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cidedly influenced by linear modeling, and we see
that clearly in their paper. There has also been
a tendency to judge the performance of the esti-
mation methods by concentrating on a single, ar-

" bitrary small area. In our comment, we shall dis-

cuss what opportunities there might be to expand
the class of statistical models for small area data
and to consider multivariate aspects of small area
estimation.
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MODELING APPROPRIATE SOURCES OF
VARIABILITY

It would appear from the authors’ account that the
full flexibility of hierarchical modeling has not been
applied to small area estimation. Two models in-
corporating random effects, given as equations (4.4)
and (4.5), are presented in their paper. Model (4.4)
is applied when both direct estimators and auxiliary
data are available at the area level while model (4.5)
is partitioned into sampled and unsampled units
within a small area when both response and auxil-
iary data are available for sampling units. In either
case, estimates of the area means or totals are devel-
oped. Rather than focusing on this distinction, we
would like to point out the similarity of these mod-
els in the way that additional response variability
is due to the random nature of model components.
Using y as a vector of response data, both of the
models may be considered hierarchical models of the
general form,

D [y|p,X1=Nu,X) and [p]|B,T1=NX3,D),

where [y | 0] denotes the probability distribution
of y given the parameter #; and both ¥ and I" are
positive-definite matrices. Then the marginal distri-
bution of y is immediately (e.g., Lindley and Smith,
1972, Lemma 1)

(2) NXB,X+1I),

which also results from writing the models in mixed
linear form (as Ghosh and Rao have chosen to do).
The covariance matrix of the marginal density in-
dicates that these types of models incorporate sam-
pling variability into the distribution of y through
the use of hierarchical structure. (In engineering,
this approach is called state-space modeling.) What
might be considered the systematic model compo-
nent, namely E(y) = X3, is generated in the same
way across all areas in model (4.4) or across all sam-
pling units within all areas in model (4.5).

The hierarchical model described by (1) is differ-
" ent from the model,

3 [ly|B,X1=NXg,¥) and [B|B,T1=N@®B,D),
for which the marginal density of y becomes
4) N(XB, T + XTX7).

Under the hierarchical model (3), variability in the
marginal distribution of y is affected by the values
of the explanatory variables observed.

A third possibility suggests itself in the situation
that unit specific observations are available in each

of several small areas. In this case, one might ap-
ply model (3) to each area using y;, 3;, X; and ; to
denote the dependence on area identification. The
{B;} could be taken as independent and identically
distributed random variables with common distribu-
tion across areas; for example, [§; | B,I'l = N(B,I).
Then, with assumed independence (conditional on
{6;, %;}) of the {y;}, the joint marginal of all obser-
vations is available as a product of the marginals
for the m areas. More complex models allowing lack
of independence for either the y; or §; are conceiv-
able; and, in fact, model (3) is an example of one
such. Under models of this general type, variabil-
ity among observations comes not only from direct
sampling variability but also from variability in the
{6;} that describe the systematic relation between
y and X. That such variability often exists seems a
reasonable supposition. In the introductory exam-
ple discussed by Ghosh and Rao, of estimating per
capita income (PCI) for local administrative areas
(Fay and Herriot, 1979), a regression of estimated
PCI on county tax returns and housing data is as-
sumed. The systematic relation described by such
a regression may well be different for counties in
different portions of a state or region, as may be
the range and values of the explanatory variables
used. As another example, the small areas where
census undercounts are estimated can each be strat-
ified by race. A separate regression for each race
(Cressie, 1989) results in differences in regression
coefficients. Finally, estimation of the distribution
of regression coefficients may provide valuable infor-
mation to demographers and social scientists, such
as in the problem of census undercount.

