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As one step in this direction, Waterman and
Lindsay (1995) have considered an intermediate
asymptotics for the Neyman—Scott problem in which
the number of parameters goes to infinity, but as
the square root of the number of observations. In

Comment

Peter McCullagh

The modern theory of conditional inference is
an attempt to develop a sensible theory of confi-
dence intervals, that is to say, inferential statements
about parameters in the absence of prior infor-
mation or with the explicit declaration of prior
ignorance. In that sense, the impetus for recent de-
velopments in this area is the same force that mo-
tivated Fisher over a period of three decades to
develop a solid foundation for his theory of fidu-
cial inference. Although the terminology and formal
mathematical theory are due to Neyman (1937), the
essential idea and repeated sampling properties of
confidence intervals were first spelled out clearly
by Fisher (1930). Any ordinary mortal would have
been delighted by the enthusiasm with which his
ideas on likelihood and interval estimation were es-
poused, mathematized and extended by Neyman,
Pearson and others. For various reasons, Fisher
subsequently disowned, and even condemned with
characteristic polemic, the idea of confidence in-
terval as an inferential statement. The principal
objections raised by Bartlett and Fisher to confi-
dence statements concern their sometimes poor con-
ditional properties and the necessity to specify in
advance a particular error rate. While the second
of these objections can be overcome to some ex-

tent by constructing a set of confidence intervals °

and presenting the result in the form of a confi-
dence distribution, the first objection is more diffi-
cult to surmount. Fisher’s effort, though admirable
in its goal and skillfully argued, was ultimately
unsuccessful.

Neo-Fisherians set themselves a more modest
goal. The conditionality principle in some form is
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this setting, the maximum likelihood estimator is
asymptotically biased, but the bias can be removed
by using projection onto the second-order Bhat-
tacharyya scores, and the resulting estimators at-
tain the asymptotic Cramér—Rao lower bound.

accepted, but its consequence, the likelihood princi-
ple, is not. If reasonably firm prior information is
available, it must be used in Bayes’ theorem. This
is uncontroversial. If no prior information is avail-
able, neither personal opinion nor “objective igno-
rance prior” is regarded as a satisfactory substitute.
Inferential statements must then be constructed
without recourse to Bayes’ theorem, and such state-
ments must have acceptable conditional properties,
at least in large samples. One cannot expect good
agreement among statisticians on the basis of small
samples because prior information and/or choice of
sample space necessarily plays a nonnegligible role.
The best that one can hope for is good agreement in
large samples. Reid’s paper provides a timely oppor-
tunity to review the extent to which a satisfactory
large-sample frequency theory of inference has been
developed in the past two decades.

Before delving into details, it seems pertinent to
ask how it is proposed to construct a satisfactory
theory based on a mathematical contradiction. Con-
ditionality and sufficiency are accepted, but the like-
lihood principle is not, in apparent contradiction of
Birnbaum’s theorem. This prima facie indefensible
position cries out for an explanation. The thinking
on this issue seems to run as follows:

(i) Many applied statisticians find significance
tests very useful in practice.
(ii) Any tool that has proved to be so useful over
such a long period cannot be all bad.
(i1ii) Any statistical principle that denies a role for
significance tests cannot be a good principle.

One need only examine the literature on the conver-
gence of the Gibbs sampler or Markov-chain simu-
lation methods to see that even avowed Bayesians
find significance tests useful. The indirectness of the
interpretation of p-values, a point of sharp criti-
cism in all discussion of principles, does not seem
to present a serious obstacle to use. A strong reluc-
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tance to abandon significance tests is not surprising.
Consequently, many have refused to accept the like-
lihood principle, or have sought to evade Birnbaum’s
equivalence theorem using arguments such as that
given by Durbin (1970). My own view is that the
likelihood principle is fundamentally sound within
the confines of its own arena, that is, provided that
the model is judged adequate. However, few statisti-
cal models can safely be assumed adequate. Conse-
quently, acceptance of the likelihood principle for es-
timation conditional on the model does not, in itself,
deny a role for significance tests as a way to judge
model adequacy (Box, 1980). Confidence intervals,
derived provisionally on the model, are a different
matter. It is fortunate that most confidence inter-
vals have a direct interpretation coinciding precisely
with the interpretation that many elementary text-
books strive in vain to deny. This is essentially the
same interpretation that Fisher would like to have
established on a firmer footing through his concept
of fiducial probability.

Coming back to Reid’s article, it is agreed that
conditioning on ancillary statistics is essential to
avoid misleading conclusions and to make proba-
bility statements that are relevant to the data at
hand. It is hard to disagree with the claim that con-
ditional confidence intervals and significance tests
are preferable to unconditional intervals and tests.
However, the paradoxes and ambiguities are not en-
tirely eliminated by conditioning. The general topic
of conditional inference is a vigorous research area
that has led to numerous improved approximations
and has generated many interesting ideas and novel
results in the past two decades. But nothing that I
have seen in recent years suggests that a totally
satisfactory frequency-based theory of inference is
likely to emerge. Even for a simple location—scale
model where the p* formula is exact, there may
be no unique maximal ancillary (McCullagh, 1992).
The various conditional distributions lead to differ-
ent, and apparently contradictory, inferential state-
ments, all of which are exact. At present, I see no
way to avoid these and other irritating contradic-
tions without adopting the likelihood principle and
- all that it entails. So, while I admire Reid’s opti-
mism regarding future developments, I cannot en-
tirely share it.

