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The Impact of Sociological Methodology
on Statistical Methodology

Clifford C. Clogg

Abstract. Developments in sociological methodology and in quantitative
sociology have always been closely related to developments in statistical
theory, methodology and computation. The same statement applies if

- “methodology for social research” and “quantitative social research” re-

place the more specific terms in this statement. Statistical methodology,
including especially the battery of methods used to estimate and evaluate
statistical models, has had a tremendous effect on social research in the
post-war period, particularly in the United States. What is less well
appreciated is the influence of sociological methodology, or methodology
for social research more generally, on modern statistics. I give a brief
sketch of the linkages between methodology in social research and meth-

. odology in statistics. The focus is on areas where developments in

sociological methodology, or at least the scientific contexts of social
research, have brought forth new methods of general significance to the
practice of statistics, in both theoretical and “applied” areas. These
remarks should be taken as the impressions of someone who has tried
to straddle the fence between statistics and social research throughout
his career, not as a careful history of statistical ideas.

Key words and phrases: Social survey, latent variable, log-linear model,
latent structure, latent trait, covariance structure, event history data,

causal inference.

The science of statistics is essentially a branch of
Applied Mathematics, and may be regarded as mathe-
matics applied to observational data. (p. 1)

Statistical methods are essential to social studies,
and it is principally by the aid of such methods that
these studies may be raised to the rank of sciences. This
particular dependence of social studies upon statistical
methods has led to the unfortunate misapprehension

that statistics is to be regarded as a branch of econom-

ics, whereas in truth methods adequate to the treat-
ment of economic data, in so far as these exist, have
mostly been developed in biology and the other sci-
ences. (p. 2)

Sir Ronald A. Fisher, Statistical Methods
for Research Workers (1970)
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1. INTRODUCTION

I begin by quoting from Fisher’s influential text
on statistical methodology because these particular
passages represent points of view that are still quite
prevalent today, in spite of the fact that they first
appeared in the earlier editions of the text written in
the 1920s. I do not think any observer of trends in
sociology or social research over the last 40 years
could deny the validity of Fisher’s view that statistical
methods are important for “social studies” (i.e., the
social sciences, including economics in Fisher’s mind).
I hasten to add that among quantitative sociologists
there is little disagreement about the role of statistical
methodology as a language for scientific social re-
search. [For dissenting views, see Duncan and Sten-
beck (1988) and Freeman (1991).] It seems to me, too,
that sociology and other branches of social research
have indeed been raised to the status of “sciences,”
although I realize that the extent to which this is true
is debated just about as much now as it was in Fisher’s
day.

Fisher’s view of the process by which statistical
methods have developed is the controversial point.
Fisher believed that statistical methodology, which is
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“the mathematics of observational data,” arose primar-
ily in response to problems in the natural sciences,
biology and genetics in particular. This was a natural
position for him to hold simply because his own career
was devoted to solving inferential problems that arose
in the analysis of data from biology or genetics, includ-
ing data derived from agricultural experimentation.
The role of the social sciences, even of economics, is
downplayed. The developments that we now recognize
as the foundation of the modern discipline of statistics,
Fisher would have us believe, arose in the scientific
contexts of biology and other natural sciences and were
brought forth by statisticians with close ties to those
areas.

In what follows I shall refer to statistical methodol-
ogy rather than statistics, partly because I believe that
what Fisher defined as statistics is what we would
today call statistical methodology. By statistical meth-
odology I mean procedures that actually find some use
in the analysis of data, of some kind or another, or
. have direct bearing on procedures that are used for this

purpose. A time lag is allowed. Statistical methodology
need not be used right away to qualify as such, but if
it does not find some use or change the way that
inferences are obtained from some real data set, in a
decade or so after it first appears, then we are probably
not talking about statistical methodology but rather
statistical theory, or statistical types of mathematics
(not the applied kind), or something else altogether. A
great many of the papers or results given in contempo-
rary statistics journals do not actually have much
effect on the analysis of data, besides sharpening the
wits of some of those who do that job on occasion.
Serious statistical methodology almost always has
some practical purpose, which is found sooner as op-
posed to later, and the standard of use or usefulness
ought to be taken seriously in our field. (I have tried
to apply that standard as an editor, for example.)

Recent histories by Stigler (1986) and Duncan (1984)
largely invalidate Fisher’s views on the origin of statis-
tical ideas. These scholars demonstrated that we owe
a great deal to social statisticians in the 19th century
as well as to those who came from the biological camp.
Here are a few examples drawn from these histories:

¢ Quetelet gave us the concept of the “average man,”
an important first step in separating fixed from
random (or individualistic) determinants of behav-
ior. He thus gave the framework now used for
nearly all behavioral models in modern social sci-
ence.

o Lexis provided statistical foundations for the
study of survivorship and laid the basis for demo-
graphic models of “event histories” that are so
ubiquitous in economics and sociology today. John
Graunt’s invention of the life table much earlier

was also very important, and demographers at
least think of Graunt as a founder of demography,
a social science that ought not be overlooked.

o Fechner and the early psychophysicists evidently
laid some of the groundwork for the modern experi-
mental method; that method was not invented out
of nothing by Fisher and his co-workers.

e Galton and Karl Pearson, scholars whom Fisher
would undoubtedly place in the biological camp,
contributed in fundamental ways to the study of
social as well as physical inheritance. The statisti-
cal imagery as well as the regression-type models
that they employed are strikingly similar to those
employed in modern studies of status attainment
and the intergenerational transmission of in-
equality.

o Edgeworth, an economist, contributed in funda-
mental ways to the statistical analysis of time
series and to the development of modern systems
of social and economic indicators. In addition,
Edgeworth produced many analytical tools, such
as so-called Edgeworth expansions, that are still
widely used in mathematical statistics for ap-
proximation work. And Edgeworth, according to
Stigler, laid the foundations for regression and
correlation as applied to social science data, includ-
ing the groundwork for what we now commonly
call “causal” models (or structural equation models)
for observational data.

* Yule clearly had social science data in mind, and
used examples of social data, when he developed
his theories of association. Yule understood the
difference between marginal and partial associa-
tion, and collapsibility of variables in contingency
tables, nearly 90 years ago. Simpson’s paradox
(Simpson, 1951), which says that marginal and
partial association can differ even in direction,
should be called Yule’s paradox, for example. It
is interesting to note that Yule’s framework for
studying association between categorical variables
leads naturally to the log-linear model developed
during the 1960s and 1970s. And Yule was one
of the forerunners of the kind of social science
methodology that we now call evaluation research
or policy analysis; his analysis of the probable
effects of the Poor Laws in England represents a
foray into that area, for example, using multiple
regression and partial correlation for causal infer-
ence.

