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Comment

Bruce G. Lindsay and Bing Li

The two papers before us consider the same
basic problem: statistical inference for a finite di-
mensional parameter, possibly in the presence of
nuisance parameters. The strikingly different re-
sults arise from the differing approaches to mak-
ing modelling assumptions. Whereas Professors
Liang and Zeger would have us make the min-
imal assumptions necessary to achieve the in-
ference, Professor Reid shows that a completely
believed parametric model assumption can be
turned into a gold mine of more precise asymp-
totic approximations. We wish to discuss here
some aspects of the middle ground between these
two extremes and how it relates to conditional
inference.

Perhaps it is useful to make a distinction be-
tween the goals that we attempt to achieve by em-
ploying conditional inference and the natural conse-
quences to which conditional inference leads. These
goals are, for example, (i) to make the assessment of
the precision of a statistical method as true to the
experiment that actually occurred as possible and
(ii) to make the inference about the interest param-
eter as accurate as possible by minimizing the ef-
fect of the estimation of the nuisance parameter.
If an appropriate parametric model is applicable,
as it is in many important examples, then con-
ditional inference is a powerful means to achieve
these purposes. However, we want a statistical pro-
cedure to possess these desirable properties whether
or not we have suitable ancillary statistics to con-
dition on, and whether or not we have a fully
prescribed model under which we can talk about
conditional probability in accurate terms. Although
the principle of conditioning on ancillary statis-
tics or on sufficient statistics for the nuisance pa-
rameter is very clear when we have rigidly pre-
scribed a parametric model, we ask what its sta-
tistical meaning might be outside those contexts.
‘We offer here some illustrations of how the idea
of projection, as used by Liang and Zeger, can
be useful in achieving these goals under such
circumstances.
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We start with a basic tool, the Bhattacharyya
scores. Let X = (X,..., X,,) be independent ran-
dom observations with density f(x; 0). The Bhat-
tacharyya scores B;, i =0,1,2,..., are defined by

' f(x; 0)/96°
fx0) 7

For example, if we write the log-likelihood function
as [(0; X), then B is the score function / and B, is
[+ I2. We consider {B,: i =0,1,..., k} as vectors
in the Hilbert space of square-integrable functions
h(x, 6), with inner product E{%,(X, 0)hy(X, 0); 0}.
We use 4 to denote the subspace spanned some or
all Bhattacharyya scores; P, the orthogonal projec-
tion onto #; and I — P, the orthogonal projection
onto the orthogonal complement of %. We wish to
discuss how one can use these scores to evaluate or
improve conditional-type properties of inference.

Our first illustration is an optimality property of
the observed Fisher information. Let 6 be the maxi-
mum likelihood estimate. Conditional inference sug-
gests that the assessment of the precision of 6
be conditioned on any ancillary statistics. The re-
sults of Efron and Hinkley (1978) indicate that, for
translation families and numerous other cases, the
variance of 6, conditioned upon an ancillary, is ap-
proximated by the inverse of the observed Fisher
information. Here, the goal is to make the preci-
sion assessment more relevant to the realized ex-
periment, and it is achieved by drawing inference
conditioning on ancillary statistics.

It is possible, however, to achieve this goal with-
out specifying an ancillary statistic, either exact or
approximate. Consider the following (unconditional)
minimization problem: choose a statistic 7'(X) that
minimizes the mean squared error

(1) By=1, B,= =1,2,....

E,{(8 - 6,)" - T(X)}".

