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Approximate Counting via Markov Chains

David Aldous

Abstract. For large finite sets where there is no explicit formula for the
size, one can often devise a randomized algorithm that approximately
counts the size by simulating Markov chains on the set and on recursively

defined subsets.
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1. EXACT AND APPROXIMATE COUNTING
For a finite set S, there is a close connection between

1. having an explicit formula for the size |S| and
2. having a bounded-time algorithm for generating
a uniform random element of S.

As an elementary illustration, we all know that there
are n! permutations of n objects. From a proof of this
fact, we could write down an explicit 1-1 mapping f
between the set of permutations and the set A = {(a,,
as, . ..,a,): 1 <a <i} Then we could simulate a
uniform random permutation by first simulating a uni-
form random element a of A and then computing f(a).
Conversely, given an algorithm that was guaranteed
to produce a uniform random permutation after k(n)
calls to a random number generator, we could (in princi-
ple) analyze the working of the algorithm in order to
calculate the chance p of getting the identity permuta-
tion. Then we can say that the number of permutations
equals 1/p.

But now suppose we have a hard counting problem
for which we cannot find an explicit formula for |S|.
The purpose of this article is to describe a remarkable
technique for constructing randomized algorithms that
count S approximately. This technique, developed in
recent years, has two ingredients. The first idea is that
in some settings, having an algorithm for generating
an approximately uniform random element of S can be
used recursively to estimate approximately the size
|S|. We illustrate this with two examples in the next
section. The second idea is that we can obtain an
approximately uniform random element of S by run-
ning a suitable Markov chain on state-space S for
sufficiently many steps. This idea and the particular
chains used in the two examples are discussed in Sec-
tion 3. The latter idea is fundamentally similar to the
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use of Markov chains in the Metropolis algorithm,
which underlies the simulated annealing algorithm dis-
cussed by Bertsimas and Tsitsiklis in this issue. The
difference is that here we seek to simulate a uniform
distribution rather than a distribution that is deliber-
ately biased toward minima of a cost function. Our
Markov chains are simpler to analyze and permit rigor-
ous discussion of polynomial-time convergence issues
that seem too hard for rigorous treatment in the con-
text of simulated annealing.

2. RECURSIVE ESTIMATION OF SIZE

ExampLE: VoLUME OF A coNVEX SET (Dyer, Frieze
and Kannan, 1989, 1991). Consider the problem of
estimating the volume vol(K) of a convex set K in
n-dimensional space, for large n. Suppose we are told
that B(1) ¢ K C B(r), where B(r) is the ball of radius
r = r(n). It is believed that there is no polynomial-time
deterministic algorithm to approximate vol(K). But
suppose we have a means of simulating, at unit cost, a
random point in K whose distribution is approximately
uniform. Specify some subset K; with B(1) C K; C K
and for which vol(K;)/vol(K) is not near 0 or 1. Then
by simulating m random points in K and counting the
proportion p(1) that fall within K,

p(1) = vol(K;)/vol(K) + bias + sampling error.

Now specify a decreasing sequence of such convex
subsets

K=KyDK, DK, D> Kr,=B(1)

that will have length L = O(n log r). Then as above we
can estimate each ratio vol(K;)/vol(K;-;) as p(i), and
finally

L
(1) wvol(B() X [I —% is an approximation to vol(K).
i=1 P\
How accurate is this approximation? The elementary
mathematics of random sampling shows that the sam-
pling error at each step is O(m~'?). So by choosing m
to be a large multiple of L?, the sampling error in (1)
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is made small. Note that this makes the total cost
O(L®). The remaining issue is to find a way of simulat-
ing an approximately uniform point in K with bias
o(1/L), where bias is formalized in (2). (See Section 4.)
We return to this issue in the next section.

ExaAMPLE: MATCHINGS IN A GRAPH (Sinclair and Jer-
rum, 1989). Fix a graph G with n vertices. In graph-
theory terminology, two edges are independent if there
is no common vertex, and a matching is a set of inde-
pendent edges. Let M(G) be the set of all matchings
of G. How can we estimate |[M(G)|, the number of
matchings? Let us show how to do so, given a method
of simulating approximately uniform random match-
ings.