How Fisher could have ignored or been oblivious to
the social science roots of modern statistics that were
so clearly formed prior to 1915 is an open question
that I leave for others to resolve. But throughout most
of this century Fisher’s view has become the dominant
view, in my judgment at least. I believe that most
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mathematical statisticians, and even most statistical
or quantitative social scientists, have internalized this
viewpoint to a considerable extent. The main purpose
of this essay is to try to change this perception of the
history of ideas in statistics. My main point is not
purely academic, although it certainly has implications
for the organization of statistics as a field or as depart-
ments within the academic setting. The debate about
statistics as a mathematical discipline versus statistics
as a system of methods for scientific analysis (in social,
physical or other sciences) still exists. (The introduc-
tory statements from Fisher appear to reflect some
aspects of both views, so the debate is hardly new.)
How this debate is or has been resolved will shape
statistics departments and statistical science for along
time to come.

Fisher's view was that statistical methodology of
general importance arose in the hard sciences and was
developed primarily by those, like himself, who had
close ties to them. [This viewpoint is also consistent
with my reading of Box’s (1978) biography of Fisher.
I do not think my statement of Fisher’s view on this
matter is controversial.] Statistical methods in the
social sciences (Fisher calls these “social studies”)
largely copy those used in the natural sciences, without
important amendments or modifications. Fisher’s point
seems to be that the main statistical methods have
developed in response to scientific problems in the
natural sciences, and that with time they trickle down
to the social sciences. I will take this as Fisher’s view,
but it requires some modification to reflect the mathe-
matization of statistics as a discipline since the Second
World War. A revision that I believe might be consis-
tent with Fisher’s view were he alive today, and which
I believe is consistent with views widely held among
mathematical statisticians at the present time, is that
generally important statistical methods in our era have
arisen from two sources. The first is the pure mathe-
matical source: good methodology arises from devel-
opments in highly mathematized areas of modern
statistics, from the theorems, proofs and approxima-
tions reported at a bewildering rate, for example, in
The Annals of Statistics. The second source is the
hard-science source: good methodology also arises from
solving problems in the natural sciences, biology and
the experimental sciences in particular, and it emanates
from the theoretical and methodological work of those
statisticians with close ties to the natural sciences.

I shall attempt another revision of Fisher’s views on
the subject of the history of ideas, by giving what I
think are convincing examples where social science
methodology and/or the context of social research have
played a major role in shaping modern statistical meth-
odology. Because I know more about sociology or socio-
logical methodology than I know about other social
science areas, I necessarily concentrate on the impact

of sociological methodology on modern statistical
methodology. I believe it would be possible, however,
to make many of the same claims, with as much or
possibly more supporting evidence, if arguments from
the vantage point of psychometrics or of econometrics
were treated in an analogous fashion. I simply do not
know enough about those areas to include them very
much here, although I think it would be very interest-
ing to hear from social statisticians who represent
these other areas.

2. STATISTICAL MODELS

What statistical methodology refers to in most areas
today is virtually synonymous with statistical model-
ing. A statistical model can be thought of as an equa-
tion, or set of equations, that (a) links “inputs” to
“outputs” (factors to responses, exogenous variables to
endogenous variables, independent variables to depen-
dent variables, etc.), (b) have both fixed and stochastic
components, (c) include either a linear or a nonlinear
decomposition between the two types of components,
and (d) purport to explain, summarize or predict levels
of or variability in the “outputs.” I consider two general
classes of statistical models that are very important
in contemporary social research: the log-linear model
and the event-history model.

The Log-Linear Model

The log-linear model for discrete variables (or dis-
crete dependent variables) has had a major impact
on sociological methodology since 1970. Many articles
developing or extending the log-linear model for “appli-
cations” in social research have appeared regularly in
sociology journals such as the American Journal of
Sociology, the American Sociological Review and So-
ciological Methodology, to mention just a few. Many
of the key articles from these sociological or social
science outlets are referenced in the main statistical
monographs that summarize the log-linear model, in-
cluding Bishop, Fienberg and Holland (1975) and
Agresti (1990). One of the most popular textbooks
in this area (Fienberg, 1980) utilizes special methods
actually developed in the social science context that
constitute nearly one-half of the work. (These include
path analysis, methods for assessing collapsibility of
categories, scaling models and methods for dealing with
ordinal variables, among others.) The log-linear model
has become a standard component of the methodologi-
cal arsenal of modern statistics, and the specialty in
statistics referred to as “categorical data analysis” has
become particularly prominent in the last decade or so.
Most statisticians today find it necessary to know
something about log-linear models, logistic regression,
odds ratios, partitioning chi-squared statistics in con-
tingency tables, and so on. Every major software pack-
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age for statistical analysis now includes modules or
procedures for log-linear analysis. Such models and
methods, including logistic regression, probably form
the most-used battery of statistical techniques in con-
temporary applied statistics after the ordinary linear
model. Practically every issue of both theoretical and
applied journals in statistics features some new devel-
opment in this general area. In short, the log-linear
model is an integral part of both statistics and the
methodology of social research. This model has cer-
tainly become a tool “essential to social studies,” and
it is fitting to begin with a discussion of it.

Where did the log-linear model originate? Who was
responsible for developing it? What scientific contexts
led to the major innovations in the methodology of
categorical data analysis? A brief summary of the
development of the log-linear model, at least as I under-
stand it, is as follows:

1. Pearson (1900) develops the chi-squared statistic
for testing goodness of fit and later (Pearson, 1904)
applies it to test independence or homogeneity in two-
way contingency tables. [Fisher (1922) corrects Pear-
son’s mistake on degrees of freedom.] The independence
model plays the role of the baseline or “null” model in
the log-linear model for contingency tables.

2. Yule (1900), dissatisfied with the implicit continu-
ity (and normality) assumptions in Pearson’s related
work on tetrachoric and polychoric correlations for
contingency tables, develops the odds ratio, or cross-
ratio, as well as several measures of association based
on it. The odds ratio is the fundamental parameter in
the log-linear model.

3. Fisher, in many papers, develops the seemingly
unrelated technique of analysis-of-variance (AOV). The
AOV model, including the famous AOV table of sums
of squares, plays a special role in the log-linear model
for contingency tables; logarithms of expected cell fre-
quencies rather than cell means of continuous variables
are decomposed using the same framework. Fisher also
made extensive use of logits and cross-product ratios,
and in Fisher (1935) gave maximum likelihood proce-
dures for quantal response models.

