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The Mixture Transition Distribution Model

for High-Order Markov Chains and
Non-Gaussian Time Series

André Berchtold and Adrian E. Raftery

Abstract. The mixture transition distribution model (MTD) was introduced
in 1985 by Raftery for the modeling of high-order Markov chains with a
finite state space. Since then it has been generalized and successfully applied
to a range of situations, including the analysis of wind directions, DNA
sequences and social behavior. Here we review the MTD model and the
developments since 1985. We first introduce the basic principle and then
we present several extensions, including general state spaces and spatial
statistics. Following that, we review methods for estimating the model
parameters. Finally, a review of different types of applications shows the
practical interest of the MTD model.
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1. INTRODUCTION

This paper presents a review of the mixture transi-
tion distribution (MTD) model introduced by Raftery
(1985a) for the modeling of high-order Markov chains.
In this first section, we introduce the concept of
Markov chains and the MTD model, and we motivate
their use using two examples. This section can be used
as a self-contained introduction to the subject for those
who are interested in a brief overview. In the rest of the
article we go into more detail.

In Section 2, we define the basic MTD model and
we give its properties. Some extensions and generaliza-
tions are presented in Section 3, and parameter estima-
tion is considered in Section 4. Section 5 presents a se-
lection of applications for which the MTD model has
proved to be useful. These applications come from dif-
ferent fields, including the analysis of wind directions,
social behavior, DNA sequences and financial time se-
ries. Finally, we discuss some other approaches to the
modeling of discrete-valued and non-Gaussian time se-
ries in Section 6.

1.1 Markov Chains

The Markov chain is a probabilistic model used
to represent dependences between successive obser-
vations of a random variable. This model was intro-
duced by Andrej Andreevic Markov at the beginning
of the 20th century and it is used in many disciplines,
including meteorology, geography, biology, chemistry,
physics, behavior, social sciences and music. For com-
prehensive treatments of Markov chains and their ap-
plications, see, for example, Kemeny and Snell (1976),
Kemeny, Snell and Knapp (1976), Karlin and Taylor
(1981) and Brémaud (1999).

In this paper, we consider a discrete-time random
variable X; taking values in the finite set {1, ..., m}.
Our goal is to predict or explain the value taken
by X; as a function of the values taken by previous
observations of this same variable. The first-order
Markov hypothesis says that the present observation at
time ¢ is conditionally independent of those up to and
including time (f — 2) given the immediate past [time
(t — 1)]. Thus we can write

P(X;=ioglXo=1is ..., Xs—1 =11)
= P(X; =io|X;—1 =1i1)
= Qilio(f),

where i;,...,ip € {1,...,m}. If we suppose that the
probability ¢; ;,(¢) is time-invariant, it is replaced

by gi,i, and we have a homogeneous Markov chain.
Considering all combinations of i1 and ip, we construct
a transition matrix Q, each of whose rows sums to 1:

X;
Xl‘—l 1 m
1 q11 dim
Q:
Let
(1) xe=(x(1), ..., x(m)

be a vector such that x,(i) = 1 if X; =i and O other-
wise, and let x; be the probability vector

) =PX, =1),...,P(X, =m)) .
Then the following relationships hold:
3) X =x-10,
“) X =x0"
The process is fully defined once we know the initial
vector xo and the transition matrix Q.
In some situations, the present depends not only
on the first lag, but on the last £ observations. We

have then an £th-order Markov chain whose transition
probabilities are

P<Xl :i()lXO :il, Ceey Xl—l :ll)
) =P(X;=io|lXi—¢ =i¢,.... Xy—1 =11)
=diy--ig-

For instance, if we set £ =2 and m = 3, the corre-
sponding transition matrix is

Xt 1 1 1 2 2 2 3 3 3
X, 02X 1 X—; 1 2 3 1 2 3 1 2 3
1 1 fg111 0 0 g2 0 0 g3 0 0 7
2 1 g211 0 0 g2 0 0 g213 0 O
3 1 311 0 0 g320 0 0 g33 0 O
1 2 0 g21 0 0 g2 0 0 g3 O
0= 2 2 0 g1 0 0 g 0 0 g3 O
32 0 g1 0 0 g3 0 0 g33 O
1 3 0 0 g3 0 0 gi32 0 0 ¢33
2 3 0 0 g31 0 0 gqa30 0 0 ¢33
3 3 LO 0 ¢33 0 0 g332 0 0 g333]

When the order is greater than 1, notice that the
transition matrix @ contains several elements cor-
responding to transitions that cannot occur. For in-
stance, it is impossible to go from the row defined
by X;—2 =1 and X;_1 = 2 to the column defined
by X;—1 =1 and X; = 1 because of the different
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value taken by X;_j. The probability of this transi-
tion is then O and we call this element a structural
zero. Since the exact form of the transition matrix is
known for any combination of ¢ and m, it is pos-
sible to rewrite Q in a more compact form exclud-
ing the structural zeros. This way of writing Q, as
given by Pegram (1980), is called the collapsed or
reduced form of O and is denoted by R. The re-
duced form of the matrix corresponding to £ = 2 and
m=731is X,

Xl‘—2 X[_l 1 2 3

1 L [qur qiiz q1137]
2 1 Q211 G212 9213
3 1 g311  q312 4313
1 2 q121 q122 4123
R= 2 2 g1  q222 4223
32 g31 q322 4323
1 3 q131 Q132 4133
2 3 q231 q232 4233
3 3 Lgsst g332 ¢33

Each possible combination of £ successive observa-
tions of the random variable X is called a state of the
model. The number of states is equal to m* (=3? =9
in our example). In the case of a first-order Markov
chain, each value taken by the random variable X is
also a state of the model.

The relationships (3) and (4) defined in the case
of a first-order Markov chain still hold. Whatever the
order is, there are (m — 1) independent probabilities
in each row of the matrix Q, the last one of which is
completely determined by the others since each row
is a probability distribution summing to 1. The total
number of independent parameters to be estimated is
thus equal to mt(m — 1). Given a set of observations,
these parameters can be computed as follows. Let
nj,...i; denote the number of transitions of the type

Xi=1o
in the data. The maximum likelihood estimate of the
corresponding transition probability g;,...;, is then

Xt—ZZiZ, IR Xl‘—lzila

Niy-ig

qiy--iy = ,
Nige..ip+

m
Njp.iy+ = Z Niy...ig

ip=1

where

and the log-likelihood of the entire sequence of obser-

vations is written
m

LL= Z Niy...ig log(éiemio)-

ig,esig=1

1.2 The Need for Parsimonious Models of
High-Order Markov Chains

Markov chains are well suited for the representation
of high-order dependencies between successive obser-
vations of a random variable. Unfortunately, as the or-
der ¢ of the chain and the number m of possible val-
ues increase, the number of independent parameters in-
creases exponentially and rapidly becomes too large to
be estimated efficiently, or even identifiably, with data
sets of the sizes typically encountered in practice. Ta-
ble 1 gives the number of independent parameters for
different combinations of £ and m.

The mixture transition distribution model was in-
troduced to approximate high-order Markov chains
with far fewer parameters than the fully parameterized
model. Each element of a transition matrix is the prob-
ability of observing an event at time ¢ given the events
observed at times (¢ —£) to (¢t — 1). In the MTD model,
the effect of each lag upon the present is considered
separately and the conditional probability is modeled
by

¢
P(X;=iolXi—g=ig..... Xis1=1i1) =Y AgQigiy-
g=1

where the g; gig are the probabilities of an m x m
transition matrix and Ag is the weight parameter
associated with lag g. This model has only m(m — 1) +
(€ — 1) independent parameters and each additional
lag adds only one additional parameter. Table 1 shows
that when the order is greater than 1, the MTD model
is far more parsimonious than the corresponding fully
parameterized Markov chain. Therefore, it can be used
to estimate high-order transition matrices, even when
the amount of data is relatively small.

Parsimonious modeling can also make interpretation
easier. A high-order Markov chain can have hundreds
or thousands of parameters and it can be difficult to in-
terpret the estimates. On the other hand, a MTD model
is generally composed of only one small transition ma-
trix and a vector of lag parameters which are easier to
interpret.

1.3 Two Examples

The following two examples show situations where a
high-order relationship between successive events can-
not be efficiently represented by a standard Markov
chain. On the other hand, a MTD model is appropri-
ate.



MIXTURE TRANSITION DISTRIBUTION MODEL 331

TABLE 1
Maximal number of independent parameters for
different Markov chains and MTD models

Number of Order Markov MTD

values m L chain model

2 1 2 2
2 4 3

3 8 4

4 16 5

3 1 6 6
2 18 7

3 54 8

4 162 9

5 1 20 20
2 100 21

3 500 22

4 2,500 23

10 1 90 90
2 900 91

3 9,000 92

4 90,000 93

To evaluate the quality of fit of a model and to com-
pare different models, we use the Bayesian information
criterion (BIC). This statistic is defined by

(6) BIC = —2LL + plog(n),

where LL is the log-likelihood of the model, p is the
number of independent parameters and » is the num-
ber of components in the log-likelihood. The model
achieving the lowest BIC is chosen. The difference be-
tween the BIC values for different models is an approx-
imation to twice the logarithm of a Bayes factor for
one model against the other (Schwarz, 1978; Kass and
Raftery, 1995). Katz (1981) discussed the use of BIC
for Markov chains. Bayes factors have the advantage
over standard significance tests of being validly defined
for the comparison of nonnested models and also for
the comparison of multiple models, both of which we
have to deal with here. We do not take into account the
parameters estimated to be zero; this is indicated by
the derivation of the BIC approximation and is also the
convention in counting degrees of freedom for models
for categorical data. The number of parameters for a
given model can thus be lower than the number given
in Table 1.

In the first example, we study a series of wind
directions at Koeberg, South Africa. We have a data
set of size 744 giving the hourly wind directions
during the month of May 1985. The original data
appeared in MacDonald and Zucchini (1997), where

they were coded into 16 directions. For the purpose
of our example, we have recoded the data into m = 4
directions: N, NNE, NE and ENE were recoded as
state 1, E, ESE, SE and SSE were recoded as state 2
and so on. To have the same number of components in
the log-likelihood of each model (730), we conditioned
on the first 14 data values and so did not include their
contributions to the log-likelihood. Table 2 summarizes
our results. The independence model is worse than
any Markovian model, according to the BIC criterion,
showing that there is dependence between successive
observations. Among the fully parameterized Markov
chains, the best result is achieved by the first-order
model whose BIC is equal to 899.1. By examining
the reduced form, R, of the transition matrix of the
second-order Markov chain, we can see that some rows
are very poorly estimated:

X Number
X0 Xiq 1 2 3 4 of data
1 1 [0.8482 0.0625 0.0089 0.080 | 112
2 1 0.6667 0.3333 0 0 15
3 1 0 0.5000 O 0.5000 2
4 1 0.6364 0.0909 0 0.2727 11
1 2 0.3571 0.3571 0.1429 0.1429 14
2 2 0.0365 0.9051 0.0584 0 274
Ry = 3 2 0.0370 0.7778 0.1852 0 27
4 2 0 0 0 0 0
1 3 0 0 1 0 1
2 3 0 0.4348 0.5217 0.0435 23
3 3 0.0180 0.1441 0.8198 0.0181 111
4 3 0 0.1250 0.7500 0.1250 8
1 4 0.0769 0 0 0.9231 13
2 4 0 0 0.5000 0.5000 2
3 4 0.2500 0 0.2500 0.5000 4
4 4 10.0796 0 0.0531 0.8673 | 113

For instance, the third row was estimated with only
two observations, which is obviously not enough.
This suggests that a more parsimonious model of the
transition matrix may be useful.