Lindsay and Li (1995) demonstrated that, among
a wide class of statistics, the asymptotically opti-
mal choice of T(X) is once again the inverse of the
observed Fisher information. The result relies not
on the specification of ancillaries or approximate
ancillaries, which may be difficult to obtain un-
der some circumstances, but rather an asymptotic
Cramér—Rao-type argument based on the projection
of (6 — 6y)? — T(X) onto # = span{B;: i =0, 1,2}.
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Our second illustration concerns the construction
of an estimating equation for the interest param-
eter in the presence of the nuisance parameter. A
reasonable construction is based on the following
consideration:

(a) the consistency of the estimation of A should not
affect the consistency of the estimation of ¢, that
is, E{g(X, ¥¢, A); ¥g, A’} = 0 for all A and A
This is condition (b) of Section 3.1 of Liang and
Zeger’s paper;

(b) among all those A(x, §, A) that satisfy (a), g has
the highest efficiency, or is nearest to the uncon-
ditional score; that is,

E[{g(X’ (//0’ A) - U(X’ (//0’ A)}z; ‘l/O’ /\]
< E[{A(X, 9, 1) = U(X,, o, M} ¥, Al,

where U denotes the unconditional score about
¢ evaluated at ¢, and A.

Suppose that the data X can be decomposed into
(T, S(¢)) such that the likelihood has the following
factorization:

(2) f(x5 4, A) = F(@]s(); 9)f (& 95 A).

The first factor, the conditional likelihood of T' given
S(#), is independent of A only when the value of
¢ that indexes the likelihood coincides with that
which indexes the the random variable S. Let ¢ =
o be the true value of the parameter of interest, as
in single versus composite test for . As discussed
by Reid, there are various reasons to base infer-
ence on the “conditional likelihood” f(¢|s(¢g), ¥, A).
For example, the likelihood ratio tests based on this
have similar regions and, if the conditional density
has monotone likelihood ratio, they are most pow-
erful unbiased tests. The conditional score function
should, then, be defined as the derivative of this
“conditional likelihood,” that is,

g(x, dJO, /\)
_ dlog f(x; Yo, 1) _ dlog f(s($o); 5 A)
W s .

Under some regularity conditions, the conditional
score g is the unique estimating equation that sat-
isfies conditions (a) and (b). See Godambe (1976)
and Lindsay (1982).

Again, the conditional procedure leads to an esti-
mating equation that meets our goal, provided that
factorization (2) applies. However, requirements (a)
and (b) themselves are not conditional. Indeed, they
can be satisfied, in theory at least, even without the

factorization (2). The optimization problem implicit
in (a) and (b) amounts to projecting the true score
function about ¢ onto the orthogonal space of £,
the Hilbert space spanned by all the Bhattacharyya
scores about A [replacing d6 by JA in (1)]; see Small
and McLeish (1988, 1989). In other words,

(I = Pap)U(X, ¢y, A)

is always the optimal solution, whether or not there
is a sufficient statistic for A (Lindsay and Water-
man, 1992). Perhaps the most important aspect of
the Waterman—Lindsay results is that if we write

(I - Py)U = (I~ P)U +(Py — Py)U +--,

where P, is the projection onto span{B;: i =
0, ..., k}, then the stochastic magnitude in n of the
correction terms (P, — P, 1)U are declining in £,
and in examples dramatically so, so that simply
by using (I — P,)U, one often has a score function
nearly identical to (I — P,)U. Thus, just as in the
observed Fisher information problem, the key as-
pects of conditioning can be obtained by projection
onto just the first- and second-order scores.

It is also important that (a) and (b) are well-posed
requirements under semiparametric assumptions,
such as discussed in Liang and Zeger’s paper, under
which we cannot talk about conditional probability
in accurate terms.

The final issue we wish to raise is the ques-
tion of suitable asymptotics. Any actual statisti-
cal experiment has a finite sample size. It is very
likely that any number of asymptotic schemes could
be used to approximate the finite sample proba-
bility calculations. For example, in the Neyman—
Scott problem, two widely different approximations
to the properties of the maximum likelihood esti-
mator arise, depending on whether the number of
nuisance parameters is fixed as the number of ob-
servations increases (standard asymptotics, MLE is
consistent and efficient) or the number of nuisance
parameters increases proportionally to the num-
ber of observations (MLE is possibly inconsistent,
or consistent but inefficient; Neyman and Scott,
1948). The second asymptotics tells us that some
aspects of the first asymptotics must be rather in-
accurate when there are many nuisance parame-
ters. Although standard approaches that improve
inferential properties under the first asymptotics
are no doubt superior in the Neyman—Scott prob-
lem as well, unless they are evaluated specifi-
cally for the effect of many nuisance parameters,
it is hard to assess the extent to which they are
successful.
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As one step in this direction, Waterman and
Lindsay (1995) have considered an intermediate
asymptotics for the Neyman—Scott problem in which
the number of parameters goes to infinity, but as
the square root of the number of observations. In

