courts
in the United States to face the issue have held
that DNA findings of identity are potentially

admissible, but the degree of experimental rigor
actually required for admission varies with the
understanding of the court and the persuasiveness
of the experts. People v. Castro (1989) is remark-
able for the extent of the judicial inquiry into