Table 2 shows that the MTD model is preferred to
the first-order Markov chain by the BIC criterion. The
best model is of order 2 and has a BIC value of 859.3.
The MTD 2 model has parameters A1 = 0.7569 for the
first lag, Ao = 0.2431 for the second and the transition
matrix is

0.8301 0.0689 0.0077 0.0933
_10.0369 0.9012 0.0619 0
0= 0.0155 0.1553 0.8070 0.0222

0.0779 0 0.0528 0.8693
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TABLE 2
Modeling of the wind direction at Koeberg in May 1985

Model Number of
parameters LL BIC

Independence 3 —954.8 1929.4
MC 1 11 —413.3 899.1
MC 2 27 —374.9 927.9
MC 3 39 —346.2 949.5
MTD 2 11 —393.4 859.3
MTD 3 12 —393.2 865.6

NOTE: MC stands for Markov chain, MTD stands for
mixture transition distribution model and the number
following the name of a model is its order. The model
with the best BIC value is shown in bold.

The reduced form 1?2 of the transition matrix ob-
tained through the MTD 2 model is

Xt
Xi—n Xi1 1 2 3 4
1 1 [0.8301 0.0689 0.0077 0.09337]
2 1 |0.6373 0.2713 0.0209 0.0705
3 1 |0.6321 0.0899 0.2020 0.0760
4 1 |0.6472 0.0522 0.0187 0.2819
1 2 0.2297 0.6989 0.0487 0.0227
2 2 10.0369 09012 0.0619 0
3 2 | 0.0317 0.7199 0.2430 0.0054
Ry= 4 2 100469 0.6821 0.0597 0.2113
1 3 | 02135 0.1343 0.6127 0.0395
2 3 10.0207 03366 0.6258 0.0169
3 3 | 0.0155 0.1553 0.8070 0.0222
4 3 100306 0.1175 0.6236 0.2283
1 4 102607 0.0168 0.0418 0.6807
2 4 100679 02191 0.0550 0.6580
3 4 100627 0.0377 02361 0.6635
4 4 100779 0 0.0528 0.8693 |

It can be seen that the rows of R, that were
estimated with a large number of data points have
almost identical fitted values in the full Markov chain,
R>, and in the MTD model, Iéz. On the other hand,
rows estimated with a very small number of data points
in R, can be different and tend to be “smoother” in R5.
This example suggests that the MTD model can be
used to improve the estimation of a Markov chain by
a kind of smoothing of the raw empirical transition
probabilities without too much modification of what is
already well estimated.

As another example, MacDonald and Zucchini
(1997) presented a time series of the daily counts of
epileptic seizures of a patient. We consider here a
binary variable describing for each day whether the
patient had no epileptic seizure or at least one. Here,
0 denotes no epileptic seizure and 1 denotes at least

one. The data are to be read row by row, from left to

right:

0100001
0110111
0011101
0000100
0110110
1111111
0010100
0000010
0000011
0000000

1011110
1111101
0101000
0100010
0011011
0111011
0100100
1110000
0000000
0000000

0111111
0111110
0000010
0010010
1111101
0011101
0000011
0101110
0000000
0

The complete time series is of length 204, but as
before we conditioned on the first 14 observations
when computing the log-likelihood. We estimated
Markov chains as well as MTD models and the results
are shown in Table 3.

In this example, the results achieved by the MTD
model show that the present is best explained by
using as many as eight lags. Computing the fully
parameterized eighth-order Markov chain would not
have been realistic here because of the huge number of
parameters involved. The parameters of the best MTD
model are

A1 =0.1278, Ay =0.0963, A3 =0.0953,
Mg =0.2605, A5=-0.1778, Ag=0.0932,
A7 =0.1389, Ag=0.3658

TABLE 3

Modeling of the epileptic data

Number of
Model parameters LL BIC
Independence 1 —129.3 263.9
MC 1 2 —122.6 255.6
MC 2 4 —119.3 259.6
MC3 8 —-117.2 276.3
MC 4 16 —111.5 306.9
MC 5 27 —101.9 345.4
MTD 2 3 —119.5 254.7
MTD 3 4 —117.7 256.4
MTD 4 5 —113.2 252.7
MTD 5 6 —112.4 256.2
MTD 6 7 —-110.4 257.6
MTD 7 8 —107.9 257.7
MTD 8 9 -102.3 251.9
MTD 9 10 —100.5 253.5
MTD 10 11 —100.0 257.7

NOTE: MC stands for Markov chain, MTD stands for
mixture transition distribution model and the number
following the name of a model is its order. The model
with the best BIC value is shown in bold.



MIXTURE TRANSITION DISTRIBUTION MODEL 333

for the lag parameters and

0= 0.8750 0.1250
~\0.1723 0.8277

for the transition matrix.

The most important lag is the eighth, which explains
why this model does better than shorter ones. Adding
a ninth or a tenth lag does not improve the results. The
fifth lag is negative, so the relationship between this lag
and the present is inverse compared to the influence
of the other lags. Since the greater probabilities of QO
are on the first diagonal, there is generally a positive
association between a lagged value and the present. If,
for instance, the patient had an epileptic seizure at time
(t —4), this increases the probability that he will have
an epileptic seizure at time .

2. THE MTD MODEL

In this section and the following ones we go into
more detail about the MTD model. The MTD model
was introduced by Raftery (1985a) for the modeling of
time-homogeneous high-order Markov chains. In this
section we define the model, we give a limit theorem
and we provide some results about the correlation
structure. This section is based essentially on Raftery
(1985a, b), Adke and Deshmukh (1988), Haney (1993)
and Raftery and Tavaré (1994).

2.1 Model

Let {X;} be a sequence of random variables tak-
ing values in the finite set N = {1,...,m}. In an
£th-order Markov chain, the probability that X; = i,
ip € N, depends on the combination of values taken by
Xi—v,...,Xi—1. In the MTD model, the contributions
of the different lags are combined additively. Then

P(X;=iolXi—¢=1ig,..., X;—1 =11)

¢
(7) =Y AgP(X; =iolXi—g =1iy)
g=1
¢
= Z Agigig
g=1
where iy, ...,ig € N, the probabilities Gigiy are ele-

ments of an m x m transition matrix Q = [g; gi()]’ each
row of which is a probability distribution (i.e., each
row sums to 1 and the elements are nonnegative) and
A= (Ag,..., A1) is a vector of lag parameters. Note
that we adopt the convention that each row of the tran-
sition matrix Q is a probability distribution, whereas in

some papers it is each column of Q that is taken to be
a probability distribution.

To ensure that the results of the model are probabili-
ties, that is,

L
®) 0= AeGigip <1,
g=1

the vector A is subject to the constraints

e
© =1,

g=1
(10) hg = 0.

Raftery and Tavaré (1994) showed that the constraints
(10) can be removed, but that the model can then
produce results which are no longer probabilities. It
is then necessary, so that the conditional probabilities
in (7) are well defined, to impose the new set of
constraints

(1) Tq  +(1—=T)g >0 Vie{l,....,m},

where

Equation (7) gives the probability corresponding to
each combination of i, ..., ip individually. The model
can also be written in matrix form, giving the whole
distribution of X,. Let x; and x; be the vectors defined
by (1) and (2). The MTD model can then be rewritten
as

0
(12) X= hgxi_o 0
g=1

Since each row of the transition matrix Q is a prob-
ability distribution and therefore sums to 1, this matrix
has m(m — 1) independent parameters. In addition, an
£th-order model has ¢ lag parameters Ay, ..., A1, but
by (9) only (¢ — 1) of them are independent. An fth-
order MTD model thus has m(m — 1) + (£ — 1) inde-
pendent parameters, which is far more parsimonious
than the corresponding fully parameterized Markov
chain (see Table 1). Moreover, each additional lag adds
only one parameter to the model.
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2.2 Limiting Behavior of the MTD Model

The MTD model has the same equilibrium distrib-
ution as the first-order Markov chain with transition
matrix Q, no matter what the MTD order is. This is
somewhat appealing, because it means that the para-
meters defining the equilibrium or marginal distribu-
tion are specified separately from those defining the lag
distribution of the model.

Letm = (my, ..., ) be the limit distribution of the
first-order Markov chain, that is, the long-term distrib-
ution of values 1,...,m given the first-order model.
Raftery (1985a) gave a theorem giving conditions en-
suring that the MTD model has 7 as limit distribution.
Adke and Deshmukh (1988) showed that these condi-
tions are stronger than needed and they gave a more
general theorem stating that if the transition matrix Q
of the MTD model admits a limit probability distribu-
tion w, that is, if there is a vector w such that

lim 0"=1®w,
n—o0

where ¢ is a vector of 1’s of size m x 1, w = (w1,
s wm), we =0, Zgl:la)g =1 and ® is the Kro-
necker product, then the MTD model has the same
limit behavior as the fully parameterized high-order
Markov chain. The same result holds when the MTD
model is defined on an arbitrary state space, not
necessarily finite or even countable.

2.3 Autocorrelation Structure

Since the MTD model is similar to an autoregressive
(AR) model, it is interesting to verify whether it has the
same type of autocorrelation structure. Let {X;, t € Z}
be an ¢th-order autoregressive process defined by

L
X =Y heXi—g+e&r,
g=1
where A, are real parameters and the &, form a set of
noncorrelated random variables with expectation zero
and variance o 2.

The order k autocorrelation function of the process,
denoted by py, is the correlation between X; and
X;+k. These autocorrelations satisfy the Yule—Walker
equations, namely

V4
(13) Pk=_ hgPk—g-
g=1

The autocorrelation structure of the MTD model
does not satisfy (13), but Raftery (1985a) showed
that the entire system of bivariate distributions does

satisfy a system of linear equations similar to the Yule—
Walker equations. Let B(k) be an m x m matrix whose
elements are

bij(k) = P(X; =1, X4k = J)»

i,j=1,....,m, keZ",

and B(0) = diag(my, ..., Ty), where (mq,...,T,) 1S
the first-order limit distribution of the process. Then
the bivariate distributions B(k) satisfy the system of
matrix equations:

0
(14) B(k)=) 1;0B(k —g).

g=1

Theorem 3 of Raftery (1985a) states that these
equations have a unique solution in the following
cases:

1. If £ =2, (14) has a unique solution if 0 < Ay < 1.

2. If £ =3, (14) has a unique solution if A, > O,
g=1,2,3,and if Q has at least one column whose
elements are all strictly greater than zero.

3. If £ >4, (14) has a unique solution if A, > 0,
g=1,...,¢ and if

(I=m = =)@ = A1 —Ap—1 —2p) <1,
where 7; is the minimum of the ith column of Q.