Comment

Peter McCullagh

The modern theory of conditional inference is
an attempt to develop a sensible theory of confi-
dence intervals, that is to say, inferential statements
about parameters in the absence of prior infor-
mation or with the explicit declaration of prior
ignorance. In that sense, the impetus for recent de-
velopments in this area is the same force that mo-
tivated Fisher over a period of three decades to
develop a solid foundation for his theory of fidu-
cial inference. Although the terminology and formal
mathematical theory are due to Neyman (1937), the
essential idea and repeated sampling properties of
confidence intervals were first spelled out clearly
by Fisher (1930). Any ordinary mortal would have
been delighted by the enthusiasm with which his
ideas on likelihood and interval estimation were es-
poused, mathematized and extended by Neyman,
Pearson and others. For various reasons, Fisher
subsequently disowned, and even condemned with
characteristic polemic, the idea of confidence in-
terval as an inferential statement. The principal
objections raised by Bartlett and Fisher to confi-
dence statements concern their sometimes poor con-
ditional properties and the necessity to specify in
advance a particular error rate. While the second
of these objections can be overcome to some ex-

tent by constructing a set of confidence intervals

and presenting the result in the form of a confi-
dence distribution, the first objection is more diffi-
cult to surmount. Fisher’s effort, though admirable
in its goal and skillfully argued, was ultimately
unsuccessful.

Neo-Fisherians set themselves a more modest
goal. The conditionality principle in some form is

Peter McCullagh is Professor, Department of Statis-
tics, University of Chicago, 5734 University Avenue,
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this setting, the maximum likelihood estimator is
asymptotically biased, but the bias can be removed
by using projection onto the second-order Bhat-
tacharyya scores, and the resulting estimators at-
tain the asymptotic Cramér—Rao lower bound.

accepted, but its consequence, the likelihood princi-
ple, is not. If reasonably firm prior information is
available, it must be used in Bayes’ theorem. This
is uncontroversial. If no prior information is avail-
able, neither personal opinion nor “objective igno-
rance prior” is regarded as a satisfactory substitute.
Inferential statements must then be constructed
without recourse to Bayes’ theorem, and such state-
ments must have acceptable conditional properties,
at least in large samples. One cannot expect good
agreement among statisticians on the basis of small
samples because prior information and/or choice of
sample space necessarily plays a nonnegligible role.
The best that one can hope for is good agreement in
large samples. Reid’s paper provides a timely oppor-
tunity to review the extent to which a satisfactory
large-sample frequency theory of inference has been
developed in the past two decades.

Before delving into details, it seems pertinent to
ask how it is proposed to construct a satisfactory
theory based on a mathematical contradiction. Con-
ditionality and sufficiency are accepted, but the like-
lihood principle is not, in apparent contradiction of
Birnbaum’s theorem. This prima facie indefensible
position cries out for an explanation. The thinking
on this issue seems to run as follows:

(i) Many applied statisticians find significance
tests very useful in practice.
(ii) Any tool that has proved to be so useful over
such a long period cannot be all bad.
(iii) Any statistical principle that denies a role for
significance tests cannot be a good principle.

One need only examine the literature on the conver-
gence of the Gibbs sampler or Markov-chain simu-
lation methods to see that even avowed Bayesians
find significance tests useful. The indirectness of the
interpretation of p-values, a point of sharp criti-
cism in all discussion of principles, does not seem
to present a serious obstacle to use. A strong reluc-



