MULTILINEAR MODELS IN SPECTROSCOPY

The perspective of tensor geometry is even more
helpful in acquiring insight into the T2 model. The
constraint implied by (25) or (26) is that u lie in @ ®
® ® RX. Other examples of the value of the geometric
perspective could be cited, but perhaps these will
suffice to make the point.

There is, I admit, some validity to the authors’ stated
reason for avoiding tensor terminology. Much of the
extant literature on tensors is written either for physi-
cists or for mathematicians, and neither slant is partic-
ularly well suited for the statistical applications at
hand. There is a tendency for the treatments to be on
the one hand too abstract and on the other too special-
ized because of the focus on tensor powers of RV.
The concepts of covariance and contravariance, for
example, arise when a tensor is regarded as an abstrac-
tion whose numerical representation is the result of an
arbitrarily chosen coordinate system. The chemometri-
cian need not struggle to understand these concepts.
The numbers in his or her arrays are real data and not
just coordinates with respect to some arbitrary basis.

Contrary to the impression one might get from
books, the theoretical underpinnings of basic tensor
product geometry are not difficult to comprehend. A
key idea is the tensor product mapping, of which the
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We thank the editors for securing the comments
of Kroonenberg and of deLeeuw, both of whom have
contributed to the development and application of
multiway methods in psychometrics, and of Burdick,
a statistician with chemistry collaborators. Much of
the work on multilinear models is deeply embedded in
subject matter, and many contributions have been
made outside the single application (spectroscopy) we
have emphasized here. We thank the discussants for
adding their views of important contributions in a
variety of areas.

Our reply consists of a section with comments on
mathematical issues raised by all discussants and a
section of specific responses to selected points raised
by each discussant.

1. GENERAL COMMENTS

We think one reason for the increased interest in
arrays in recent decades is that arrays are no longer
theoretical abstractions, but can be defined and manip-
ulated in many high-level languages. The statistical
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outer product is a canonical example. The feature which
distinguishes a tensor product mapping from other
bilinear functions with two vector arguments, for ex-
ample, the inner product, is its preservation of linear
independence. Thus, if the F; columns of A are linearly
independent and the F; columns of B are linearly inde-
pendent, the FF; outer products of columns of A with
columns of B are linearly independent. The span of
these F1F, outer products is by definition the tensor
product @ ® &, where @ is the span of the columns of
A and ® is the span of the columns of B.

This presentation omits some mopping up details
that are required for a fully rigorous definition of the
tensor product of vector spaces. The essential features
of the concept, however, are there. Anyone who can
follow the development in the previous paragraph has
a handle on a set of conceptual tools that can provide
a valuable framework for interpreting multilinear mod-
els. These conceptual tools require names. We can use
the existing tensor terminology or invent new terms.
Others may have added bells and whistles that we
don't want or need, but the terminology of tensors
exists for the tools we do need, and it has been around
for years. I say we should use it.

package S (Becker, Chambers and Wilks, 1988) is just
one of the programs that permits array calculations.
Besides changing the nature of the questions that are
important, the ability to calculate easily enables one
to check conjectures.

The mathematical theory of arrays that needs to be
applied to these questions requires some features that
are more general than most descriptions of tensors.
The most basic requirements are that the number of
levels in each way of the array be arbitrary and not
necessarily equal and that the elements of the array
not be required to satisfy any symmetry assumptions.
The different ways of the array need to be treated
symmetrically in mathematics, although different ap-
plications may treat the ways differently. The notation
employed will vary with the purpose of the exposition;
see our reply to Burdick below. Other examples of
publications on array results are Knuth (1965) and
Lickteig (1985) [from the Geladi (1989) paper cited by
Kroonenberg] and Lickteig’s references.

The basic question about arrays is how to approxi-
mate an array by a simpler array or how to decompose
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an array into a sum of several simple arrays. For
matrices, the singular value decomposition provides
the answer. Therefore, some papers have focused on
generalizations of singular value decompositions to
3-way arrays. Some of these papers explicitly state
that there is no single extension that preserves all the
properties of singular value decompositions of matri-
ces. Indeed, several of the properties of the PARAFAC
model demonstrate this: the fact that the nonlinear
least-squares estimates of the PARAFAC model are
not nested in F, the fact that the F vectors for each
way are not orthogonal and the fact that a 2 X 2 X 2
array can require 3 vectors to represent it. One corol-
lary should be emphasized: the selection of a mathe-
matical setting is more critical for optimization
problems concerning 3-way arrays than for problems
concerning matrices. For example, Okamoto and Kana-
zawa (1968) demonstrate that the “best” low-rank
approximation to a single covariance matrix is the
approximation provided by principal components when-
ever the quality of the approximation is measured by
a function of the eigenvalues that is isotonic with
respect to the usual partial order on ®R%. [See Rao
(1980) for related material.] Many norms have this
characterization. Okamota and Kanazawa'’s proof relies
on eigenvalue decompositions for symmetric matrices,
but extends easily to general matrices if singular value
decompositions replace eigenvalue decompositions.
However, the different norms will provide different
simultaneous low-rank approximations to two or more
matrices.