Now, suppose that Y; is a random variable with
distribution Qx;, so that P(Y; = j|X; =i) = g;;. Let
px denote the correlation between X; and X; ¢, and let
ok be the correlation between X; and Y; ;. Then the
autocorrelations satisfy a system of equations similar
to the Yule—Walker equations, namely

12
(15) Pk =D hglh—g-
g=1

It is of particular interest to investigate the range
of autocorrelations which can be represented by the
MTD model. This question has been addressed by
Raftery (1985a, b) and Haney (1993). Raftery studied
the autocorrelation structure of the second-order model
with m = 3 states. He considered the special case
where the marginal probabilities are equal and Q is
constructed such that it satisfies a set of Yule—Walker
equations,

1 oal, O<a<l,
16 o=1a lal)]+{|a|E, =ezl



MIXTURE TRANSITION DISTRIBUTION MODEL 335

where o] <1, Jisa3 x 3 matrix of 1’s, ] isthe 3 x 3
identity matrix and

0 0 1
E=10 1 0].
1 00

Equation (15) implies that

p1=A1+ Arp1,

17
17 P2 =A1p1 + A2,

where A1 = Ao and Ay = Aya. By combining (17)
with the set of constraints (8), we find that the range of
possible autocorrelations is given by

Y

P1
p1+p2 =0,
p2={p1(1+3p1) =1}/ 2+ p1)
for @ > 0 and by

’

N —

—(1+2p1) <p2 < —p1,
(1 +2p1) >2p1(1+p1) — 1,
p2—1=<(p1+1)(p1 — p2)

for ¢ < 0. Figure 1 shows the possible range of
autocorrelation of the MTD model. In spite of the large
number of constraints, this range is almost as great as
for the standard AR(2) model.

Haney (1993) investigated the case £ = 3 and m = 2.
Let P/(‘)ik denote the bivariate probability of being in
state ig at time ¢ = 0 and in state i; at time ¢ = k.
By means of numerical simulations, Haney computed
the probabilities Plk1 and szz for k = {1,5}. After one
period (k = 1), the MTD model can represent roughly
the same range of situations as the fully parameterized

1 1

- 0 1 -1 0 1
! b

FIG. 1. Range of possible autocorrelations for the second-order
three-state MTD model. The case o > 0 is represented on the left
and the general case is on the right. The continuous line on the right
indicates the limit of the autocorrelation range for the standard
AR(2) model. Source: Raftery (1985a, b).

Markov chain. On the other hand, after k = 5 periods
the restrictions imposed by the MTD model appear
clearly. In the long term, the MTD model does not
allow the representation of all the situations a real
Markov chain does, but this is not surprising given the
number of constraints that are imposed. In particular,
the MTD model finds it hard to represent situations
where Plk1 and szz are both small.

3. GENERALIZATIONS OF THE MTD MODEL

In this section, we present several generalizations of
the MTD model that allow it to fit data more accurately
and to be applied to different fields.

3.1 The Multimatrix MTD Model

In the original MTD model, the same transition
matrix Q is used to represent the relationship between
each lag and the present. Raftery (1985b) proposed
relaxing this assumption by using a different m x m
transition matrix for each lag. Berchtold (1995, 1996,
1998) developed and generalized this idea.

A first generalization along these lines is called
MTDg and is defined as

P(X; =io|Xi—¢ =1y, ..
‘ (€3]
g
= Z)‘gqigio
g=1

or, for the complete distribution at time ¢,

X1 =11)
(18)

4
)2[/ = Z )\gX;/_gQg’
g=1

where XAg,...,A; are the lag parameters and

Q, = [qg"i)o] is an m X m transition matrix giving the
relationship between the gth lag and the present. This
model has ¢m(m — 1) + (¢ — 1) independent parame-
ters. However, as pointed out by Raftery (1985b), (18)

can be written more generally as

qiy, ..., i1,ip
£

&)
(19) 2 iy

_ Jg=1

m—1
1 - Zqig,...,il,kv i():ma
k=1

io=1,...,m—1,

where

Qiy,....ivio = P(Xy =i0|Xi—¢ =ig, ..., Xs—1 =11)
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and a;%) = 24q;% . Using the form (19), the MTDg
model has only ¢m(m — 1) independent parameters.
Even though it is less parsimonious than the original
MTD model, it has proved to be of use in different
situations.

More generally, the MTD modeling principle is
not restricted to the use of transition matrices giving
the relationship between one lagged period and the
present. Let @ be the set of all transition matrices
which can be built between a subset of size strictly
smaller than ¢ of the lagged periods t — £,...,t — 1
and the period ¢. For instance, if £ = 3,

Q1 =[P(X;=iolX;—1 =i1)]
[P(X;=io|Xi—2=1i2)]
[P(X; =iolXi—3=1i3)]
[
[

P(X;=iolX;—2 =12, X;—1 =1i1)]
P(X;=iolX;—3 =13, X,-1 =1i1)]
Q¢ =[P (X; =iolXi—3 =13, X1—2 =i2)]

Note that the definition of @ does not include the
matrix using all lagged periods t — £,...,t — 1in Q,
since this is the matrix we want to model.

By using all the matrices of the set @, we achieve
a more general family of MTD models. The complete
model is generally overparameterized and in practice
only a subset of the members of Q would be used. For
instance, in the case ¢ = 3, the MTDg model defined
above uses only the matrices Q1, Q> and Q3. As
shown by Berchtold (1998), this type of modeling still
has the same limit distribution as the real first-order
Markov chain.

3.2 Infinite-Lag MTD Models

(05)
03
Q4
Os

In the Markov chain framework, the number of
lagged periods used in specifying the conditional
distribution of the present state is finite. However, in
some situations it can be useful to use all the past
values. Even if this is no longer a Markov chain,
the MTD model can be adapted to this case. This
idea was first considered by Mehran (1989a, b) for
discrete-valued time series and then developed by
Le, Martin and Raftery (1996) in a more general
context. Since £ = oo, the lag parameters have to
be reparameterized, and it is hard to estimate the
parameters A and Q. Mehran proposed two solutions
involving parameterizing the A, sequence, namely

rg=8871(1—¢),
he=g 7~ (g + 17,

0<€& <1,

a > 0.

These two formulations lead to time-decreasing lag
parameters and they sum to 1. Another formulation is
due to Le, Martin and Raftery (1996):

_d(l—d)---(g—1—d)
— o
_(g+d—1)!
ogld-1D!

These weights are similar to the partial linear autore-
gression coefficients for the fractionally differenced
ARIMA(0, d, 0) process [Hosking (1981)].

Parameterizing the A,’s leads to a more parsimo-
nious model. On the other hand, we must be aware that
in some situations the lag parameters are not strictly
decreasing in time. The epileptic seizure data in Sec-
tion 1 provide an example of this.

hg

3.3 Missing Data and Finite Length Sequences

In practice all sequences of data are of finite length,
which seems to prevent the use of the infinite-lag
models of Section 3.2. Moreover, some data sets can
have missing data. An example of such data is the
rotation sampling scheme used in the U.S. Current
Population Survey. Each unit is surveyed during a
first period of 4 consecutive months, then dropped
from the sample for the next 8 months and surveyed
again during a final period of 4 months. This creates a
sequence with a gap of 8 months.

Consider the time series

Xo X1 oo Xeck—1 P Xo—bk1 - Xi ol

where X;_; is missing. The probability g;, ;, appearing
in the MTD model has to be estimated and one possible
choice is to once again use a MTD model. An estimate

Qirip f qiyig 1s given by
- 2
0) éikio = Z )\'rqik+ri()’
r=1

where qi(]izr i, denotes the two-step transition between
ix+r and ig in the matrix QZ. The same relationship can
be used for finite lag models by replacing the infinite
sum by a sum up to £.

When a term q(z) . of (20) is itself missing, it may

ik+ri0
be replaced by

o0
N R 3
Digyrio = Z )\'SqikJrrJrsi()’

s=1
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3
Uedr+s10
tween iyy,4+s and ig in the matrix Q3. The same proce-
dure can be generalized to any number of missing data
values.

Berchtold (1996) derived the same type of relation-
ship for the MTDg model. In this case, (20) is replaced
by

where g denotes the three-step transition be-

o
A 2 : (k+r)
Girio = )‘rqu,io ’

r=1

where qi(kk::fg denotes the transition between i, and
ig in the matrix Q4.

A time series of finite length can be viewed as an
infinite sequence that has data missing from a certain
point onward. Using (20), the infinite-lag MTD model
becomes

P(X;=iolXi—1 =11, X2 =12,...)

o0
= Z )\gQigio
g=1

t—1
= Z )\g%’gio + Ql‘—lniov
g=1

where 6, =1 — Z’g_:ll Lg and 7, is the probability
of ip in the limit distribution of the transition matrix Q.

Here we have mentioned possible MTD-specific
ways of dealing with missing data and infinite-lag
models. However, more general prescriptions for miss-
ing data, such as those surveyed by Schafer (1997),
could also be applied to MTD models, although they
might be more complex to implement.

3.4 Infinite Denumerable State Spaces

The MTD model was initially designed for finite
state spaces. However, discrete-valued time series can
often take an infinite but countable number of different
values. Counts of events in a point process are an
important example. We can think, for instance, of the
number of flights landing each hour at an airport or of
the number of car crashes in a city each day.

The main problem in applying the MTD model with
an infinite state space is that the transition matrix Q
is also of infinite size. It must then be respecified
with a finite number of parameters. Following Raftery
(1985b), a simple method is to consider a random
vector (Y, Z) having the desired marginal distribution
and to define g,y = P(Y = y|Z = z). A first possibility
is the bivariate Poisson distribution of Holgate (1964).

Let Y and Z be two Poisson variables with the same
mean p. Then Holgate’s bivariate Poisson distribution
is defined by

PY=y,Z=2)

min{y: 4] (,LL _ é-)y+z—2hé-h

= —-Q2u=9)
‘ ,12:0 (y —h)!(z — h)!h!’

where ¢ is the covariance of Y and Z. Since

e Mut
z!

P(Z = Z) =
the elements of the transition matrix Q are
P(Y=y|Z=72)

e—(u—{)z! min{y, z} (M _ é-)y-‘rZ—Zhé-/’l
(4 — )iz — WA

Z
K h=0

Raftery (1985b) also proposed the bivariate negative
binomial model of Johnson and Kotz (1969) as a
second possibility. In this case, the elements of the
transition matrix Q are

y+z+v—1

PW=ﬂZ=@=< :

)pa-p
wherev>0and0<p < 1.

3.5 General State Spaces

The MTD model was proposed as an approximation
of high-order Markov chains with a finite number of
states, but it can be easily extended to the modeling of
more general processes, with an arbitrary state space.
This approach was proposed in several papers includ-
ing Martin and Raftery (1987), Adke and Deshmukh
(1988), Raftery (1993), Le, Martin and Raftery (1996)
and Wong and Li (2000). It provides a powerful tool
for the analysis of non-Gaussian time series and can
represent such nonlinear or non-Gaussian features as
outliers, change points, bursts of high variance activity
or volatility, and flat stretches.

Equation (7) can be generalized as follows. Let
{X:;t € N} be a sequence of random variables tak-
ing values in an arbitrary state space. Let X{ =
(Xo,...,X;). Then

£
Q1) Fllxf =" 2Gexlxi—y),
g=1

where F(x; |x6_1) is the conditional cumulative distri-
bution function of X, given its past, G4 (x;|x;,_g) is
a conditional cumulative distribution function of X,
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given the gth lag, Zgzl Ag=1and A, >0 for g =
1,...,£. The nonnegativity constraints are needed to
ensure that all the probability densities specified by the
model are positive.