4. Bartlett (1935) presents the model of no three-
factor interaction for the three-way contingency table,
sometimes called the model of constant partial associa-
tion. Iterative procedures would be required, which
meant that practical work with the general model as
well as serious theoretical work would have to wait for
the computer age.

5. Deming and Stephan (1940) present the famous
algorithm that bore their name for many years, as a
method of raking sampled frequencies in a contin-
gency table from a survey to “known” marginals from
a census. The generalization came to be called the
iterative-proportional-fitting (IPF) method, and this al-

gorithm, or algorithms closely related to it (see, e.g.,
Goodman, 1968, 1970; Fienberg, 1970) were widely
used in the early stages of the development of the
general log-linear model.

6. Birch (1963) reconsiders the main log-linear models
for the three-way table, develops maximum likelihood
theory (based on properties of exponential families),
for “unsaturated” or restricted models. Birch’s notation
and theorems were utilized subsequently by others;
see, for example, Mantel (1966).

7. Goodman (e.g., Goodman, 1964) gave procedures
for simultaneous testing of interactions (logarithms of
cross-product ratios) in three-way tables, which was
suited for at least some inferences that would be made
with the saturated or unrestricted model.

8. Goodman (1968, 1969, 1970) Mosteller (1968),
Fienberg (1970), Bishop (1969), Bock (1970) and Ha-
berman (1970, 1974a) largely completed the task. Also
see Grizzle, Starmer and Koch (1969). These sources
provide the complete taxonomy of models, the algo-
rithms, examples, partitioning strategies, software,
sampling theory, relation to logit models, extension to
incomplete tables, and so on. During the period from
1963 to 1972 or so, the log-linear model as we know it
today had come into being.

Since 1970 or so, the methodology of log-linear mod-
els has been shaped a great deal by social scientists in
general and by sociologists in particular. I think that
even a casual inspection of Bishop, Fienberg and Hol-
land (1975) or Agresti (1990), especially the “chapter
notes” in the latter, indicate this dramatically. To be
sure, logistic regression and other log-linear models
became popular in the medical literature and other
areas during the same period. But were there social
science roots in the log-linear model during the forma-
tive stages covered by the above summary of main
developments?

The log-linear model originated in response to prob-
lems in data analysis encountered in the social sciences

‘and in other areas, including biomedical areas. Pearson,

Fisher and Birch are not noted for their contributions
to the methodology of social research; however, every
other scholar listed in the above account had (or has)
close ties to sociology or social research. Yule was
concerned with summarizing association between cate-
gorical variables that were as often as not social or
sociological variables. Deming devised his famous algo-
rithm with Stephan (a sociologist who spent most of
his career at Princeton) in response to data adjustment
problems in social surveys. Goodman, Mosteller, Fien-
berg and Haberman —the modern pioneers of categori-
cal data analysis—are perhaps the best examples of
statisticians with close ties to the social sciences. Fish-
er’s statement clearly requires revision with respect to
the development of the log-linear model. The methodol-
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ogy of log-linear analysis, in truth, has been developed
at least as much in the social science context, by
statisticians and sociological methodologists, as in the
biological or biostatistical context.

Surely one of the main factors that has driven social
research since the Second World War is the social
survey. Of course, the federal government relied in-
creasingly on sample surveys throughout this period
(not all of which could be called social surveys), and
this was not unrelated to the growth of surveys in
empirical social research. Survey methods and sam-
pling techniques as developed in relation to census
data are perhaps equally important. The growth of
educational testing as an industry (ability or achieve-
ment tests are at least similar to social surveys) during
this era is also an important context to consider. Sur-
vey measures of public opinion, such as election polls
and marketing surveys, differ in purpose but not in
execution. The social survey became the main source
of data in sociology, at least in the parts of it that
became statistical and/or quantitative in orientation.
(Samples drawn from census data should be included
as “social surveys.”)

Social surveys typically provide categorical measure-
ments (nominal, discrete-ordinal, discrete-quantitative)
of the key “dependent” variables of most interest in
social research. Categorical rather than continuous
measures are the norm rather than the exception in the
social survey. Social surveys usually provide multiple
measurements of the key variables, such as sets of
items measuring political ideology or poverty, and so
special methods for combining multiple measurements
were placed high on the agenda. The typical social
survey, including both attitudinal surveys and the
more “objective” surveys carried out by or for the
federal government, now collects hundreds of categori-
cal measurements on large “representative” samples
(with n’s anywhere from 1000 to 200,000). One of the
major tasks faced in post-war social research was to
develop methodology for analyzing multivariate cate-
gorical data of this sort.

The context of the social survey is very different
from the scientific areas that Fisher knew best. Indeed,
the entire context of social research was and is different
from the context of field plots and agricultural experi-
mentation. Controlled experiments isolating just a few
“treatment” variables are the norm in the latter areas.
Random assignment of treatments, to randomly cho-
sen subjects, has seldom been carried out in social re-
search, at least not in areas of major concern to the
disciplines involved. Instead of continuous response
variables (in experiments), surveys give specified re-
sponse variables that are most often categorical. (Fisher,
of course, often encountered categorical variables in
genetics, but categorical variables are ubiquitous in
social surveys, not quite so ubiquitous in biology or

genetics.) Instead of a few specified factors of special
interest, surveys give scores of specified predictor vari-
ables (true covariates) that researchers treat as factors.
Instead of a clear-cut causal inference and an obvious
partitioning of sources of variability, the survey gives
ambiguous causal inferences; many believe that the
ambiguity can be minimized by using panel data, other
forms of longitudinal data collected in the survey for-
mat, or even retrospective information collected in a
conventional cross-sectional survey. Such data give a
less obvious partitioning of variability into sources.
[The difference between a social survey and the classi-
cal experiment is covered in many sources. The one I
like best is Kish (1987).]

Sociologists in general, and many of the statisticians
who worked with sociologists or social researchers in
this century, were uneasy about normality or continu-
ity assumptions that were implicit with the standard
methods. Yule’s theories on association (odds ratios)
were considered seriously, and in my judgment they
won out over Pearson'’s tradition of correlation analysis
and normal-theory models. The dominant sociological
methodologist prior to the 1960s, Paul Lazarsfeld, de-
veloped algebraic decompositions for systems of di-
chotomous variables that were viewed, at the time, as
alternatives to the normal-theory regression approach
(Lazarsfeld, 1961). Leo Goodman can be credited with
the generalization (Goodman, 1972), which was based
on the log-linear model. Prior to the log-linear model,
the main method of dealing with categorical variables
was the method of measures of association as put forth
in a series of papers by Goodman and Kruskal (see
Goodman and Kruskal, 1954, 1979). The Goodman-
Kruskal measures departed from Pearson’s correlation
approach also, but they dealt mostly with two-variable
relationships and were difficult to generalize to truly
multivariate settings. See Haberman (1982) for proce-
dures that tie together (asymmetric) measures of asso-
ciation, including the Goodman-Kruskal tau, and logis-
tic regression (or log-linear models).