However, Reid is quite right to emphasize that
conditioning is used for several distinct purposes,
one of which is the elimination of nuisance param-
eters. Even though the Bayesian paradigm handles
this operation automatically by integration, any de-
vice that relieves the statistician of the task of spec-
ifying a prior on the nuisance parameters must be
attractive. It is not the likelihood principle that

many statisticians find unappealing in the orthodox
Bayesian paradigm, but the necessity to specify in
advance, in a broadly convincing way, the entire set
of models to be considered, and a prior distribution
on that set. To do this in a way that is neither ar-
bitrary nor capricious is an enormously challenging
task. In cases where the option is available, condi-
tioning may provide sensible relief from the mega-
lomania of orthodoxy, though possibly at the cost
of sacrifice of principle and some loss of efficiency.
The avoidance of unnecessary modeling, while not
a matter of principle, remains a sound guideline
for statistical practice even if it conflicts with
orthodoxy.

Although the two papers under discussion appear
unrelated, there are a number of intriguing links.
Exponential families play a central role in both pa-
pers. The avoidance of unnecessary modeling lies
at the heart of recent developments in the theory
and practice of estimating functions. The aim is to
base all inferences on assumptions that can easily
be checked, thereby achieving a degree of robust-
ness to distributional assumptions.

Certain types of transformation models have the
property that estimating functions can be con-
structed for the parameters of interest alone, effec-
tively finessing the nuisance parameters. To give
one illustration, consider a simplified version of the
problem of shape matching and estimation in which
we begin with a standard template defined in two
equivalent ways,

{x(t) e R% 0 <t <2n} ={x: h(x) =1},

either parametrically by the periodic function x: (0,
27) — R? or by the level sets of 2: R? — R. The
function A is assumed to satisfy the homogeneity
condition A(px) = ph(x) for p > 0, so that the level
sets of & are scaled versions of the template, which
must therefore be star-shaped. Suppose that the ac-
tual observations are a centered, scaled and rotated
version of the template, observed with error speci-
fied by the model

yj =w + EJR¢X(AJ),

in which @ € R? is the center, R, is a rotation ma-
trix and ¢; is a positive scalar random variable with
mean p. The parameters of interest are those oc-
curring in the template specification function x(-)
together with (w, p, ), and (A4, ..., A,) are either
nuisance parameters or random variables. In the
latter case A and & are assumed to be independent.
Then,

R(_;sl(yj —w)/p
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is a point in R2 whose expectation is x(A ;). Conse-
quently,

R(R N (y; — @)/p) -1

has zero mean for each j = 1,..., n, and nonzero
mean off the template. These n elementary esti-
mating functions can be combined linearly in an

optimal manner to obtain estimates of the param-
eters of interest without involving the nuisance
parameters.

It would be of considerable interest to know
whether the preceding method can be extended in
useful ways, possibly to nonlinear distortions of tem-
plates.

Comment: Alternative Aspects
of Conditional Inference

George Casella, Thomas J. DiCiccio and Martin T. Wells

The roles of conditioning in inference are almost
too varied to be summarized in one paper. Professor
Reid has done a wonderful job of explaining and il-
lustrating some of these roles. We expand on a num-
ber of her points, with particular attention to the
practical uses and implementation of the methods.
We also discuss some overall goals of conditional in-
ference and alternative ways of achieving them.

1. INTRODUCTION

The techniques of conditional inference are a col-
lection of extremely powerful tools. They allow for
the construction of procedures with extraordinarily
good properties, especially in terms of frequentist
asymptotic behavior. In fact, in many cases these
procedures are so good that one begins to wonder
why they are not more widely used; that is, although
statistics methodology journals often contain arti-
cles on conditional inference, such techniques have
not really found their way into the arsenal of the
applied statistician and thus into the subject mat-
ter journals. There are, we feel, two reasons for this.
One is that, unfortunately, the procedures are fairly
complex in their derivation and, hence, in their im-
plementation, and for that reason alone they may

"not have received thorough consideration. The sec-
ond reason is somewhat more subtle, but perhaps
more important. If an experimenter uses condi-
tional inference techniques, the goal of the anal-
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ysis (and the exact type of ultimate inference to
be made) is not at all clear. In Section 1, Reid re-
counts four roles of conditional inference that are
identified by Cox (1988). However, to a prospective
user of these techniques, these goals are vague, and
the effort needed to actually implement these so-
lutions can be prohibitive. For example, consider
Example 3.3, used to illustrate conditional infer-
ence techniques in the estimation of the gamma
shape parameter when the scale parameter is un-
known. The density given by (3.3) and (3.5), which
contain components that are “difficult to calculate,”
is offered as a conditional inference solution to the
problem. This density can be used to test an hy-
pothesis or, with some difficulty, to calculate a confi-
dence interval, but the details of carrying out these
procedures are quite complex. Moreover, if one is
interested in a point estimate and evaluation of
the performance of the estimate, this density will
not suffice. Rather, one might use a saddlepoint
approximation (Reid, 1988) for the density of the
maximum likelihood estimate, yielding a density
proportional to

() (LA () — 1372
-exp[n{(§ — )AW) +§ — ¢Ini}],

where A(:) is the digamma function. Although the
approximation is remarkably accurate, computation
of the normalizing constant (which involves inte-
grating this function with respect to ) is quite de-
manding, limiting the use of the formula. Thus, the
“naive” user is shortchanged. Rather than the ac-
curate approximations and, hence, more precise in-
ference, the user gets only halfway there and can
be faced with calculations of prohibitive complexity.