Le, Martin and Raftery (1996) proposed specifying
the G4 to be Gaussian, namely

Xt — d)gxl—g )

Go(xsx1_g) = <I>( 5

They noted that even though the conditional distribu-
tions are mixtures of Gaussian distributions, the result-
ing model is able to represent non-Gaussian behavior.

Le, Martin and Raftery (1996) also proposed two
generalizations of this model. First, by including a sup-
plementary term, the standard AR(£) process becomes
a particular case of the MTD model:

0
Xt — Zg:1 (f’ngz—g)

00

F(xlxh™h =xo<b(

+ XZ: )\gcb(xi’ - d’gx"g).

(22)

They then proposed to add a further independent
component allowing specific modeling of outliers.
Their final model is written

0
Xt — Zg:l ¢0gxz—g>

00

F(xlxp™h =Ao<1><

(23) + XE:)\@(M)

g:l Gg

Xt
+M+1¢‘< >,
O¢+1

where oy41 is large and Zﬁ,ﬂ) Ag = 1. It has only
4¢ 4 3 independent parameters, which is quite parsimo-
nious. Models (21), (22) and (23) are called Gaussian
mixture transition distribution models (GMTD). By
specifying

pr=-=d=1,
¢
Z¢Og:1,
g=1

a special case of the GMTD model called the random
walk GMTD model is defined. It generalizes the
usual random walk with only (3¢ + 2) independent
parameters.

The GMTD model can represent time series that are
well represented by an autoregressive process, but it

also has the ability to capture occasional ruptures in the
sequence such as bursts, outliers or even flat stretches
without explicitly specifying them. Outliers may be
captured by a term with a large variance o> and a
small Ag. Bursts can be modeled with a large A, and a
random walk GMTD is able to represent flat stretches.
It is also possible to represent time series that present
heteroskedasticity and multimodal marginal distribu-
tions. Examples are given in Sections 5.4 and 5.5.

Le, Martin and Raftery (1996) also examined the sta-
tionarity and autocorrelation properties of the GMTD
model. Their Theorem 1 states that the process X;
given by (22) is first-order stationary if the roots
71, - - ., 2¢ of the equation

¢
1= (hogog + rgtpg)z 4 =0
g=1
all lie inside the unit circle. Their Theorem 2 states that
the process X; given by (22) is second-order stationary
if the roots zy, ..., z¢ of the equation

L
1= Agpgz 8=0
g=1

all lie inside the unit circle.

When there are only two mixture components, that
is, £ =2 and A9 = 0, the region given by the first-order
conditions is given by

Mo +ragp <1,
—hi¢1+ragp <1,
—Mdr <1,
and the region corresponding to second-order station-
arity is given by
MBT + A3 < 1.
Figure 2 displays these two regions.
As is the case for the original MTD model, the
autocorrelations of the GMTD model satisfy a system
of equations similar to the Yule—Walker equations. Let

X; be a second-order stationary process with mean
zero. If p; denotes the kth autocorrelation, then

2
E(X:X;1) =) (hodog + Aghg) E(Xi 1 Xi—g)
g=1

and since the process is second-order stationary,

¢
(24) Pk = Z()\O(ﬁOg + Agbg) Pli—g|
g=1
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FIG. 2. Stationarity regions for the second-order GMTD model.
A1 =Xy =0.5. Source: Le, Martin and Raftery (1996).

fork=1,...,£.For \o =0 and £ = 2, (24) becomes

P1 = A191 + Ar2p1,
P2 =A1@1p1 + A2,

and Figure 3 presents the admissible regions for
the GMTD and the corresponding AR(2) process. It
appears that even without the AR term, the range of
autocorrelations for the GMTD model is almost as
broad as for the standard AR(2) process.

Wong and Li (2000) proposed a further generaliza-
tion of the GMTD called the mixture autoregressive
model (MAR). It is defined by

K
Fllxg™) =" n
k=1

(25)
. CI)(Xt — Q0 — Pr1Xr—1 — 0 — ¢kpkxt—pk>
Of ’
where Zf:l)»k =1, A, ..., Ag > 0, K is the number

of components in the mixture and py, ..., px are the
numbers of lags in each component. By constraining
some of the ¢ parameters to equal zero, each version
of the GMTD, including the random walk GMTD, can
be written as a special case of the MAR model. The
conditions for first- and second-order stationarity are
similar to those given for the GMTD model.

The full MAR model has 3K — 1 4+ 3K | p; inde-
pendent parameters, which is much greater than the
number required by the GMTD model and can lead
to overparameterization problems. Moreover, as noted
by Le, Martin and Raftery (1996), there are potential
near nonidentifiability problems with this class of mod-
els, and these problems can only become worse with
the use of a full MAR specification. Nevertheless, the
MAR model extends the range of situations which can
be modeled by the Gaussian mixture transition distrib-
ution method.

1

-1 0 1
b

FIG. 3. Range of possible autocorrelations for the second-order
GMTD model. The continuous line indicates the limit of the
autocorrelation range for the standard AR(2) model. Source: Le,
Martin and Raftery (1996).

3.6 MTD Approximation of Conditional
Distributions for Spatial Data

The MTD model as defined by Raftery (1985a) was
designed for the modeling of Markov chains, or more
generally of time series. However, the same model may
also be useful in a spatial context, replacing the tempo-
ral reference by a concept of neighborhood. The result-
ing model does not define a joint probability distribu-
tion, but some experience suggests that it may never-
theless be useful for approximating local conditional
distributions at one spatial location given neighbors.
This possibility was first mentioned by Raftery and
Banfield (1991). Berchtold (2001) motivated this con-
cept in the one-dimensional case and gave a practical
example in which the MTD model seemed to provide
a better local approximation to spatial conditional dis-
tributions than the classical Potts model, subject to the
caveat above. Other applications appear in Berchtold
(1998).

The traditional Markovian process for spatial data
is the Markov random field (MRF) model (Besag,
1974). Here we consider the two-dimensional case,
but this approach can be applied to any number of
dimensions greater than or equal to 1. Let X be
a lattice each site of which is labeled with indices
(i, j). To each site corresponds a random variable
X;; taking values in the finite set {I,...,m}. Here
we consider the problem of estimating the probability
of observing a particular value of the variable X;;
given the values of the other variables in the lattice.
Let X}j denote a neighborhood of X;;, that is, a
subset of the entire set of variables. For instance,
Xll.\} can be the set of the four nearest neighbors
of X;j, namely {X;_1 j, X; j+1, Xiq1,j, Xi j—1}. The
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conditional probability of observing X;; = x;; given its
neighbors is then
26) P(X;j = x| X \ {Xi;})

= P (xijlXi—1,j» Xi, j+15 Xi+1,j, Xi, j—1)-

As in the case of a high-order Markov chain, the set
of explanatory variables (the neighbors) is considered
as a whole, but if we make the approximating assump-
tion that the effects of the neighbors upon X;; combine
additively, the MTD principle can be used to approxi-
mate (26). For simplicity, we use the notation Xo = X;;
and we number the neighbors from X to X4. Then, ap-
plying (7), we write

4
P(xolx1, x2, X3, x4) = Z Ag P (xolxg)
g=1

4
= Z AgGxzxos
g=1

where gy, x, are the elements of an m x m transition
matrix Q representing the conditional relationship
between Xy and each of its neighbors. The same
principle can be extended to different sets of neighbors.
It is also possible to use a different transition matrix
to model the relationship between X and each of its
neighbors.

As outlined by Raftery and Banfield (1991), the main
difficulty with the use of the MTD model in the spatial
context is that it does not satisfy the Hammersley—
Clifford theorem [Grimmett (1973), Besag (1974)],
since (27) does not define a correct joint probability
over the whole set of random variables. Nevertheless,
this method may provide a reasonable approximation
to the local structure of the joint distribution, a point
also made by Besag, York and Mollié (1991). Note that
the spatial MTD model is a dependency network, as
defined by Heckerman et al. (2000).

It is interesting to compare the spatial MTD model
with the classical Potts model (Domb and Potts, 1951;
Kinderman and Snell 1980; Baxter, 1982). In the Potts
model, the probability of observing a given realization
of the variable X is a function of the number of
neighbors taking the same value. For instance, the Potts
model corresponding to (27) is

27

exp{—BNo}
" exp{—BN;)’
where Np denotes the number of neighbors taking

value xo, and N;, j =1,...,m, is the number of
neighbors taking value j. One way of estimating this

P(xolx1, x2, x3, X4) =

model is to define (m — 1) logistic regressions having
the same parameter S,
=1 (P(X0=j|X1,X2,X3,X4))
’ P(Xo=m|X1, X2, X3, X4)

=B(Nm — N)),

and to compute the corresponding maximum pseudo-
likelihood estimate of 5 (Besag, 1975, 1977).

The Potts model can be viewed as involving two
steps. First, each neighbor X is recoded as a binary
variable:

j=1,....m—1,

s _{1, if x; = xp,
k=10, otherwise.
Then, it is supposed that the relative position of each
neighbor to the variable Xg is of no importance and
that all that matters is the sum No = Y"{_, 8.
Compared to the MTD model, these two steps are
two more levels of simplification which may lead to
a loss of flexibility in modeling. So if the original
variables are already binary and if it is possible
to justify the omission of the relative position of
each neighbor, the Potts model may perform well
because of its parsimony. On the other hand, when
these assumptions are too strong, the MTD model
may be an interesting alternative. Berchtold (2001)
applied the spatial MTD model to the analysis of
a one-dimensional DNA sequence. Each base was
modeled using information about both the left and right
bases, and the resulting model proved to represent the
local conditional distributions better than either the
traditional Markov chain or the Potts model.

3.7 MTD Regression Models

It is possible to use the MTD model as the basis
for an alternative specification of regression models
[Berchtold (1998)]. Suppose the response variable is
Y and the independent variables are X; and X;. Then
an MTD-like model can be written as

P(Y =y|X|=x1,X2=x2)
= A1 P(ylx1) + A2 P (y|x2).

Although we have not investigated this in depth, one
could imagine several advantages to such a formula-
tion. It provides potentially great flexibility in the spec-
ification of the P(-|-) functions, since these are con-
ditional on only one variable, and yet it specifies an
entire multivariate response. Also, it can be applied in
situations outside standard generalized linear model re-
sponses, such as when Y takes values in the simplex, or
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acircle, or on a sphere or when Y is a multivariate non-
Gaussian response.
A more general formulation is

¢
P(Y =y|X1=x1,X2=x2) = Z Ao Po(y|x1, x2).
g=1
This would allow a range of generalizations. This is
worthy of further investigation.

4. ESTIMATION

Since the introduction of the MTD model in 1985,
several estimation methods have been proposed. Most
of these methods use algorithms and software that are
not broadly available or that can be applied only in
special situations. In this section, we review the main
estimation methods that have been proposed.

4.1 Numerical Maximization of the Log-Likelihood

The parameters A and g of the MTD model (7) can
be estimated by maximizing the log-likelihood of the
model:

m 12
(28) LL = Z Niy,....io 10g<z )‘gQigzb),

ig,...,ip=1 g=1

where n;, is the number of sequences of the form

----- io

Xi—¢=1¢,..., Xy =1p

in the data. To ensure that the model defines a high-
order Markov chain, the log-likelihood must be maxi-
mized with respect to the constraints (9) and either (10)
or (11).