In the early stages, the log-linear model was devel-
oped primarily by statisticians with close ties to the
social sciences (Yule, Goodman, Mosteller, Haberman,
Fienberg). To be sure, there were important linkages
with biological or biomedical areas, so Fisher’s view
would hold at least partly with respect to this statisti-
cal innovation. [See Imrey, Koch, and Stokes (1981)
for a rather different history of some aspects of the
log-linear model.] It is probably fair to say that socio-
logical methodologists who were not statisticians, as
most readers of this journal would define the latter,
had little to do with the main technical developments
in the area. But since 1975 or so, several sociological
methodologists have made major contributions to the
methodology. For example, Duncan (1979) proposed
some models for the analysis of cross-classified ordinal
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variables which were acknowledged and generalized in
Goodman’s (1979) fundamental paper on the subject.
The importance of association models for ordinal data,
especially as contrasted with the method of correspon-
dence analysis, has been substantial, both in social
science areas and in statistics (see Goodman, 1991).
Special models for mobility tables (or for other tables
where there is a one-to-one correspondence between
row categories and column categories), graph-theoretic
models for path analysis, and special models for the
analysis of panel data were also put forth in social
research. (The reader can refer to contributions in So-
ciological Methodology since the mid-1970s to corrobo-
rate these claims.) These contributions are noted in
several of the most popular monographs on the log-
linear model (Fienberg, 1980; Agresti, 1984, 1990; An-
dersen, 1980), so it is not necessary to elaborate.

Perhaps one of the best examples of the social science
role in the development of this area of methodology is
the quasi-log-linear model. The familiar quasi-indepen-
dence model for a two-way contingency table is a spe-
cial case. The quasi-log-linear model also uses an AOV
decomposition of log-frequencies, but the decomposi-
tion is posited to hold only for a subset of the cells
in the table. The subset excluded might consist of
structural zeroes or cells that have frequencies that are
particularly large (or particularly small) for various
reasons. I have given a short history of this model in
Clogg (1986b). The analysis of incomplete contingency
tables arose in earlier work by Pearson, who gave
incorrect results. Prior to 1960, valid general methods
for analyzing such contingency tables were simply un-
available. In a series of papers culminating in the
1968 Fisher Memorial Lecture (Goodman, 1968), valid
methods along with algorithms that are very similar
to the algorithms now used for log-linear analysis were
developed. The main empirical context for this branch
of the log-linear method was the analysis of social
mobility, with the standard (sociological) occupational
mobility table serving as the primary example to which
these models were applied. Another very important
special case is the quasi-symmetry model generally
associated with Caussinus (1965).

This brief and perhaps idiosyncratic account of the
log-linear model should prove three points:

1. A major component of modern statistical method-
ology, the log-linear model, has roots in the context of
social research, in the earlier as well as the later years
of this century.

2. Statisticians with close ties to the social sciences
have played a major role, perhaps the most important
role, in its development.

3. The flexible methodology that is now associated
with the log-linear model owes a great deal to the
scientific or inferential problems encountered in social

research, especially in the stimulation created by the
need to analyze social surveys, which are ubiquitous
in social science.

The Event-History Model

The term “event-history data” was coined by Nancy
Tuma, a former editor of Sociological Methodology
(see, e.g., Tuma, Hannan and Groeneveld, 1979). A
general class of models for these data can be called the
event-history model, and the most complete account
of it is Tuma and Hannan (1984), one of the most
ambitious methodological monographs in sociology
since Coleman (1964). In reviewing this work and the
status of the model in social research a few years ago,
I emphasized the degree to which this general model
borrowed from the methodology of survival analysis
in statistics and biostatistics (Clogg, 1986a). Poisson,
Weibull, Gompertz, and other parametric models of
“time dependence,” along with partially-parametric
models associated with Cox regression (proportional
hazards), are certainly used extensively in the analysis
of event histories. In this respect, it is undoubtedly
true that the context of biology (or biostatistics) and
the work of statisticians in these areas has had great
effect on what we now call the event-history model.
Fisher’s view would seem to be appropriate with re-
spect to this general model in some sense at least, but
in my judgment this is an incomplete picture.

There are many aspects of event-history models, as
these are presently defined in sociology and economics,
that owe much to the contexts of social and economic
research. The special features of the general model owe
a great deal to statisticians with close ties to the social
sciences. In biostatistics, the goal is usually to model
the time until a single nonrepeatable event (such as
death) occurs. In contrast, when social researchers
speak of event histories they usually mean multiple
types of events (e.g., several labor force states, not just
dead or alive) followed through time, with one or more

.of the events repeatable. Event-history data gives the

type of event experienced along with the time that it
occurred over the course of the observation period. In
contrast, in biostatistics until very recently the focus,
at least in applied or methodological work, was on the
analysis of the time until a single (nonrepeatable) event
takes place. (Of course, we can define the first occur-
rence of an event as a nonrepeatable event, the second
occurrence as the first occurrence after the first event,
and so on, but this type of reduction is fairly restric-
tive.)

In modern event-history analysis in the social sci-
ences, inferences are sought about the types of transi-
tions, the dependence of the transition rates on time
and on covariates, and about the influence of prior
events or durations in previously occupied states. The
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general event-history model in sociology or economics
(Tuma and Hannan, 1984; Heckman and Walker, 1987)
is related to the parametric or partially parametric
survival models in biostatistics in the sense that the
latter are special cases of the former. Social statisti-
cians such as Tuma, Heckman, Hoem, Burt Singer and
James Coleman have played a major role in developing
this general model, at least as a branch of statistical
methodology. Coleman’s (1964) treatise on mathemati-
cal sociology, where stochastic models of various kinds
were put forth, was an important impetus to this area
in the social sciences, for example. Special computer
programs associated with Tuma (RATE) and Heckman
(CTM) are much more general than would have been
necessary for most analyses in biomedical areas, and
the portfolio of special models in the latter are espe-
cially imaginative. In my judgment, the event-history
model would not have developed as it has without
the social science context (the growing importance of
event-history data) or without the contributions of
social statisticians and econometricians.