2. SPECIFIC COMMENTS

2.1 deLeeuw

Jan deLeeuw raises the question of stability. There
are many types of stability; we describe progress on
leave-out-one calculations and on volumes of confidence
regions, and describe when we have seen instability
due to nonidentifiability.

Arboleda (1991) obtained formulas for the curvature
arrays of multilinear models and applied them to obtain
formulas to approximate changes in the parameters
when any single data point is omitted. Since the corre-
sponding formulas for linear models provide the exact
change in the parameters, it is natural to hope that the
approximation is good for multilinear models. In a
10 X 12 X 5 example, she demonstrated that the (much
more easily computed) 600 approximations are very
close to the 600 corresponding estimates obtained by
applying nonlinear least-squares to arrays missing one
element. Her work suggests that some stability can be
anticipated in practice.

One measure of statistical stability is the volume of
the joint confidence regions for the parameters. The
standard hope in nonlinear models is that the volume

of the joint confidence region is well approximated by
the reciprocal of the determinant of the information
matrix. Abel (1991) has shown that the determinant of
the FI +J + K — 2) X FI + J + K — 2) information
matrix can be simplified to a function of determinants
of three F X F matrices and one F(3F — 2) X F(3F —
2) matrix. He also evaluated determinants when some
of the elements of the array are not measured. He
compared a class of balanced designs with a class of
unbalanced designs. The balanced designs (“checker-
board designs”) are derived from unions of Latin
squares. The unbalanced designs (“crosshatch designs”)
empbhasize certain preselected levels for each way. For
linear models and for most design criteria, balanced
designs dominate unbalanced designs. Abel’s examples
imply that this heuristic principle fails for multilinear
models. Neither the balanced class nor the unbalanced
class dominates (in the determinant criterion). More-
over, some very incomplete designs have nearly the
same information as the complete array.

We can also report some results from simulation
studies in which we generated arrays with F = 1, 2 or
3 and fit (22) with F' = 1, 2 or 3. When the number of
parameters fit is no larger than the number of parame-
ters present (F' < F), parameter vectors from indepen-
dent simulations cannot be distinguished on an overhead
transparency. However, when more parameters were
estimated than were present in the mean of the simu-
lated array (F' > F), one or more vectors for each
way were so unstable that the parameter vectors from
independent simulations have no discernable similar-
ity. This numerical observation reflects the nonidenti-
fiability of a; and f; whenever y; = 0.

Knowledge of the mathematical requirements for
identifiability makes it easier to monitor near-noniden-
tifiability in practice. For example, in Figure 8, the
curves depicting the dependence of the tryptophan-15
and impurity components on quencher concentration
are nearly collinear. Because the impurity is 100 times
weaker than the tryptophans, this near indeterminancy
probably has little effect on the parameters estimated
for the two tryptophans. The near collinearity of the
excitation spectra of the two tryptophans is more prob-
lematic, because this characteristic of the protein under
study cannot be changed by removing the impurity.

2.2 Kroonenberg

Kroonenberg's survey of other literature is much
appreciated. We add comments in only four areas: the
speed of data collection in spectroscopy, the role of
preprocessing in spectroscopy, the nature of con-
straints on the parameter matrices and an alternative
hierarchy of models.

In his Section 3.1, Kroonenberg quotes Sanchez and
Kowalski (1990), noting that there is “an abundance
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of instruments that can automatically collect precise
third-order data arrays in a short-time.” While the spec-
troscopist can collect data far faster than the social
scientist, it can still take a long time to fill all the
elements of a 3- or 4-way array: too long for a biological
specimen to remain intact. For example, at our typical
data collection rate of 1 point each 5 seconds, it would
take over 12 hours to collect the data to fill a 30 X
30 X 10 array.

Certain kinds of preprocessing are so common that
the spectroscopist hardly thinks about them. Like
many chemical determinations, most spectroscopic de-
terminations require two measurements, one of the
specimen of interest and one of a blank. The blank is
as much like the specimen of interest as possible, but
it lacks the key ingredients that give the spectroscopic
signals being studied. It is the specimen data array
minus the blank data array to which the multilinear
model is actually fitted. With fluorescence measure-
ments, the most important reason for doing the analy-
sis in this way is that a phenomenon known as Raman
scattering gives a strong signal that does not follow a
multilinear model.