Two software packages are currently available to
maximize this log-likelihood. The first, called MTD,
was developed by Raftery and Tavaré (1994) and can
be obtained by sending the message “send mtd from
general” to statlib@lib.stat.cmu.edu or directly from
http://lib.stat.cmu.edu/general. The main drawback of
this software is that it uses an optimization routine
from the NAG library which is not freely available.
Moreover, in some situations, it does not converge to
the global maximum of the likelihood.

The second package is the more recent GMTD soft-
ware described by Berchtold (2001). It can be obtained
from http://www.andreberchtold.com/softwares.html
or from http://lib.stat.cmu.edu/general. The algorithm
used in GMTD is suboptimal since it does not maxi-
mize the likelihood with respect to all the parameters
simultaneously. On the other hand, it easily handles all
the constraints of the MTD model and it yielded very

good results empirically. This algorithm is fully de-
scribed in Berchtold (2001); here we outline it briefly.

The whole set of parameters of the MTD model
can be divided into (m + 1) subsets: the m rows
of the transition matrix Q and the vector A. It is
possible to increase the log-likelihood by changing
only one of these sets, keeping the other m fixed. As
a first approximation, we suppose that the matrix Q
is constant and we seek to increase the log-likelihood
by reevaluating the vector A. We also activate the
constraints (10).

Since the sum of the lag parameters is equal to
one, the idea is to balance an increase in one of
these parameters with an equal decrease in another
parameter. The problem lies in the choice of the two
parameters to modify. It is easy to see that

JdLL " .
e Z Rig,..., io% k=1,...,¢,
ko ignio= 2

E o b
g=1 )‘gqlgl()

is the partial derivative of the log-likelihood with
respect to the kth lag parameter. The partial derivative
gives a measure of the local impact produced by the
change of one parameter upon the log-likelihood. Since
all parameters belong to the continuous space [0, 1], all
derivatives are nonnegative. The best solution is then
to increase the parameter corresponding to the largest
derivative and to decrease the parameter corresponding
to the smallest derivative. If we denote by A, the
parameter to be increased, denote by A_ the parameter
to be decreased and denote by § the amount of change,
the reestimation of X is achieved by replacing A by
(A+ 4+ 8) and A_ by (A_ — 3).

The log-likelihood (28) is then computed with the
reestimated lag vector. If the new value is larger than
the previous one, the new vector A is accepted and
the procedure stops. If not, § is divided by 2 and the
procedure iterates. As 6 becomes smaller than a fixed
threshold, the procedure stops, even if the vector A was
not reevaluated. The log-likelihood achieved through
this procedure is greater than or equal to the previous
value.

The same method is applied to each row of the tran-
sition matrix Q. The corresponding partial derivatives
are

JoLL " Ak
9y

Maximum likelihood estimation for the whole model
is then performed iteratively as follows:
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1. Initialization

e Choose initial values for all parameters.
e Choose a value for § and a criterion to stop the
algorithm.

2. Iterations

e Reestimate the vector A by modifying two of its
elements.

e Reestimate the transition matrix Q by modifying
two elements of each row.

3. Stopping criterion

o If the increase of the log-likelihood since the last
iteration is greater than the stop criterion, go back
to step 2.

e Otherwise, end the procedure.

The same method can be used to estimate the
MTDg model in which a different matrix represents
the transition probabilities between each lag and the
present. In this case, ¢ different transition matrices
have to be reevaluated during the second step of the
algorithm, instead of just one. See Berchtold (2001) for
more details.

Like other iterative methods, this algorithm does not
ensure convergence toward the global maximum of the
log-likelihood. In some cases, it can converge to a
local maximum or even a saddle point. To maximize
the probability of reaching the global maximum, a
good choice of the initial values is very important.
Berchtold (2001) proposed computing a measure of
the strength of the association between each lagged
value and the present one, and using this information
to choose starting values for the algorithm.

The choice of initial values for the vector A of lag
parameters has also been addressed by Mehran (1989a)
and Berchtold (1998). Mehran (1989a) computed an
empirical estimate of the autocorrelations of his data
and used the Yule—Walker equations (15) to find a
first estimation of A. Berchtold (1998) considered a
slightly different problem. The transition matrix Q is
considered fixed and only the lag parameters can vary.
In this case, using an association measure like Theil’s u
and computing A parameters proportional to it yielded
good performance.

The same procedure was also used to compute
the spatial MTD model described in Section 3.6, but
the log-likelihood used in this case requires some
explanation. If the summation of (28) is taken over the
entire set of variables X, this equation is no longer

the log-likelihood of the model, but a pseudo-log-
likelihood (Besag 1975, 1977). Another possibility
is to take the summation over a subset X of X
defined such that no variables in X are neighbors.
Unfortunately, this method does not take into account
all the information provided by the data, and in most
situations it is preferable to maximize the pseudo-log-

likelihood of the model.
4.2 ldentifiability of a MTD Model

It is of interest to know if, for a particular data set
and a given order, there is a unique best MTD model.
Haney (1993) showed that if the model is estimated
by maximization of the log-likelihood, the resulting
estimate is unique when the following two conditions
are satisfied:

1. All the elements of the transition matrix Q are
strictly positive.

2. The rows of the transition matrix Q are not all
identical.

The first condition is a sufficient condition to ensure
that the process has a unique limiting distribution. If
the second condition is not satisfied, the MTD model
reduces to the independence model.

4.3 Minimum X2 Estimation

Different alternatives to the maximization of the
log-likelihood have been introduced to estimate the
MTD model. Raftery and Tavaré (1994) proposed
minimizing the quantity

2 & (i, ....ig — €ig,.., io)2
(29) K*= )
L= €ip,....i
l[,...,lo:l £5-5510
with C . .
€i,....ig = Niy,....iy,+ PColie, ..., 01),

where n;, . ;, is the number of sequences of the form

Xi—oe=1iy, ..., Xi=Iip
in the data,
m
Rig,.. i1+ = Z Rig,..igs V10,
ig,esi]=1
and p(igli¢g,...,11) denotes the conditional transition

probability corresponding to ig,...,ip given by the
MTD model. The sum in (29) is taken only over the
combinations of iy, ..., io for which n;, _;, > 0.
Billingsley (1961) proved that if the process is
correctly described by an fth-order Markov chain,
then, asymptotically, K2 has a x? distribution as the
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total number of data n — oo. This x? approach is
an interesting alternative to the maximization of the
log-likelihood. In practice, Raftery and Tavaré (1994)
reported that they used a numerical procedure from
the NAG library, which is unfortunately not freely
available. The development of a more usable procedure
would be of great interest.

4.4 Generalized Linear Interactive Modeling
Analysis of the MTD Model

Raftery and Tavaré (1994) have shown that when
the number of values taken by the random variable
X; is m = 2, the MTD model can be fitted using
an iterative procedure in GLIM (generalized linear
interactive modeling; see, e.g., Healy, 1988 and Francis
et al., 1993). Consider for instance the case £ = 2, and
write A1 = A and A, = 1 — A. The log-likelihood (28)
can then be rewritten as

2 2
LL= Z Zniz,il,i()log(p(i0|i2,il))},
iz, i1=1Lip=1

and, for X, = 1, the p(ig|iz, i1) terms are

q11, =1 =1,
o Agn+A—=XVgn, =2 =1,

llip, i) = ] ]
p(liz, i1) (I—-Aqgi1+rgn, ix2=1,i1=2,
q21, r=2, i1 =2,

where the probabilities g;; are the elements of the
transition matrix Q. When either A or the probabilities
g;j are known, the probabilities p(1|i2, i1) are linear in
the other parameters. If A is known, we can define two
covariates

X{=(1A1-20),
Xh=01-21x1),

and, using g1 and ¢o; as coefficients, we obtain the
regression

(30) p(1liz, i1) = x1q11 + x2921.

If g1 and g7 are known, we can define the covariates
x3=(0q11 — q21 921 —q11 0),
xy = (q11 921 911 q21),

and we have

(3D p(lliz, i1) = x3A + x4.

Using (30) and (31) iteratively, we can compute an
estimate of the parameters (Aitkin, Anderson, Francis
and Hinde 1989, Chapter 6). Both are estimated via

maximum likelihood for a generalized linear model
with binary response and identity link function.

The same method can be generalized to the cases
where m = 2 and ¢ > 2. However, it seems that
it cannot easily be extended to m > 2, and it is
therefore less general than the approaches based on
the numerical maximization of the likelihood or the
minimization of x 2.

4.5 EM Algorithm

Le, Martin and Raftery (1996) proposed using the
expectation-maximization (EM) algorithm to compute
the Gaussian mixture transition distribution model
given by (23). This is a two-step iterative algorithm
(Baum, 1971; Dempster, Laird and Rubin, 1977;
McLachlan and Krishnan, 1996). In the EM algorithm,
the potentially observable data are assumed to consist
of an observed part X and a missing part Z. During the
E step, the missing data Z are replaced by their expec-
tation conditionally on X and on the parameters of the
model. During the M step, the parameters are estimated
by maximization of the resulting expected complete-
data log-likelihood function. Estimates of parameters
are then obtained by iterating these two steps until con-

vergence.
Let X = (x1,...,x,) denote the observations and
let Z=(Zy,...,Z,) denote the missing data, where

Z; is a vector of size (¢ 4 2) that has a jth component
equal to 1 if x; comes from the jth component of
the conditional cumulative distribution function, and
0 otherwise. Since the Z; are mutually independent,
and X and Z are also independent, the log-likelihood
for the complete data (X, Z), conditional upon the first
£ observations, is

n {+1
CLL= Z Z log[)\g'g fg(xt|x2_l, 20, - -y 2041) 78]
t=(+1g=0
n +1 41
= Z |:Z it,g log()‘g) - Z it,g log(ag)
t=C+1Lg=0 g=0
(32) — 21,0 (1 = Yt Pogi—g)?

2
20

2
2(7g

?
(Xt — PoXr—g)?
- Z N
g=1

X7
- ZZ,E+1 2
2004,

log(2m).
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During the E step of the algorithm, the parameters
of the model are supposed known and the missing
data Z are replaced by their expectations. During the
M step, the missing data Z are supposed known and the
parameters are reestimated by maximization of the log-
likelihood function (32). See Le, Martin and Raftery
(1996) and Berchtold and Raftery (1999) for more
details.

Le, Martin and Raftery (1996) performed numerical
simulations to test the quality of the estimations ob-
tained through this method. Their results indicate good
performance of the estimators in terms of both bias
and variability. The more general MAR model given
by (25) can be estimated using a similar EM algorithm.

As previously noted, the log-likelihood given by
(32) is the log-likelihood of the complete data, both
observed (X) and unobserved (Z). When comparing
the GMTD model with other methods, it is useful to
compute a log-likelihood for the observed data only.
This can be done after the EM algorithm has converged
using the quantity

n ¢ 2
Ao (x, — > =1 ¢0gxl—g)
LL= Z log|:6—oexp{— &

2
r=0+1 20,

+ Z k—g exp{ ——(Xt - ¢gXt_g)2
— 202
(33) g=1 3

A x2
+ bl exp{— ;
O¢+1 20g+1

log(2m).

This EM approach could also be used to estimate the
MTD model for a discrete state space, as well as more
general MTD models.

Although we have not investigated it, this general
formulation could also provide a way to carry out
fully Bayesian estimation using Markov chain Monte
Carlo (Gilks, Richardson and Spiegelhalter,1996).
A Metropolis—Hastings algorithm could be used, up-
dating one or several parameters and Z values at a time.
The full conditional distributions will be known for all
the Z and possibly most or all of the parameters, de-
pending on the model being estimated, and Gibbs sam-
pling steps could be used for these missing data and
parameters.