3. LATENT VARIABLES

It is impossible to appreciate modern quantitative
sociology without coming to grips with the concept of
the latent variable. In its most elementary form, a
latent variable is simply a variable that cannot be
measured directly. Stated this way, latent variables
abound in statistics: we do not “see” parameters or
even distributions. But the latent-variable concept has
a more specific meaning in the social sciences. Instead
of observing the variable we would like to have (Y*),
we instead observe or measure a contaminated form of
the variable, say Y = Y* + ¢. Usually we try to ob-
serve or measure multiple Y’s as reflections of one or
more Y¥s. Measurement error of a particular kind —
random measurement error—can be tolerated for the
dependent variables in linear models; ¢ becomes just
another factor that increases the error variance. This
creates some problems (loss of precision, loss of power,
etc.), but we think we know how to solve those prob-
lems (e.g., take a larger sample). But measurement
errors in predictor variables, even if they are random,
have perverse consequences, and these are noted in
statistical, psychometric and econometric literature
(and lately in biostatistical literature as well). Measure-
ment error, and hence the idea of a latent variable,
has been part of statistics for decades. See Madansky
(1959) for an early survey including coverage of stan-
dard psychometric methods of correcting correlations
for attenuation. See Fuller’s (1987) treatise for a more
complete survey, many new results, and a definitive
treatment of measurement error as a statistical prob-
lem. (These sources mostly deal with continuous mea-
surements and measurement-error models suited for

them. Other sources ought to be consulted for the
analysis of measurement error in discrete measure-
ments; some of this is covered briefly below.)

In technical or mathematical statistics, measure-
ment-error models have been developed largely without
recourse to the latent-variable concept. For example,
in Fuller’s (1987) treatise, which I admire greatly, the
term occurs just once, on page 2: “the unobserved
variable ... is called a latent variable in some areas
of application.” The common social science terms-—
latent-structure model, latent-class model and latent
factor —appear just once each (on pp. 60, 272 and 273,
respectively). In some other quarters of statistics, how-
ever, latent-variable concepts figure more prominently.
Dillon and Goldstein (1984), for example, present the
tools of multivariate analysis largely from a social
science point of view, including summaries of latent-
variable models that are widely used in the social
sciences. Dillon and Goldstein cover factor analysis,
including classical methods that are based on methods
of rotation and modern methods that rely on other
types of restrictions that are more natural to impose
in social research, latent structure analysis, and covari-
ance structure models—all social science products-—
along with the more traditional methods such as mul-
tivariate AOV, principal components, discriminant
analysis, etc. The Dillon-Goldstein text has been re-
ceived well as a modern text on statistical methodology
[see the review by Schervish (1987)].

Just as there are discrete and continuous observable
variables, latent variables can be discrete or continu-
ous. Models for discrete latent variables in sociology
and other social science areas are commonly called
latent class models (LCM’s). Models for continuous
latent variables in psychology, sociology, educational
testing and other areas have various names, such as
factor models, latent trait models or covariance struc-
ture models. The general term for all such models, in
the social sciences at least, is latent structure analysis.
That term was coined by the eminent sociological meth-
odologist, Paul Lazarsfeld (see Lazarsfeld and Henry,
1968). Models for both kinds of latent variables were
developed mostly in the social sciences, and they have
achieved considerable stature as general-purpose sta-
tistical models. Fuller's book demonstrates that, al-
though the terminology of latent variables is used
sparingly. Schervish (1987) makes the point exceed-
ingly well when he contrasts a technical contribution
(Anderson, 1984) and the more applied contribution
(Dillon and Goldstein, 1984) developed to a consider-
able extent with social research in mind.

The primary reason for the prominence of latent-
variable models in the social sciences is that we do not
know how to measure the “key variables” of theoretical
or substantive interest very well. The point is made
best in the area of educational testing: no one would
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take seriously the results of a test with just one item
or problem, and in this area we usually think we can
measure better by including more rather than fewer
items or problems on an ability test. In the social
sciences we typically obtain multiple measurements (or
multiple indicators) of the variables that we would
really like to study. The existence of multiple measure-
ments of both Y’s and X’s, I have argued, is one of the
main distinctive features of statistical analysis in social
research (see Clogg and Dajani, 1991). Multiple mea-
surements and the uncertainty associated with them
are taken into account in practice mostly by formulat-
ing models for latent variables. It is usually the case
that a “true” measurement or benchmark is unavail-
able, whereas in biomedical work we can sometimes
calibrate fallible measurements against infallible ones.
(An example might be choice of tests for screening
blood sera for HIV+ where the “true” diagnosis might
be known for a small sample.) I consider two important
classes of such models next.

" The Latent Class Model

The latent-class model arises in the following way.
Suppose that we have a set of categorical measures
(say, Y3, ..., Yz) of some “true” variable (say, Y*). The
true variable might be “attitude” toward the death
penalty; the available measures might be dichotomous
(yes or no) items such as “Should capital punishment
be used for persons guilty of (crime x) under (given
circumstances)?” If we suppose that the true variable
is itself discrete, with two or more levels or “latent
classes,” we obtain the LCM. (The latent classes might
be thought of as unordered or nominal, ordered from
low to high, or even as discrete-quantitative catego-
ries.) The basic idea is to infer the distribution of
the latent variable and its relation to the observed
variables from the observed information (the joint dis-
tribution of the observed variables). [The restriction to
a discrete Y* even in cases where it is more natural to
think of a continuous Y* is not as restrictive as it might
first appear. See Lindsay, Clogg and Grego (1991).] In
modern statistics, the same model is called a finite
mixture model. The latent classes in the LCM represent
the unobservable components or groups in the mixture,
and when the observed variables are categorical, it is
most natural to think of the observed joint distribution
of the Y/s as a mixture of multinomials. This is an
alternative way to define the LCM. It will be appreci-
ated that some restrictions have to be imposed in order
to identify the parameters, and it is customary to
assume that the observed Y’s are independent condi-
tional on the level of Y*, which is the so-called axiom
of local independence (Lazarsfeld and Henry, 1968).
Other assumptions are possible.

LCM’s (or finite mixture models) are currently quite
popular in statistics, both theoretical and applied. The

treatise by Titterington, Smith, and Makov (1985),
as well as several other recent monographs, can be
consulted for verification of this claim. LCM’s are also
quite popular in social research, particularly in sociol-
ogy; see McCutcheon (1987). Where did this model
originate? Who was responsible for developing it?
What scientific contexts provided the basis for its
development?