In his Section 3.5, Kroonenberg alludes to the lin-
early constrained CANDECOMP of Carroll, Pruzansky
and Kruskal (1980). A CANDELINC model for an
N-way expected value array satisfying (27) is the as-
sumption that the N parameter matrices A,, n =
1,..., N are not arbitrary I, X F matrices, but that
each column is a linear function of S, < I, parameters.
Written in equations, the assumption is that there are
I, X S, known matrices X,,, n = 1, ..., N such that

An=Xn'£m n=1,...,N.

[This equation is equation (3’) of Carroll, Pruzansky and
Kruskal (1980).] The new parameter matrices 7, . . . , Tv
can be defined so that X, has orthonormal columns,
forcing Xk = XT. Carroll, Pruzansky and Kruskal
(1980) prove that the nonlinear least-squares estimates
of 71, ...,7v (with suitable identifiability conventions)
based on Y are exactly the same as the estimates based
on Y*, where

Y* = (X0, XT}#pY.

Restating the proof in the terminology and notation of
this paper, one of the key steps is recognition that the
Associativity Proposition and the orthonormality of
the columns of X, imply that the expectation of Y* is

{XnN=ltn}*NI9

where I is the “diagonal” F X - - - X F identity array.
The equation above is an unconstrained PARAFAC
model for the smaller S; X - - -+ X Sy array Y* with
unconstrained parameter matrices 7, . . . ,Tn.

We have not seen any examples in spectroscopy with

linear constraints on the parameter matrices of an
identifiable PARAFAC model, although interest is
building in models in which vectors for one or more
ways are a function of a small number of other parame-
ters. For example, Lee et al. (1992) fit trilinear models
in which the levels of the third way corresponded to
different concentrations (Li,...,Lg) of a ligand, a
chemical that can bind to the fluorophore. Separate
trilinear models were fit for 5 different ligands and 3
different temperatures. Functional forms for the chem-
istry dependence of two of the fluorophores present are
hypothesized to be

P1K1 boLy,
B =21 B = P2
vilk] Li+ volR] Li+

The ¢'s and the «'s depend on the ligand and the
temperature. For some ligands, x; and «; are not sig-
nificantly different. The overall mean array x is condi-
tionally linear in the ¢’s given the A, B and the «s,
so a CANDELINC step could be applied in an ALS
estimation procedure. Given the unsatisfactory behav-
ior of ALS algorithms and the ease with which the
parametric submodels above can be fitted to the esti-
mates from a model in which no structure is forced for
the dependence on chemistry concentration, Lee et al.
(1992) fit the equations above to the nonlinear least-
squares estimates I'.

The use of parametric submodels is popular in time-
resolved fluorescence spectroscopy, where it is often
called global analysis. [See Beechem et al. (1991).] In
the typical application, fluorescence intensity is mea-
sured using two independent variables, most com-
monly emission wavelength and time. A bilinear model
is then fit to the data, with the dependence on one
variable, usually time, fit with a specific parametric
model for each component. The indeterminacy of a
general bilinear model is usually avoided by using a
sufficiently specific model, such as a sum of two nega-
tive exponentials.

Kroonenberg alludes to various hierarchies among
multilinear models. These include PARAFAC as a T3
model with a diagonal core array. Implicit in such
hierarchies are fixed choices of F or of Fy, ..., Fy. If
the F’s are changed, then T2 and T3 models can be
viewed as constrained PARAFAC models. For exam-
ple, the T2 model (25) can be written as a PARAFAC
model (22) with F set equal to F,F; and special patterns
for A and B. The I X F,F; matrix A will have only F,
distinct columns; a similar condition will hold for B. If
energy transfer may occur, the T2 model (7) may be
more appropriate than an unconstrained PARAFAC
model. Thus, in some spectroscopy settings it is im-
portant to distinguish a T2 model from a less restric-
tive PARAFAC model.
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2.3 Burdick

We thank Burdick for emphasizing the importance
of tensors and for prompting us to focus our objections
more sharply on tensor notation, not tensor theory.

We agree that a T3 model can be thought of as a
tensor model for p and that the geometric formulations
clarifies the inevitability of the nonidentifiability of
the parameters. A PARAFAC model is less usefully
formulated as a tensor, as is evidenced by the fact that
the conventional Einstein summation convention does
not apply. This convention avoids summation signs by
specifying that if an index occurs twice in an expression
that index is to be summed over. This convention is
exactly the convention of skipping integral signs, but
leaving differentials:

| / / Floer, %1, x5) doidadzs
Jxyd x9J x3

becomes

flx1, x2, x3) dx1dxodxs

instead of

| / for / .

Indices never occur more than twice in conventional
expressions (the need for care in the use of these con-
ventions is obvious), so a PARAFAC model can only be
written conventionally by using the T3 representation,
complete with artificial “diagonal” core array.

3. CONCLUSION

We thank the discussants for augmenting our discus-
sion of applications of multilinear models and of the
mathematical and computational underpinnings. The
effectiveness of these models in spectroscopy and in
other setting suggests that multilinear models merit
further statistical attention.
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