Note that the solution space for the class of MTD
models can be very large and highly nonlinear, espe-
cially in the continuous case. Even if the EM algorithm
works well, it can converge to a local optimum rather

than to the global one. Thus the choice of the set of
initial parameter values can be crucial. One method is
to explore the solution space using a genetic algorithm
[Holland (1975)], the function to optimize being the
log-likelihood (33). However, genetic algorithms tend
rapidly to find the region containing the solution, but
then are slow to converge. So one possibility is to esti-
mate the model through a two-stage procedure:

1. Use a genetic algorithm to determine an initial
solution.
2. Improve this solution by using the EM algorithm.

This method combines advantages of both algo-
rithms, with a good probability of finding the global
maximum of the log-likelihood in a limited number of
iterations. The results of Section 5.5 were obtained us-
ing this method, which worked well in that case. The
EM algorithm itself can be slow in converging close to
the solution, while Newton—Raphson methods tend to
be fast. Thus the algorithm might be further accelerated
by using Newton—Raphson close to the solution. How-
ever, excessive computer time has not been a problem
in the examples we have worked on, so this might not
be worth the additional trouble.

5. APPLICATIONS

The class of MTD models has been used in a range of
applications including the analysis of wind speed and
direction, DNA sequences, social behavior and finan-
cial series. In this section, we present synthetically the
different types of applications and we summarize the
most interesting results. The different models are com-
pared using the BIC criterion defined by (6).

5.1 Wind Modeling

We know of four applications of the MTD model
to wind data. Raftery (1985a) analyzed time series of
wind speeds, while Craig (1989), Raftery and Tavaré
(1994) and MacDonald and Zucchini (1997) analyzed
wind directions.

Raftery (1985a) considered a time series of 672
hourly wind speeds at Belmullet, Ireland, and wanted
to assess the amount of electricity that could be
generated from wind power. The data are coded into
four states ranging from no power to excessively
high winds. The fully parameterized Markov chains of
orders 0—4 are compared to the corresponding MTD
models. The best result in terms of BIC is achieved by
the third-order MTD model, but it is interesting to note
that in this case both the second- and fourth-order MTD
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models also had better BIC values than the best fully
parameterized Markov chain. The lag parameters of the
best model decrease with lag: A1 = 0.629, A, = 0.206
and A3 = 0.165. The transition matrix Q is

0.837 0.163 O 0
_10.058 0.854 0.088 0
0= 0 0.113 0.847 0.040

0 0 0.116 0.884

Interestingly, even though the Q matrix gives large
weight to the probabilities of the diagonal, the model
of Pegram (Section 6.1) does not fit as well as the MTD
model for these data.

Raftery and Tavaré (1994) analyzed another set of
wind data, a sequence of length 4344 that gives the
hourly wind directions at Roche’s Point, Ireland, for
November 1961-April 1962. The data are coded in five
categories, the first denoting the absence of wind and
the four others representing different directions.

Even though the data set is moderately large, it is
not large enough to fit high-order fully parameterized
Markov chains, and among these models, the first-
order one is preferred. On the other hand, the use of the
MTD model permits the analysis of long dependency
patterns. Models were fitted for orders 1-10, and the
seventh-order MTD model yielded the best result.

The lag parameters of this model do not decrease
strictly with lag; the smallest A was A4 = 0.018.
The authors then decided to impose the constraint
A4 = X5 = Ag = 0 and to recompute the seventh-order
model. The new model proved to be better than all
others considered. It has lag parameters A; = 0.598,
A2 = 0.245, A3 = 0.1 and A7 = 0.057. [Raftery and
Tavaré (1994) gave A3 = 0.001, which is incorrect.]

As already noted with the epileptic data given in
Section 1, this example shows that the MTD model is
particularly well suited for the analysis of dependences
at higher lags. Here, even though the first three lags
account for 94.3% of the variability in predicting the
present value, adding the seventh lag improves the
results. This would not have been possible with the
corresponding fully parameterized Markov chain.

MacDonald and Zucchini (1997) presented a se-
quence of hourly wind directions at Koeberg, South
Africa, covering the period May 1, 1985-April 30,
1989, for a total length of 35,064 (The Koeberg data
used in Section 1 are taken from this time series). The
data are coded into 16 directions. In contrast with the
data of Raftery and Tavaré (1994), there is no “no
wind” state. Again, in this case, the MTD model (of
second-order) is preferred to the first-order Markov

chain, but the gain is not as large as in the preceding
example. The weight of the first lag is A} = 0.9125 and
the transition matrix is close to the first-order Markov
chain, suggesting that adding more lags would not
greatly improve the model.

5.2 Social Behavior

The transition process between different social be-
haviors can also be well represented by Markovian
models. The MTD model has been used at least four
times in this context. Raftery (1985a) reanalyzed a
set of data previously published in Katz and Proc-
tor (1959) and Bishop, Fienberg and Holland (1975).
This is a sample of two-step transitions giving the
relationships between 300 students taken at intervals
of 2 months. There are three states: mutual, one-way
and indifferent. The first-order model is rejected, and
among the second-order models, the MTD model per-
forms considerably better than the full Markov chain
according to BIC. This result is due in part to the par-
simony of the MTD model which in this case has only
5 independent parameters, compared with 12 for the
second-order Markov chain. The MTD lag parameters
are Ay = 0.754 and A, = 0.246, and the transition ma-

trix is
0.581 0 0.419
0=|0.133 0.545 0.322].
0 0.093 0.907

Note that, according to the convention of Bishop,
Fienberg and Holland (1975), the 0’s are not counted
as parameters.

Raftery (1985a) also reanalyzed the data of Logan
(1981). This is a sample of two-step transitions be-
tween the main occupations of 9170 U.S. physicists
taken at intervals of 2 years. The states are man-
agement, research and teaching. Again, the second-
order MTD model proved to provide the best possible
Markovian modeling.

Mehran (1989a, b) used the MTD model to ana-
lyze the probability of unemployment in the United
States. His data were collected using a rotating sam-
ple scheme. Each person in the survey was observed
during 4 consecutive months, then dropped from the
sample for 8 months, and finally observed again dur-
ing 4 months. Three states were considered: employed,
unemployed and out of the labour force. More com-
plete results appear in Mehran (1989a) where a three-
lag model was fitted to the first four periods of the rotat-
ing sampling scheme (December 1982—March 1983).
Here we analyze only the data on people who were in
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the labor force for the entire period, so that we have
only two states to consider. The model has lag para-
meters A1 = 0.730, A, = 0.161 and A3 = 0.109, and
transition matrix

o (0989 oot
~\0233 0767)"

The resulting transition probabilities are

Xi
Xi—3 X2 Xi— E U
E E E [0.989 0.0117]
U E E 0.907 0.093
E U E 0.868 0.132
U U E 0.785 0.215
E E U 0.437 0.563
U E U 0.355 0.645
E U U 0.317 0.683
U U U [0.233 0.767 ]

where E denotes employment and U denotes unem-
ployment. The model fits the data remarkably well.
The probability of being employed at time ¢ depends
strongly on the probability of being employed at time
t — 1. When X;_1 = E, the probability that X; = E
is at least 0.785 whatever X; , and X;_3 are. On
the other hand, this probability is always lower than
0.5 when X,_; = U. It is also interesting to note that
the model explains the present as a function of the
elapsed time since the last employment period. For
instance, the probability of being employed at time ¢
given X;_1 =U, X; » =FE and X;_3 = U (0.355) is
greater than the probability of being employed when
Xt—l =U, Xt—2 =Uand Xl_3 =E (0.317).

A MTD-like model has been used for the analysis of
the mobility of insured individuals between different
types of health insurance plans in Switzerland (Berch-
told, 1997, 1998). The cost of each plan was also inves-
tigated. The data consist of a set of 4300 Swiss people
observed during the period 1991-1994. They are de-
scribed by a set of 13 variables including sex, age, type
of health insurance, number of health bills each year,
yearly total health cost and level of education. Tran-
sition matrices were computed between each variable
and the type of insurance. Then an association measure
was computed for each matrix, and the ones having the
greatest predictive power for the type of insurance were
combined through a MTD model to obtain matrices ex-
plaining the choice of the type of insurance with two

variables simultaneously. Results obtained through this
method proved to be consistent with theoretical predic-
tions. The same method was applied to establish a link
between the same set of explanatory variables and the
yearly total health cost.

5.3 DNA Sequences

Raftery and Tavaré (1994) used Markov chains to fit
two sequences of mouse DNA. Three decompositions
of nucleotides were considered: the complete set of
four bases {A, C, G, T}, the {A/G, C, T} decomposition
and the binary purine—pyrimidine alphabet where each
base is recoded as either purine ({A, G}) or pyrimidine
({C, T}). For both sequences, the complete four-base
alphabet leads to a first-order Markov chain that cannot
be improved upon by a MTD model. In the case
of the three-state alphabet {A/G, C, T}, the second-
order MTD model is chosen. Finally, for the purine—
pyridine case, the first sequence is best modeled by
a fully parameterized second-order Markov chain, the
second-order MTD being the second best. The second
sequence leads to the second-order MTD.

One question raised by this analysis is the fact that
a time-series model is used to represent sequences
of data in which there is no explicit order. Berchtold
(2001) reanalyzed one of these two sequences in its
complete four letter alphabet form. A first analysis
shows that the sequence can be analyzed equally well
by considering an ordering from the left to the right or
from the right to the left, suggesting that a time-series
model may not be the best solution in this case. Then
the spatial MTD model discussed in Section 3.6 was
applied, using either one or two bases on each side of
the focal base. The best model is obtained using one
base on each side and a different transition matrix to
represent transitions from each side of the focal base.
Denoting by L the base on the left and by R the base
on the right, this model has parameters

AL = 0.4598, AR = 0.5402,

70.2039 0.1311 0.5883
_10.3654 0.2674 0 0.3672
O = 0.2263 0.0981 0.5565 0.1191
1 0.1470 0.1324 0.5222 0.1984 |

0.07677

0.2136 0.5124 0.1037 0.17037
Or = 0.1878 0.5059 0.0461 0.2602
R=10.4086 0 0.2323 0.3591

| 0.1386 0.5462 0.0896 0.2256 |
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FIG. 4. Two trajectories of an MTD model. Note the clear change-point-like behavior. Source: Raftery (1993).

5.4 Change Points, Bursts, Outliers and Flat
Stretches

Raftery (1993) and Le, Martin and Raftery (1996)
showed that the class of MTD models is able to rep-
resent change points in time-series without explicitly
including them in the model; it can also represent flat
stretches, bursts of high volatility or variance, and out-
liers. A big advantage of this is that it is not neces-
sary to define a model specifically for each type of
data set analyzed or for each type of nonlinear or non-
Gaussian behavior expected. Figure 4 shows trajecto-
ries of a MTD model which can reproduce change-
point-like behavior.

Le, Martin and Raftery (1996) provided two exam-
ples of the use of the Gaussian MTD model (see Sec-
tion 3.5). The first is the daily closing price of IBM
common stock from May 17, 1961 to November 2,
1962. The second example is a series of consecutive
hourly viscosity readings from a chemical process.
In both cases, the GMTD outperformed the classical
ARIMA model. Figure 5 presents two prediction inter-
vals for the viscosity series and compares the AR and
GMTD models. The 90% intervals are similar for the
MTD and the AR models, but the intervals obtained
using the MTD model are narrower in the 60% case.
Overall, the GMTD model is preferred.