There is a difference in the modeling approach
represented by (1) on the one hand, and (3) and its
extensions on the other, that centers on the sources
of variation in the observed responses. From a
Bayesian viewpoint, this difference involves the or-
der in which prior distributions are placed on model
components. The order in which priors are assigned
is pertinent, particularly in light of the fact that the
data contain less information about parameters as
those parameters move up in the hierarchy (Goel
and DeGroot, 1981). Thus, if we have interest in the
posterior distribution of 3, we are well served by po-
sitioning 8 low in the hierarchy which leads to model
(3) and its extensions rather than to model (1). Un-
der model (1), we do not question the strength of
the linear relation between y and X but are uncer-
tain about the realization that may be observed in
any particular small area. Then, a completely spec-
ified, but often uninformative, prior is placed on 3
as much to allow computation of a posterior distri-
bution of u as from genuine interest in modeling
either prior or posterior distributions of 3. Under
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model (3) and its extensions, an important source of
uncertainty stems from lack of knowledge about 3 or
{B;}. Ghosh and Rao have not discussed the latter
approach in small area estimation and it would be
interesting and useful to see what differences might
result from its application. The extension of model
(3) to area-specific regression equations, in particu-
lar, offers an interesting alternative to the standard
approach in that it raises the possibility of predict-
ing the area-specific regression parameters {g;}.

NONLINEAR MODELS

In an effort to increase the flexibility of small
area models, it is natural to consider ways to extend
the modeling concepts to nonlinear situations. One
approach to nonlinear modeling that encompasses
many situations is that of generalized linear mod-
els (GLMs). Ghosh and Rao mention binary and
Poisson responses in Section 7 of their paper which
fall into this framework. Our earlier discussion of
appropriate sources of variability carries over to the
GLM, and we give several models analogous to the
normal models already presented. While the nota-
tion of GLMs offers flexibility in allowing nonlinear
. response functions, there is a concomitant reduc-
tion in flexibility for modeling lack of independence
among responses. Specifically, small area responses
y; are taken to be univariate random variables, and
conditional independence of these variables (condi-
tional on parameters) is assumed throughout. As-
sume that y; is distributed according to an exponen-
tial family with density (or mass) function,

f(yi | 6;, ¢;) = exp{[yi6; — b(6)1/al(¢;) + c(yi, d)},

so that E(y;) = b'(6;) = u; and var(y;) = a(¢;)b"(6;) =
a(¢;)V(y;). A GLM is completed by taking a known
function of u; to be linear in a set of covariates; that
is, g(y;) = xiTﬂ = n; with x; = (x;1, ... ,x,-p)T. One hi-
erarchical extension of this model is to let the nat-
ural parameter 6; be distributed according to some
probability density (or mass) function A(6; | A). The
marginal density (or mass) function of y; then be-
comes

) plyi|Né)= / F(3: | 63, 6h(6; | N6,

This is the approach taken by Albert (1988) and
Albert and Pepple (1989) to develop hierarchical
overdispersion models. These authors take h(6; | )
from a conjugate exponential family for f and then
set up the GLM by linking the expected value of y;
with a linear model as g(E(y;)) = x7 3. This approach
moves the linear model away from y to a position
further up in the hierarchy and is analogous to the

approach of model (1) leading exactly to that model
in the case that y is normal with mean 6 = u, and g
the identity mapping.

A different approach, analogous to that used in
model (3), is to start with a fully specified GLM for
the responses and allow 3 to be random. In this
case, we must assign a multivariate distribution for
B. For example, we might take [3 | B,I'l = N(B,I).
The marginal distribution of y; is then

©) ply:|B,T,¢) = / £(3: | B,80h(8 | B, T)dB.

In (6), we use the exponential form for y; and the
systematic specification g(y;) = x73, so that 6; =
b~ g 1T @] and

f(yl ‘ ﬂ’ ¢l)
= exp{ly;b' g =7 B))

¢))
— blb' g T N1l aley) + ey, $3)}-

Things simplify substantially’by taking g as the
canonical link function g(:) = b ~1(.), giving

) f(yl ‘ﬂ,¢t)

8
= exp{[yx7 8 — b B1/a(¢y) + c(yi, )}

Using expression (8), it would be possible, at least
in theory, to complete the integrations in (6). In
practice, the necessary integrations might be best
approached through importance sampling or, in a
Bayesian analysis, the joint posterior distribution
might be calculated directly through Monte Carlo
resampling schemes (e.g., Smith and Roberts, 1993).

As for the analogous normal model (3), the ideas
culminating in equation (8) may be extended di-
rectly to the situation of different regressions among
areas. Unlike the normal situation, however, it
is difficult to conceptualize the way lack of inde-
pendence among responses in different small areas
could be handled.