A brief and probably idiosyncratic summary of the
development of the LCM is as follows:

1. Lazarsfeld (1950) invents or discovers the LCM
as a means to summarize multiple measurements that
arose in social-psychological studies, using survey data
obtained from military personnel, conducted during
the Second World War. The basic terminology of
LCM'’s was already available in these sources, although
the statistical foundations of the method (mixture of
multinomials) was not made clear.

2. T. W. Anderson, Albert Madansky, Neil Henry
and others produce some crude methods of estimation,
the most important of which was the so-called determi-
nantal method. This statistical methodology, including
maximum likelihood procedures for certain models, was
summarized in Lazarsfeld and Henry (1968), the funda-
mental treatise on the LCM. [One of the most important
recent monographs on the subject is Formann (1984);
Formann is a psychometrician. I hasten to add that
special cases were considered in genetics; see references
in Haberman (1979).]

3. The LCM is generalized, and other latent struc-
ture models codified, in Lazarsfeld and Henry (1968).
The LCM is presented as a statistical model that opera-
tionalizes some of the concepts in theoretical sociology
associated with Robert Merton, one of the leading
social theorists in the post-war period.

4. Goodman (1974a, b) gives a general algorithm for
maximum likelihood estimation, for both restricted and
unrestricted LCM’s, relates the LCM to methods for
studying turnover in panel studies, gives methods for
studying identifiability, and relates LCM’s to log-linear
models. The algorithm Goodman proposed in 1974 was
equivalent to the EM algorithm presented 3 years later
by Dempster, Laird and Rubin (1977).

5. Haberman (1974, 1977) presents the LCM more
formally, studying the likelihood equations and the
likelihood surface in detail. Many generalizations ap-
pear subsequently [see, e.g., Clogg and Goodman (1984)
for multiple-group versions of the basic model].

6. Clogg (1977) produces the MLLSA (maximum
likelihood latent structure analysis) computer program
based on Goodman (1974b). (The importance of soft-
ware should not be overlooked.) Much applied work
and several later programs were based on MLLSA,
the EM algorithm or both. [McCutcheon (1987) is an
introduction to MLLSA, for example.]
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Since the mid-1970s there has been a rebirth of inter-
est in the LCM. In social science areas, most of this
work follows the Lazarsfeld-Goodman tradition. A sep-
arate tradition has developed in statistics. For exam-
ple, in Titterington, Smith and Makov (1985), surely a
fundamental work on the methodology of finite mix-
tures, a work that I admire greatly, there are no refer-
ences to Lazarsfeld, only passing references to Good-
man’s work on the subject, and no references to
Haberman’s theoretical work on LCM’s. At the same
time, there is more than passing reference to the LCM
tradition in social science. For example, on page 26 it
is stated that a “closely related application of finite
mixture distributions occurs in latent structure analy-
sis, for which there is a large literature, particularly in

publications devoted to applications of statistics in the

social sciences.” Note that LCM’s are referred to as
applications of finite mixture distributions or as “appli-
cations of statistics.” In point of fact, the LCM arose
in the social sciences. The statistical theory and the
algorithms necessary for serious empirical work, for
the discrete-data case at least, were developed primar-
ily by statisticians with close ties to the social sciences,
Goodman and Haberman in particular. I believe that
the fundamental role of both the social science context
(data involving multiple measurements) and the contri-
butions of social statisticians who worked seriously at
solving social science problems (Goodman and Ha-
berman in particular) is easy to miss in current ac-
counts of finite-mixture methods in statistics.

In my judgment, the methodology of LCM’s would
not have developed as it has without the social science
roots indicated above. They almost certainly would not
have come to be so prominent in the current portfolio
of “methods adequate to the treatment of [sociological]
data” without the pioneering work of Lazarsfeld, Good-
man and Haberman. While it is true that there was
parallel work on similar models in genetics (see Ha-
berman, 1979, for references), to my knowledge this

work simply did not lead to a general understanding

of the basic model. In contrast, the LCM was already
established as a practical and general statistical method
in the social sciences by the mid-1970s.

The LCM is another example of a set of statistical
methods that have general significance but which arose
primarily in the social sciences, with the assistance
of statisticians working in the social sciences. The
usefulness of this model and algorithms developed to
a large extent for its analysis is recognized in much
current statistical work. [In addition to sources already
cited, see Tanner (1991).]

Models for Continuous Latent Variables

Models for continuous latent variables have a long
history in social research; see Duncan (1984) for a
selective history of the subject. Such models are proba-

bly more familiar to statisticians partly because many
current texts or monographs on multivariate analysis
feature these models or their relatives. Principal com-
ponents methods are closely related to these models,
and so are many of the models for repeated measures.
It is important to distinguish between models where
continuous latent variables are assumed to produce
categorical measurements (correct/incorrect scoring of
ability tests are assumed to be related to a continuous
latent variable like ability, for example) and models
where continuous latent variables are assumed to un-
derlie continuous measurements. The former are called
latent trait models; the latter are often called factor
models or covariance structure models. Both kinds of
models are mostly social science products. The models
were formulated by social scientists, including psychol-
ogists, and their statistical aspects have been studied
largely by statisticians with close ties to the social
sciences. It is difficult to imagine how statistical meth-
ods for either type of model could be traced to any
large extent to either biological science or to pure
mathematical statistics. (In some sense, of course, fac-
tor models can be viewed in terms of Pearson’s early
work on correlation theory, but the connection is vague
at best.) Andersen (1980) can be consulted for the
latent trait model. Joreskog and Sorbom (1978) or
Bollen (1989) can be consulted for the factor model.
Journals such as Psychometrika, Journal of Educa-
tional Statistics, Sociological Methods and Research
and the Journal of Educational and Psychological Mea-
surement regularly feature developments in these
areas.

The latent trait model has a relatively short history.
It evidently started in the 1950s in the work of several
statisticians with close ties to the social sciences, in-
cluding Rasch, Birnbaum and Novick. One of the main
statistical problems in this area is to make inferences
about the latent trait without assuming that it is nor-
mally distributed. Conditional likelihood (CL) methods
for some of these models were developed by Rasch,
Erling Andersen and others well before the 1970s.
Much of the impetus for CL methods of inference
actually arose from the analysis of the latent trait
model. [Erling Andersen’s fundamental work on the
subject is cited, for example, in Cox (1972); note that
Cox originally conceived of his approach for dealing
with proportional hazards models as CL. Andersen
(1980) is still one of the best places to learn about
CL methods.] Although sociological methodologists (or
statisticians working on sociological problems) have
not contributed a great deal to the development of
latent trait models as statistical methods, it is clear
that they have contributed to the subject in important
ways. For example, the interesting observation that
CL solutions for Rasch’s version of the latent trait
model can be obtained from a special log-linear model
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for the cross-classification of item responses is due
to Tue Tjur, Noel Cressie and Paul Holland (as was
independently suggested by Otis Dudley Duncan), all
statisticians or methodologists with close ties to the
social sciences. See the background material and refer-
ences in Lindsay, Clogg and Grego (1991).