60 80 100

(a) 90% PCI

60 80 100

(b) 60% PCI

FIG. 5.

(a) 90% and (b) 60% predictive intervals for a chemical viscosity series. The dots denote the original observations, the dashed

lines are for the AR-based predictive intervals and the solid lines are for the Gaussian MTD-based predictive intervals. Source: Le, Martin

and Raftery (1996).
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Simulations were also performed to compare the
ability of the MTD and AR model to capture sudden
bursts of activity in a time series. Once again, the MTD
model was preferred. This kind of behavior has often
been modeled using bilinear time-series models (e.g.,
Subba Rao and Gabr, 1984), and these results suggest
that MTD models may be able to carry out some of
the functions of bilinear time-series models without
needing to specify a bilinear structure.

5.5 Financial and Economic Time Series

Financial time series have proven to be difficult
to model. They often exhibit a near-random behavior
characterized by nonstationarity and heteroskedastici-
ty, and require the use of specially designed econo-
metrics models (Bollerslev, Chou and Kroner, 1992;
Hamilton 1994). For example, Figures 6 and 7 show
the evolution of the closing price of Eastman Kodak
shares from May 12, 1998 to May 2, 2000 and the cor-
responding first-differenced series. This series exhibits
a negative trend with short periods of very high vari-
ance (volatility).

The usual candidates to represent this kind of behav-
ior are the autoregressive conditional heteroskedastic-
ity model (ARCH; Engle, 1982) and the generalized
autoregressive conditional heteroskedasticity model
(GARCH; Bollerslev, 1986; Bollerslev, Chou and Kro-
ner, 1992). The general principle is to model not only
the level of the random variable, but also its variance.
Let X; be a continuous random variable and consider
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F1G. 6. Closing price of Eastman Kodak shares from May 12,
1998 to May 2, 2000 (499 observations).
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FI1G. 7. Eastman Kodak first-differenced series.
the model

¢
X; =c+ Z)\,]Xt_J + &,
j=1
where ¢; is white noise with expectation 0 and vari-
ance o2. To take heteroskedasticity into account, the
square of &; is itself represented as an autoregressive
process of order ¢,

q
(34) sf=d+) gje_; +ur
j=1

where u, is white noise. Equation (34) defines an
ARCH(gq) process. This process is often of high order
and it is useful to consider an infinite-lag representa-
tion. This leads to the equation for the variance

q P

(35  ol=w+Y 95+ Lol

Jj=1 j=1
Equation (35) defines a GARCH(p, ¢) model. There
have been many generalizations of this class of
models, including the exponential GARCH model
[EGARCH(p, ¢)], which uses not only the magnitude,
but also the sign of ¢ to predict the variance, and the
ARCH-in-mean model in which an increase in the con-
ditional variance is related to a change in the condi-
tional mean.

The ARCH-type models can be very good at the
representation of series like the one in Figure 6,
but, as noted by Wong and Li (2000), the GMTD
family also has the ability to represent such behavior.
Table 4 compares different models for the Eastman
Kodak series. All the models were estimated using the
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TABLE 4
Comparison of different models for the Eastman Kodak series

Model for Model for Number of

the mean the variance LL parameters BIC
AR(1) — —876.34 2 1765.09
AR(1) GARCH(1, 1) —844.86 5 1720.74
AR(1) GARCH(2,2) —841.45 7 1726.33
AR(1) EGARCH(2,2) —829.85 9 1715.54
AR(2) — —872.34 3 1763.29
AR(2) GARCH(1, 1) —843.95 6 1725.13
AR(2) GARCH(2,2) —840.25 8 1730.14
AR(2) EGARCH(2,2) —827.74 10 1717.53
RWGMTD(2) — —810.60 6 1658.43
MAR(3,2,2,2) — —807.28 14 1701.42

NOTE: The log-likelihood of each model has 495 components. AR(¢) stands for an
£th-order autoregressive model, RWGMTD(¥) is an £th-order random walk GMTD

and MAR(k, pq, ...

last 495 data points, conditionally upon the first four
observations.

Here, the best model is the second-order random
walk GMTD

F(xlxp™h

_ 0‘9651(1)()61 — 1.1274x,_4 +O.1274x;_2>
1.1747

0.4146

+ o.omw(w).
9.4837

n 0.0218¢(M)
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F1G. 8. U.S. annual consumer price inflation level from 1821 to
1999 (179 observations).

, Pk) is a k-component MAR model with orders py, ..., pk.

This model achieves a larger log-likelihood than the
best GARCH model does, and since it does not have
too many parameters, it is the best overall. The use
of a MAR model improves the log-likelihood slightly,
but at the cost of using a much greater number of
parameters.

Another example is provided by the U.S. annual
consumer price inflation level from 1821 to 1999.
Figures 8 and 9 show the original series and the first-
differenced series. Table 5 summarizes the results from
different models for this series.

Once again, a second-order random walk GMTD
yields the best result, this time with an independent

30 T T T T T T T T

251 9

_20 L L L L L L L L
0 20 40 60 80 100 120 140 160 180

F1G.9. First-differenced series of the U.S. annual consumer price
inflation level series.
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TABLE 5
Comparison of different models for the U.S. inflation series

Model for Model for Number of

the mean the variance LL parameters BIC
AR(1) — —536.46 2 1083.24
AR(1) GARCH(1, 1) —508.32 5 1042.46
AR(1) GARCH(1,2) —500.47 6 1031.93
AR(1) GARCH(2,2) —500.39 7 1036.93
RWGMTDi(2) — —485.39 8 1012.10
MAR®A,1,1,1,1) — —497.28 15 1072.02
MAR®#4,2,2,2,2) — —473.64 17 1035.08

NOTE: The log-likelihood of each model has 175 components. AR(¢) stands for an £th-
order autoregressive model, RWGMTDi(¢) is an £th-order random walk GMTD with an

independent term and MAR(k, p1q, ...
Pls--+s Pk-

term. It is written

F(xlxh™h

=0.2424% (x, — 1.6016x;—1 + 0.6016x,_2)
5.0806

+ 0.498p (L — Yl ) +0.23230 (L — x"z)
‘ 2.5002 ‘ 10.1

+ 0.0273c1>< il )
0.0122

As in the previous example, the GARCH models are
outperformed by the MTD specifications. Moreover,
the best overall model is not the one having the
best log-likelihood (a four-component MAR model of
order 2), because the number of parameters is too large.

These examples demonstrate that the GMTD model
can handle series with heteroskedasticity well without
having to model this particular behavior explicitly. This
exhibits the flexibility and power of MTD modeling
once again, and thus defines an alternative to the
widely used GARCH models that may be of some
interest.

5.6 Biological Applications

The MTD model has been used in the literature
for the analysis of a range of other data sets. Raftery
and Tavaré (1994) and Berchtold (2001) analyzed the
song of the wood pewee. The sequences generated by
this New England song bird are characterized by often
repeated patterns or phrases. In its generic form as
discussed here, the MTD is characterized by a lack
of interaction between past values in their effect on
the present state. In the wood pewee song, however,

, k) is a k-component MAR model with orders

such interactions are not only present, but are a major
feature of the data. A generalization of the MTD
model that explicitly modeled the bird’s main phrases
performed very well. This idea might be relevant for
other data where strong patterns are a feature, such as
coding regions in DNA or protein sequences.

Berchtold (1998) also used a MTD model to study
the spatial distribution of Carex arenaria, a European
marsh plant. More generally, he proposed using the
MTD principle to create transition matrices between
several explanatory and/or explained variables, starting
with single matrices between only one explanatory and
one explained variable. The statistical characteristics of
this general model are not well known yet.

6. DISCUSSION

In this section, we discuss other solutions proposed
in the literature for the modeling of high-order Markov
chains or, more generally, for the modeling of non-
Gaussian time series. We also discuss further applica-
tions of the MTD model in hidden Markov models and
the use of covariates.

6.1 Other Models for High-Order Markov Chains

We know of only three other classes of models for
high-order Markov chains. The first is due to Jacobs
and Lewis (1978c) and Pegram (1980) and generalizes
a model previously independently proposed by several
authors including Lloyd (1977) and Jacobs and Lewis
(1978a, b). This model is a special case of the MTD
model, where the transition matrix Q takes the form



MIXTURE TRANSITION DISTRIBUTION MODEL 351

0=0I+1—-0)u’

0+1-0)m  (1-6)m (1 —0)mtm
(1—0m 0+ -0)m (1 —0)mm
(1—0)m, 0+ (1 —0)m

where 0 is a parameter, / is the m x m identity ma-
trix, ¢ is an m vector of 1’s and 7’ = (7, ..., 7Ty)
is the limiting distribution of the first-order Markov
chain. This model has only (m 4 £ — 1) independent
parameters, which is generally more parsimonious than
the corresponding MTD model. On the other hand, the
constraints on the transition matrix Q are very restric-
tive. The probability of being in a particular state k at
time ¢ depends only on the probability of being in the
same state in the past. For every other value of the lag,
the probability is identical, that is, (1 — 6)m;. Raftery
(1985a, b) proved that this model can represent only a
subset of the autocorrelation range of the MTD model,
and so it is useful only in specific situations. Further
non-Markovian generalizations were also proposed by
Jacobs and Lewis (1983).

The second class of high-order Markov chain models
is due to Logan (1981). Two models were presented:
one constrained and the other unconstrained. These
models imply a larger number of parameters than
the MTD model and we do not know of any further
developments or applications.

The third class of models for high-order Markov
chains is the variable length Markov chain model
(VLMC) (Weinberger, Rissanen and Feder, 1995;
Bithlmann and Wyner, 1999). The principle of this
class of models is to explore all branches of an ¢th
order Markov chain and to aggregate branches that
present similar probability distributions. For instance,
consider a random variable X taking values in {1, 2}
and the following third-order transition matrix given in
reduced form:

X;

Xi—3 X2 X1 1 2
1 1 1 ro 117

2 1 0 1
21 025 0.75
2 2 06 04
R= 12 0.74 0.26
2 1 2 0.73 027
12 2 0.74 0.26
> 2 2 o071 029]

The transition matrix R is fully specified by eight in-
dependent parameters, but the first and second rows are

identical, that is, the probability of X, is independent of
X;_3 given X;_1 = X;_» = 1. Moreover, the last four
rows are similar. This suggests reparameterizing R as

X3 X2 X1 1 2

I
2 11 |ag l-q
12 1 @ l-g
R— 2 2 1 93 1—g3
1 1 2 qs 1—qu
2 1 2 qs 1—qu
1 2 2 g4 1—qa
2 2 2 Lgs 1—qa

with g1 =0, g» = 0.25, g3 = 0.6 and g4 = 0.73. The
transition matrix R’ then defines a VLMC model that
has only four independent parameters, compared to the
eight parameters of the fully parameterized third-order
Markov chain. A procedure for determining the best
VLMC model is described in Biihlmann and Wyner
(1999).

The VLMC model is interesting in that it presents
an approach complementary to the MTD. The MTD
model implicitly supposes that the process is of full £th
order and that all branches have to be estimated, albeit
parsimoniously. On the other hand, the VLMC model
supposes that only a part of the structure of the data is
of full £th order.