Enumerate the vertices as sy, ss, . . ., s,. Let G; be
the subgraph obtained by deleting s,, . . . , s;. If we
could simulate a random matching I that was exactly
uniform (i.e., equally likely to be each of the |[M(G)|
matchings), then

P(s; is in no edge of M) = |M(G1)|/|M(G)|.

So given a method of simulating an approximately
uniform matching, we can do m such simulations and
record the proportion p(1) of these m simulations in
which s; is not an edge of the random matching. Then

p(1) = |M(G,1)|/|M(G)| + bias + sampling error.

Similarly, do m simulations of an approximately uni-
form random matching in G;_,, and use the proportion
pl(i) in which s; is not an edge of the matching as an
estimator of |M(G;)|/|M(G:-1)|. This argument, analo-
gous to (1), leads to

II 1/p(i) is an approximation to |M(G)|.

These examples share a self-reducibility property
formalized in Sinclair and Jerrum (1989). Informally,
we can relate the size of the set S under consideration
to the size of a smaller set S; of the same type. The
examples illustrate the first idea stated in Section 1.
That is, with self-reducible sets, an algorithm for gener-
ating an approximately uniform random element can
be used recursively to estimate approximately the size
IS]. .

Three points deserve mention:

1. In the two examples, the self-reducibility prop-
erty was exact. The reader will rightly suspect
that such examples are rare. But the method
has been successfully applied where there is only
some cruder notion of reducibility, for instance
to the problems of approximating the permanent
(Jerrum and Sinclair, 1989) and of counting regu-
lar graphs (Jerrum and Sinclair, 1988).

2. We should emphasize the point of the product-
form estimators: they enable us to estimate expo-
nentially small probabilities in polynomial time.

Thus in the first example both vol(K)/vol(B(r)) and
vol(B(1))/vol(K) are typically O(r~"), so to estimate
the ratio in one step would require simulating
O(r™) points instead of O(n log r)® points.

3. In principle, we could combine this self-reducibil-
ity technique with any method of simulating ap-
proximately uniform elements of the set, not just
the Markov chain method presented in the next
section. But in practice no other methods are
known for the examples where the technique has
been successful.

3. THE MARKOV CHAIN METHOD OF SIMULATING A
PROBABILITY DISTRIBUTION

This method is a specialization of the Metropolis
algorithm described by Bertsimas and T'sitsiklis in this
issue in their article on simulated annealing. Suppose
we want to simulate the uniform probability distribu-
tion 7 on a large finite set S. Suppose we can define a
Markov chain (picture a randomly moving particle)
on states S whose stationary distribution is n. After
running the chain for a sufficiently large number of
steps, the position of the particle will be approximately
uniform. The simplest way to define such a chain is to
define a regular graph structure with vertex-set S. In
this graph setting, let the Markov chain be a simple
random walk on the graph, at each step moving from
the current vertex s to a vertex s’ chosen uniformly
from the neighbors of s.

We now describe graphs for our two examples. To
fit the first example into this framework, we discretize
in the obvious way, replacing the convex set K by its
intersection S = K N JZ" with the lattice of edge-
length J, for some small §. By simulating random walk
on S for sufficiently many steps, we will get to a point
approximately uniform in S, and hence approximately
uniform in K.

In the second example, construct a Markov chain as
follows. From a matching 9y, move to a new match-

- ing M, as follows:

1. Pick an edge (v, w) of G at random.
2. If (v, w) is an edge of M, delete it.
3. If v and w are singletons of I, add the edge
(v, w).
4. Otherwise, v (say) is a singleton, and w is in an
edge (w, u) of My: delete the edge (w, u) and add
the edge (v, w).
After sufficiently many steps, the random matching
will have approximately uniform distribution.