In all of these hierarchical models, ways to deal
with dispersion parameters and covariance matri-
ces become a major statistical issue. It is always
possible, in theory, to find maximum likelihood esti-
mators. Can small sample properties of maximum
likelihood estimators of dispersion and covariance
parameters be improved, perhaps using some ap-
propriate analogues to REML estimation? Bayesian
modeling of these (nuisance) parameters is another
possibility that is becoming feasible with the recent
developments in Gibbs sampling and Monte Carlo
resampling schemes.
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MULTIVARIATE ASPECTS

~ Although the problem of small area estimation is
inherently multivariate, there has been a tendency
to look at the performance of estimation procedures
area-by-area. For example, Ghosh and Rao give the
mean-squared error formula (5.5) for the ith small
area. What is actually needed is the m x m mean-
squared error matrix

9) (mse(i,j)) = E{(87 — 0)6" — 0)T},

whose diagonal elements are given by (5.5) but
whose off-diagonal elements also have an important
role to play.

Suppose that two small areas i and i’ are com-
bined into a new area that we denote i Ui’. Now,
assuming a linear model, 6;,; = wo; + w'6; and
01, = wb? + w'6. Hence,

8]

mse(GUi’,i Ui'") = w? mse(,i) + (w')? mse@@,i’)

+2ww’ mse(i,i’),

which involves both diagonal and off-diagonal ele-
ments of (9). Cressie (1992) develops an approxima-
tion to (9), analogous to the univariate approxima-
tion (5.5).

As another example, a multivariate version of the
Laird and Louis (1987) bootstrap, described by the
authors in Section 5.2, is straightforward to de-
rive. Let 0 = (04,...,0,) denote the parameters
of the m small areas. A large number, B, of in-
dependent bootstrap samples {6*() : b = 1,...,B}
are drawn from the estimated marginal distribution
N(XA3,Y+1); see relation (2). Estimates 3*(b), *(b)
and I'*(b) are computed from the bootstrap data
0*(b) for each b. Then the EB bootstrap estimator
and the appropriate estimated posterior variance
matrix are, respectively,

B
9*FB() = (1/B)) _E(9 | 6*(b), B*(}), Z"(5),T" (b))
b=1

B
=(1/B)) _ 6B (b),

b=1

B
V* =(1/B)) _var( | 6*(b), 6*(), £(6), [" (b))
b=1

B
+(1/(B - 1) (6*FB(®) - 6°FB()

b1
A (H*EB(b) _ o*EB(.))T.

Given the geographic nature of most small area
estimation problems, the question of how to aggre-
gate is always waiting to be asked; hence, the mul-

tivariate aspects are important. The harder ques-
tion of how to disagregate has been at the core of
much of the debate about the adjustment of census
counts. Cressie (1988)shows that adjustment based
on small area estimation of both the synthetic and
empirical Bayes type offers smaller risk than no ad-
justment even under disaggregation of the small ar-
eas. Crucial to his argument is the appropriateness
of the small area model at the disaggregated level.
Tukey (1983) and Wolter and Causey (1991) reach
similar conclusions to Cressie; however, both arti-
cles make an assumption that when disaggregating
synthetically the true adjustment factor is known at
the level below which disaggregation occurs. There
is no certainty that adjustment will improve counts
at all disaggregated levels; Freedman and Navidi
(1992) give a simple example to demonstrate that
some adjusted counts can be worse than unadjusted
counts.

CONSTRAINED ESTIMATION

In a sense, constrained estimation takes a mul-
tivariate point of view in that interest is focussed
on how well the ensemble of the m small area esti-
mators matches the ensemble of the m estimands.
However, there is an opportunity to make the prob-
lem more explicitly multivariate.