4. MORE EXAMPLES

There are a good many other convincing examples
that can be used to demonstrate our point. We conclude
with just a few.

Methodology for Missing Data

The recent treatise by Little and Rubin (1987) covers
this important new class of statistical methods. Judg-
ing from recent literature there can be no doubt that
statisticians are now taking seriously all of the issues
involved with missing data. The main context for such
methods is primarily that of the social survey, one of
the great achievements of modern social science as
well as of modern government. In typical situations
involving survey data, anywhere from 5% to 20% of
the data are missing on the key variables chosen for
analysis. Missingness is due to “don’t know” responses
in attitude items, item nonresponse, missing cases

- (sampling units lost), and attrition of sample units in
panel surveys. Missing data are often simply ignored
in other areas, partly because missing information is
comparatively rare in experimental work with nonhu-
man subjects. Even a casual inspection of Little and
Rubin (1987) or Rubin (1987) will indicate that this
area developed the most in the context of social statis-
tics, and it was developed primarily by survey research-
ers or statisticians with close ties to the social sciences.
Heckman’s (1976) method of correcting for sample-
selection bias has been central in econometric analysis,
for example; Heckman gives a technique for handling
nonresponse on dependent variables when the nonre-
sponse mechanism is “nonignorable,” to use the Little-
Rubin terminology. Statisticians contributing to the
analysis of missing data must reckon with sample-
selection adjustment as that subject developed in
econometrics.

Modern (Complex) Sampling

We live in an era of sample surveys, most of which
are social surveys in the broad sense of the term. We
also live in an era of complex sampling. Almost every
major survey today contains both stratification and
clustering, the latter of which invalidates the “iid” as-
sumption so central to textbook statistics (and, I might
add, to our main journals in statistics). How to sample
efficiently, taking into account bias, cost and precision,
is something that is mostly dealt with by survey statis-
ticians or “samplers.” A pioneer in this area is Leslie

Kish, whose monograph (Kish, 1965) continues to be
one of the main source books. Many fine statisticians
and many excellent monographs can be added to Kish,
including Cochran (1977) and Hansen, Hurwitz and
Madow (1953). Modern survey sampling arose primar-
ily in the context of social statistics, often in the setting
of census operations in the U.S., Canada, Sweden and
other nations. Kish was and is a member of the sociol-
ogy department and the Institute for Social Research
at the University of Michigan. The unique flavor of
modern sampling methods can be appreciated in cur-
rent works such as Groves (1989). There are surely
other scientific contexts besides social surveys and
census operations that have had major impacts on
modern statistical methodology, such as capture-
recapture sampling in wildlife and fish management,
but there can be no doubt about the importance of
social science (or social statistics) roots here.

Econometrics

No discussion of modern statistical methods or of
statistical methods for social research can afford to
ignore the tremendous role of econometrics. Maddala
(1983) or Amemiya (1985) can be consulted to appreci-
ate the flavor of this field. By chapter two of the former
monograph we have left the modeling apparatus of
standard statistics, and yet the tools developed by econo-
metricians are indispensable to modern social science
work. So-called discrete-choice models are similar to
the methods for categorical data in statistics, but the
link to rational choice and utility theory is brought out
in econometrics. Quite a few of the major innovations in
time series analysis, in simultaneous equations models,
and in other areas so central to modern empirical work
in the social sciences were produced by econometri-
cians or by statisticians with close ties to econometrics.
It is often easier to find “appropriate” statistical tools
for analysis of social data in econometric software
packages than it is to find them in general purpose
statistical software packages. (Of course, perhaps as

" much as one third of what we find in most software

packages for statistical analysis is in fact econometric
in nature.) While no one today would ever think of
statistics as a branch of economics (perhaps some in
Fisher’s day did indeed have this misapprehension),
the impact of econometrics on statistical methodology
is enormous, and I wish I knew the subject better in
order to bolster my argument.

Causal Inference

To Fisher, Yates and others who pioneered the mod-
ern experimental method, causal inference was valid
only when “treatments” could be randomly assigned to
(randomly chosen) subjects. The treatment effects that
are given to us by AOV methods are surely causal
effects (of treatments). This conception of causal analy-
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sis underlies the conception of causation that is most
often utilized in statistics. It serves as the ideal model
of causal inference, and one of the main points of the
Rubin model of causal inference (see, e.g., Rubin, 1978)
is that the experimental model must be used as a guide
even in cases where it is difficult or impossible to run
classical experiments.

In the social sciences, which rely mainly on so-called
observational studies including surveys (see Cochran,
1983; Kish, 1987), the classical Fisher-Yates model can-
not be applied. Observational studies, or surveys, are
characterized by either the absence of assignment of
treatments or by the absence of random assignment
of treatments. (There are notable exceptions to this
generalization.) Causal inference is more complex for
the data typically available in social science work.
Practically all of the empirical work conducted in the
social sciences that is sponsored by the federal govern-
ment deals with causal inferences of some type or
another, although often the purpose is disguised some-
what (e.g., by using the term, “structural model”).

In social science work, there are essentially two
brands of causal inference available. The first might be
called the regression strategy, or perhaps the econo-
metric or psychometric strategy. This approach in-
volves specifying a “correct” model by including all
relevant “causal” variables in a single-equation or a
multiple-equation model. An early account of the strat-
egy can be found in Blalock (1962). Much of the litera-
ture cited earlier in connection with latent continuous
variables is also relevant here. The objective is to
include the “right” variables so that the error term is
not correlated with the variables whose causal effects
are to be estimated, perhaps including variables that
ostensibly correct for the possible bias in selecting
the sample used for estimating the relationship. By
including all relevant covariates, the researcher tacitly
assumes that causal inferences can be estimated as if
an experiment had been carried out. (Zero correlation
between the error term and the treatment levels is
guaranteed by the classical experimental method. In
situations where it is not natural to think of error
terms, analogous statements pertaining to the condi-
tional distribution of Y given “the right” X’s apply.)