4. ESTIMATING MIXING TIMES

There is a glaring gap to bridge before we can use
the Markov chain method as an honest randomized
algorithm. In the simplest use of this method, we will
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run the chain for some number % of steps and employ
the final state as our “approximately uniform” random
element. But how many steps are enough? To justify
algorithms, we need bounds on a mixing time such as
71 or 72 below, which formalize the intuitive idea of
“number of steps until the distribution is approxi-
mately the stationary distribution, independent of
starting position.” The classic elementary theory of
Markov chains says that, under natural conditions
(irreducible, aperiodic), the distribution of & steps con-
verges as k —> o to the stationary distribution zn. But
proofs of this elementary general result do not lead to
useful bounds in particular examples. The invention of
approximate counting, as well as other Markov chain
applications such as card-shuffling (Bayer and Dia-
conis, 1992; Diaconis, 1988) and queueing theory (Blanc,
1988), have motivated recent work of the mathematical
issue of estimating mixing times.

In the context of approximate counting, we have
some flexibility in the exact choice of the Markov chain,
and it is usually possible and very convenient to choose
the chain to be reversible, that is, to satisfy
n@)P @, j) = n(j)P(j, i) for all states i, j. A classical way
of formalizing rates of convergence is via the second-
largest eigenvalue A < 1 of the transition matrix P, This
leads to one definition of mixing time as

2=1/(1—4).

Another definition of mixing time, more directly appli-
cable in our setting, uses the time taken to make the
maximal bias small:

71 = min{n : |P{X, € A) — n(A)|

(2)
< lleforallieS,A C S}.

It is easy to show that after mt, steps the bias is at
most 2e™™, so that a bound on 7; enables us to specify
confidently a number of steps guaranteed to reduce
the bias sufficiently in our applications to approximate
counting.

There are several other possible definitions of mixing
times, and easy general inequalities giving relations
between them. The real issue is not the choice of defini-
tion but the development of widely applicable tech-
niques that enable some mixing time to be bounded.
One interesting technique is to relate mixing times to
the quantity

o(P) = max ZA1L = 7A)
AcS ZieA'#A n@)PG, j)
From a bound on ¢(P), one can use Cheeger’s inequality
(e.g., Sinclair and Jerrum, 1989) to bound 7; and then
obtain the desired bound on 7;. Such results are theoret-
ically appealing in that c(P) relates to the “geometry”
of the chain, and (for simple random walk on a graph

G) to isoperimetric inequalities on G, a quantity of
intrinsic graph-theoretic interest. On the other hand,
it is usually hard to estimate c(P) well. Diaconis and
Stroock (1991) argue that to get upper bounds on 7,
one can do as well by a direct use of a distinguished
paths method. For each pair of states, one specifies a
path connecting them, seeking to minimize the number
of times any fixed edge is used: one can then bound 7,
in terms of the maximal “probability flow” along any
edge. This is still an active research area, and doubtless
further techniques will be developed.

We said that the simplest use of this method was to
run the chain for some prespecified number of steps and
employ the final state as our “approximately uniform”
random element. As described in Section 2, this process
is then repeated m times (say) in order to calculate the
proportion of these m final values that fall in a given
subset. Many variations are possible. For instance,
instead of the m repetitions one could run the chain
for the same total time but estimate the desired proba-
bility of a subset by looking at the proportion of all
times (except an initial segment) that the chain spent
in the subset. This is likely by give somewhat of an
improvement in practice, though in principle may be
no better (Aldous, 1987).

5. CONCLUSION

The topic of approximate counting is still under
vigerous development. Let us close with one direction
for future research. In addition to the familiar counting
problems from the theory of combinatorial algorithms,
there is a range of interesting problems arising from
physics. We mentioned that the Markov chain method
was just a specialization of the Metropolis algorithm
for simulating a given probability distribution by in-
venting a suitable Markov chain. Physicists have long
used that algorithm for simulation but typically have
been unable to justify rigorously the results of the

_simulation by proving bounds on the mixing time. For

instance, physicists have studied self-avoiding random
walks rather intensely by simulation and by nonrigor-
ous mathematical methods. A celebrated open problem
is to prove a polynomial-time bound for the mixing
time in some algorithm for simulating self-avoiding
walks in three dimensions: equivalently, to give a poly-
nomial-time randomized algorithm for approximately
counting the number of self-avoiding walks of length
n. Bringing together the users of randomized algo-
rithms in physics and the “theoretical” researchers in
computer science promises to be a fruitful collabora-
tion.

A much more complete and detailed treatment of
the topic of this article can be found in a forthcoming
monograph by Alistair Sinclair (1992).
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