First, we would like to fill in some of the his-
tory of constrained estimation. Tukey (1974, page
143) was aware that the ensemble of estimates
gives poor information about the ensemble proper-
ties of parameters (e.g., one such property might
be the population-weighted proportion of small ar-
eas whose lip-cancer rate is above .05 per thousand
population years at risk). Louis (1984) addressed
the problem in a normal homoscedastic model by
advocating that optimal (i.e., Bayes) shrinkage esti-
mates be modified so that their ensemble variance
matches the posterior expectation of the parameters’
ensemble variance. Cressie (1986, 1989) coined the
term “constrained Bayes estimation” and general-
ized Louis’ result to heteroscedastic normal models
(for census undercount).

Spjstvoll and Thomsen (1987) completely ignored
the multivariate aspects of the problem by consid-
ering each area one-at-a-time. Let 6; and 6; denote
the parameter and an estimator, respectively, for the
ith area. Assume that both parameter and estima-
tor are random, with first two moments finite, and
that E(; | 6;) = 6;. They propose to estimate ; by

(10) 9,‘ = a,-0~,- + bi,
where a; and b; are solved by specifying that E(§;) =

E(6,) = v and var(§;) = var(6;) = o2. In the discus-
sion to Spjgtvoll and Thomsen’s paper, it is pointed
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out that the solution yields the constrained empiri-
cal Bayes estimates obtained by Cressie (1986), al-
though no Bayes optimality criterion is invoked by
the authors.

The multivariate version of (10) is

(11) O=Af+b,

where A is an m x m matrix and b is an m x 1 vector.
Upon specifying that E()) = E(9) and var(d) =var(0),
Cressie (1990b, 1992) obtains a multivariate con-
strained estimator. In the notation of (1), 6 = p,
EO0) =X3,0=y,E(y |0 =0, var(y | ) = %, and
var(y) = ¥ + . Then the multivariate constrained
estimator for model (1), analogous to Spjgtvoll and
Thomsen’s, is given by (11), where

(12) A=TYV4Z +)"1/2
and
(13) b={I-T7%Z+D)"V2}Xx8.

Notice that § given by (11), (12) and (13) does not
shrink y towards X3 as far as the Bayes estimator
0* does (where A=T(X+T)"! and b = (I — A)XP).
In an elegant paper, Ghosh (1992) derives a mul-
tivariate constrained Bayes estimator for model (1):

14 0°={a+(1- a)1l’'/m}o",

where

1/2

’

m -1
a= [trace{(l - H’/m)V} (2(03‘ - 5*)2) +1

i=1

6 =E@©|y) = {TE+D) "y + T - T(E+D)7}XB,

Comment
p. Holt

The paper by Ghosh and Rao is a valuable sum-
mary of recent developments using empirical Bayes
and hierarchical Bayes methods for making small
area estimates. The need for methods which make
provision for local variation while pooling informa-
tion across areas is well established. The review

D. Holt is Professor, Department of Social Statistics,
University of Southampton, Southampton S09 5NH,
United Kingdom.

V = var( | y) = T{I - (S + I)~1T.

The vector #© has the property that it minimizes
E(XI,(6; — ¢,)? | y) with respect to ¢ and subject to
conditions that match first and second sample mo-
ments of ¢ with those same moments of § conditional
on y. Cressie’s proposal given by (11), (12) and (13)
does not invoke any optimality conditions and so
is likely to be less efficient than Ghosh’s estimator
(14).

Constrained Bayes estimation for more general
models, such as GLMs, is presented by Ghosh
(1992), although from an essentially univariate
point of view. Our earlier comment, that we do not
have flexible ways to model lack of independence in
nonlinear, nonnormal models, is equally appropriate
here.

Finally, we agree with the authors’ comment
about the importance of small area estimation in
medical geography. A good source for recent re-
search in this area is the May 1993 Supplement
Issue of the journal Medical Care (Proceedings of
the Fourth Biennial Regenstrief Conference, “Meth-
ods for Comparing Patterns of Care,” October 27—
29, 1991). We are working on incorporating spatial
variation and dependence into statistical methods
for these and other small area estimation problems.
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is a thorough appraisal of the methods and their
properties, and the numerical results reinforce ear-
lier results which demonstrate that these methods
are preferable to others such as synthetic estimation
and sample size dependent estimation.

The value of these approaches is not simply in
their ability to provide point estimates for each
small area which, on average, have better precision.
A very important additional factor is that a measure
of precision (MSE) and an estimator of this can be