Statistical methods of this sort have been developed
mainly in the social sciences, including econometrics.
Where else would such heroic methods be required or
even attempted? Of course, the early contributions of
Sewell Wright, a population biologist, along with many
contributions from econometrics, make the modern
methodology of causal inference what it is. Good refer-
ences to the models and the logic of this brand of
causal inference are Duncan (1975) and Bollen (1989)
who refer to a vast literature in psychometrics, econo-
metrics and sociological methodology. The pioneers in
this area were mostly statisticians with close ties to

the social sciences (Wright is the main exception). This
is not the place to debate the relative merits of the
method of causal inference that derives from co-
variance-structure analysis. It is important to distin-
guish between the technology, which is very good,
and the language or logic of making causal inferences,
which can be criticized. It is difficult to test the key
assumptions necessary for the causal inferences with-
out making other assumptions that cannot be tested.
My point is just that the statistical methodology
suited for this popular form of causal inference was
woven primarily from social science cloth.

The second main brand of causal inference, which
is now subsumed under the general Rubin model, is
associated with Cochran, Donald Campbell, Rubin and
Holland. (Note that each has or had close ties to the
social sciences, including evaluation research.) This
branch of causal inference is more closely related to
the Fisher-Yates framework, but it relies on matching
methods and the modeling of propensity scores to
a great extent. This area has generated considerable
interest in statistical science of late, and it is not
clear to me how it will eventually be tied to the more
traditional regression-based strategy of econometrics
or sociological methodology. See Heckman and Hotz
(1989) for one approach that tries to do just that. But
a point that can surely be made is that the context for
developing these statistical methods for causal analy-
sis has been the social science context as much as
anything else. Careful surveys of the Rubin model
(Holland, 1986) justify that assessment. Once again it
is difficult to imagine how statistical methods for
causal inference would have developed as they have
without the impetus provided by the context of social
research.

5. CONCLUSION

The reader will have realized well before now that
this impressionistic account of the relationship be-

" tween the methodology for social research and statisti-

cal methodology is one-sided. But I hope that it is not
too one-sided to invalidate the basic message, which I
summarize in three general observations. First, statis-
tical methodology for sociological or social science
work, as judged by current practice anyway, has not
developed as a simple process of borrowing from statis-
tical methodology developed for biological work, nor
has it trickled down from the delta-epsilon rigor of
mathematical statistics. Social science methods in gen-
eral, and sociological methodology in particular, have
a distinct flavor that cannot be appreciated very well
by looking hard at analysis-of-variance methods for
experimental data or, for that matter, by thinking hard
about the mathematically neat problems that we see
so often in our most technical journals. Second, there



194 C. C. CLOGG

are many compelling examples that can be put forth
where statistical methodology created in response to
the real (and difficult) problems of social research has
come to have truly general significance in both mathe-
matical and applied statistics. The ubiquity of log-
linear models, event-history models, latent variable
models, causal inference procedures, modern economet-
ric models and methods, complex sampling, and other
methodologies in contemporary statistical literature is
testimony to this. These methods have been driven
by the needs of social research, and they have been
developed to a considerable extent by statisticians
with close ties to the social sciences. Finally, when we
celebrate the history of statistics, as we recently did in
sesquicentennial activities of the American Statistical
Association, we would do well to realize that statistics
as a field has always been closely tied to social statis-
tics and social science research. A serious history of
the growth of statistics in this century would, I believe,
demonstrate conclusively that the field owes a great
deal to the social sciences and to the diverse statistical
problems and statistical methodologies associated with
them.

Some Other Neglected Topics

The most common criticism received from colleagues
on earlier drafts of this paper was that way too many
topics that make my case stronger had been omitted
or given short shrift. I am not always pleased by
criticisms of what I have to say, but this sort of
criticism is a real treat. Network analysis in sociology,
mathematical and statistical demography, evaluation
research, methodology for the study of sample selec-
tion bias, econometric methods for panel data, methods
for pooling cross-sections and multi-level or hierarchi-
cal regression models for contextual analysis are just
some of the topics that others thought I should feature
in order to make my case a stronger one. I do not know
enough about most of these areas to give much more
than annotated bibliographies, and I apologize to those
critics who might feel that my sample selection mecha-
nism has led to a biased inference about the “popula-
tion” of ideas that this paper is about. The relative
neglect of econometrics in this review is very serious;
that subject has had and continues to have major
effects on virtually all areas of modern statistical meth-
odology.
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Comment

David J. Bartholomew

This is an interesting and timely reminder of the
important role which the social sciences have played,
and continue to play, in the development of statistical
methodology. I agree with so much of what the author
says that it would be all too easy to make this contribu-
tion a repetition of the main points or a catalogue of
additional supporting examples. Instead I wish to
move the discussion in two other closely related direc-
tions —first by putting the emphasis on the inhibiting
effect of the natural science influence on the develop-
ment of statistical methodology and secondly by identi-
fying current social science interests which place new
demands on methodology.

I think the author is right in turning the spotlight
on R. A. Fisher or, more exactly perhaps, the Fisherian
tradition. Had it not been for Fisher’s immense prestige
the needs of social science might have continued to set
an agenda for theoreticians as foreshadowed in the
pioneering work of Quetelet and others. The core of
modern statistical theory, centred on continuous vari-
ables, normal distributions, independence and additive
models with the analysis of variance as its centrepiece
has become the canon around which statistical educa-
tion is built. The generalized linear model stands today
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as a fitting culmination of that tradition. The assump-
tions and the formulation of the models used are those
required by the natural science problems which moti-
vated Fisher and his followers and which still nourish
much contemporary research. It is thus entirely under-
standable, though regretable, that the growth of multi-
variate analysis should, on the theoretical side, have
been developed almost entirely around the multivariate
normal distribution.

Perhaps the most striking example of this thesis is
the laggardly way in which methods for categorical
variables have become part of the statistician’s portfo-
lio. After the early excursions of Yule little note seems
to have been taken of the fact that categorical variables
are extremely common and, in a sense, more fundamen-
tal than their continuous counterparts. Until quite

" recently, measurement of association in two-way con-

tingency tables was about as far as the education of
most statisticians went. When they have been con-
fronted with categorical data in practice they have
had, for want of anything better, to force it into the
Procrustean bed made for continuous variables by up-
grading the level of measurement in more or less arbi-
trary ways. This is still very evident in the analysis of
covariance structures where methods are developed for
continuous variables and then adapted to categorical
variables by the introduction of polychoric coefficients
and such like. It is only now becoming apparent that
there is a common structure underlying many such
multivariate techniques which has been hidden by their
diverse origins and notational idiosyncracies. To some