To show this complementarity, we performed the
following simulation experiment. First, we considered
a random variable taking values in {1, 2} and a second-
order transition matrix 77:

X;
X2 X 1 2
1 1 0.9 0.1
_— 2 1 0.6 04
1= 1 2 0.5 0.5
2 2 0.5 0.5

Since the last two rows are identical, this matrix can
be described by three independent parameters only. It
is a good candidate to be modeled by a VLMC model,
namely

X;
X2 X 1 2
1 1 g1 1—q
o 2 1 @2 l—q
! 1 2 3 1—gq3
2 2 93 1—q3
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TABLE 6
Comparison of the performance of the VLMC and MTD models, which are
computed on sequences generated by the transition matrices Ty and Ty; results for
the independence model and for the first- and second-order full Markov chains

(MC) are also included
Transition Number Models
matrix of data Independence MC1 MC2 MTD2 VLMC

T, 50 288 353 161 51 158
100 101 400 39 88 372

300 1 79 11 109 800

1000 0 0 5 24 971

T 50 251 296 155 239 73
100 136 209 40 527 89

300 3 17 42 903 35

1000 0 0 86 914 0

NOTE: For each model, the table gives the number of times the model was chosen as
the best in 1000 replications according to the BIC criterion. Models that were chosen
as best more than 50% of the time are shown in bold. Note that for small sample
sizes, the sum of a row is sometimes greater than 1000. This indicates that several
models obtained the same best BIC value.

We used 77 to generate sequences of size 52, 102,
302 and 1002, and we computed five models: the in-
dependence model, Markov chains of order 1 and 2,
the MTD model of order 2 and the VLMC model us-
ing the parameterization of 7|. This procedure was
replicated 1000 times for each sequence length and
models were compared on the basis of their BIC val-
ues. (To ensure a fair comparison, we conditioned
on the first two data points of each sequence so
as to have the same number of components in the
log-likelihood for each model, namely 50, 100, 300
and 1000.) Then we carried out the same experi-
ment again, this time using the transition matrix 7>,
namely

X;
X2 X 12
1 1 0.9 0.1
n_ 2 1 0.6 04
2= 1 2 0.7 0.3
2 2 0.3 0.7

Intuitively, it would seem that the VLMC model
defined by 7} should be good when used on sequences
generated by 7j, but should not perform well on

sequences generated by 7. On the other hand, the
MTD model should obtain good results with 75.
So,we expected to obtain better results by the VLMC
on sequences generated by 77 and by the MTD on
sequences generated by 7>. Table 6 summarizes our
results in terms of BIC. Note that the MTD and
VLMC models have the same number of independent
parameters (three), so the BIC comparison between
these two models amounts simply to preferring the one
with the larger log-likelihood.

In the case of small sequence sizes (50 data points,
and also 100 data points in the case of 77), Table 6
shows a great variability between models. Often, the
simple first-order model is chosen. On the other hand,
as the sequence length increases, the VLMC model
becomes the best choice for sequences generated by
T; and the MTD model becomes the best choice
for sequences generated by 7>. These results corrob-
orate our hypothesis. The VLMC and MTD mod-
els are not competitive, but represent complementary
solutions for the modeling of high-order dependen-
cies.

This complementarity between MTD and VLMC
can also be used to improve the modeling of more
complex situations. Consider the following third-order
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transition matrix V':

Xy
Xi—3 X2 Xi—1 1 2
1 1 1 g1 1—q1]
2 1 1 @ 1—q
1 2 1 93 1—q3
V= 2 2 1 qs 1—qa
-1 1 2 g5 1—gs
2 1 2 g6 1—gs
1 2 2 g6 1—gs
2 2 2 Lg6 1 —g6

The full third-order matrix would have eight indepen-
dent parameters, but since the last three rows are identi-
cal, a VLMC seems a better choice with only six inde-
pendent parameters. Another solution is to use a MTD
model. It cannot take into account the equality of the
last three rows, but on the other hand, it has a smaller
number of independent parameters (four). An interme-
diate solution could be to use both a VLMC and a MTD
specification to obtain a better mix between the log-
likelihood and the number of parameters. We propose
to use the following two-step procedure:

1. Search for the best VLMC model for the data and
estimate rows which can be simplified.

2. Compute the MTD model and use it to estimate
rows which cannot be simplified by the VLMC
model.

Using this procedure, the respective qualities of
both models are used together. To test this idea, we
performed the following simulation experiment. We
considered the following four transition matrices:

Xi
X[_l 1 2

1 [09 0.17
0.6 0.4
0.7 03
03 0.7
0.8 02|
0.5 0.5
04 0.6
(0.1 0.9 |

X3

x
[\S)

DN = N = DN = N =
NN == NN ==

NN NN — ==

Xi

1 1 [09 0.1
1 0.6 0.4
1 07 0.3
1 03 0.7
2 08 02|
2 02 0.8

2 02 0.8
2 o2 08

NS
|
N =N =N =N =

X,
Xi—3 X2 X1 1 2

1 1 [09 0.17
1 0.6 0.4
1 07 03
1 03 0.7
2 0.8 02|
2 05 0.5
2 05 0.5
2 05 05]

X;
Xi—3 X2 X1 1 2

1 1 [09 0.17
1 0.6 0.4
1 0.7 03
1 03 07
2 0.8 0.2
2 04 0.6
2 04 0.6
2 04 06]

Note that these four matrices differ only by their
last three rows. The V; matrix is of full third order,
while the V,, V3 and V4 matrices have the same
structure as V with the last three rows equal. Each
matrix was used to generate 1000 sequences of length
1003. We computed four models on each sequence:
the full third-order transition matrix, the third-order
MTD, the VLMC having the structure of matrix V and
a model mixing MTD and VLMC in which the first
five rows correspond to the MTD and the last three
rows correspond to the VLMC. Table 7 summarizes the
results.

One would not expect the VLMC or the MTD-
VLMC models to provide good representations of
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TABLE 7
Comparison of the performance of the MTD, VLMC and
MTD-VLMC models, which are computed on sequences generated
by the transition matrices V| to Vy; results for the third-order full
Markov chains (MC) are also included

Transition Models
matrix MC3 MTD 3 VLMC MTD-VLMC
Vi 15 985 0 0
Vs 1 5 819 175
Vi3 0 330 217 453
V4 0 133 218 649

NOTE: For each model, the table gives the number of times the
model was chosen as the best in 1000 replications according to the
BIC criterion. The number is shown in bold if the model was best
more than 50% of the time.

sequences generated by V1, since this matrix does not
have a VLMC structure. In this case, the MTD model is
almost always preferred. Sequences generated using V>
are generally best modeled by a VLMC model. Finally,
the MTD-VLMC model achieves good performances
on the last two matrices. This can be explained by
looking at the reduced form of the third-order MTD:

MTD 3 =
Xt

Xi—3 Xp—2 Xi— 1 2

1 1 1 911 912

2 1 1 Aa21 +22411 23911 1922 +22912 43912

1 2 1 Marr +r2921 +43911 A4a12 22922 +43412

2 2 1 Maz1 22421 +43911 Aaz2 22922 +43412

1 1 2 AMarr +r2911 +r3921 Ma12 2912 HA3a |
2 ! 2 AMa21 +22911 +43921 21922 +H2912 +43422

; ; % AMa11+42921 +23921 A14q12 42922 +43422

921 q22

Since V», V3 and V4 have their last three rows equal,
q11 cannot take a value too different from ¢», and g1»
cannot take a value too different from ¢»;. This implies
that the resulting MTD is not good at representing
situations in which a column contains probabilities that
are very different from one another. Thus the MTD-
VLMC does not perform well for sequences generated
using V,, but it achieves better results for sequences
generated using V3 and V.

6.2 Other Models for Discrete-Valued Time Series

Raftery (1985b) proposed building a log-linear mo-
del using the same principle used for the MTD model,
that is, by ignoring the interactions between lags.
Raftery (1985b) also proposed a model inspired by the
autoregressive moving-average (ARMA) model. The
basic MTD model of (12) is modified as

£ k
Xi= hex_gQ+ Y unkl O+ not't,

where
0 k
Z)\‘g—"_zﬂh-"_l’l’ozl
g=1 h=1
and & = (§,(1), ..., & (m)) is an indicator vector with

& (@) =11if Y; =i and zero otherwise, where the Y;
are independent random variables with distribution
7'Q = n’. The equilibrium distribution of X, is .
This model is similar to the standard ARMA(Y, k)
model, but it is no longer Markovian.

Liang and Zeger (1986) and Zeger and Liang (1986)
developed the generalized estimating equation method
for the estimation of GLM models in the case of
longitudinal data with correlation among lags. Zeger
and Qaqish (1988) introduced the class of Markov
regression models. These observation-driven models
are a generalization of a model presented previously
by Cox (1981). They are very flexible and they can also
incorporate covariates. In the binary case, the resulting
models are similar to logistic regressions. Fahrmeir
and Kaufmann (1987) described a similar model for
the multinomial case. More details about this class of
models can be found in Fahrmeir and Tutz (1994),
Diggle, Liang and Zeger (1996), Laird (1996) and
MacDonald and Zucchini (1997).

6.3 High-Order Hidden Markov Models

Hidden Markov models often use a first-order
Markov chain to represent the transition process be-
tween hidden states. However, it seems interesting to
be able also to use high-order dependencies. To avoid
an excessive number of parameters, Schimert (1992)
proposed replacing the higher order Markov chain by a
MTD model in the context of speech recognition.

The same principle is also used in the double
chain Markov model (DCMM) developed by Berchtold
(1999, 2002). This model is based on the superposition
of two Markov chains. A non-homogeneous observed
process is described by a finite set of M transition
matrices. At each time ¢, the choice of the active
matrix is governed by a hidden homogeneous Markov
chain. Both the hidden and visible transition matrices
can be of order greater than 1, which implies a large
number of parameters. This problem is solved through
the use of a MTD model for each of these matrices.

6.4 Covariates

One possible way to incorporate covariates is to con-
sider the observed data to be nonhomogeneous and to
apply a model such as the DCMM of Section 6.3. In
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this case, each set of external conditions leads to a dif-
ferent transition matrix between observed events. Al-
ternatively, the covariates can be incorporated into the
MTD model through the addition of a supplementary
term or they can directly modify the basic MTD model.
See Berchtold and Raftery (1999) for more details.

ACKNOWLEDGMENTS

This research was supported by Office of Naval
Research Grant N00014-96-1-0192. André Berchtold
was also supported by a grant from the Swiss National
Science Foundation.

REFERENCES

ADKE, S. R. and DESHMUKH, S. R. (1988). Limit distribution
of a high-order Markov chain. J. Roy. Statist. Soc. Ser: B 50
105-108.

AITKIN, M., ANDERSON, D., FrRANCIS, B. and HINDE, J.
(1989). Statistical Modelling in GLIM, Chap. 6. Clarendon,
Oxford.

BAauwMm, L. E. (1971). An inequality and associated maximization
technique in statistical estimation for probabilistic functions
of Markov processes. In Inequalities. 1ll. Proceedings of a
Symposium. Academic Press, New York.

BAXTER, R. J. (1982). Exactly Solved Models in Statistical
Mechanics. Academic Press, London.

BERCHTOLD, A. (1995). Autoregressive modelling of Markov
chains. In Proc. 10th International Workshop on Statistical
Modelling 19-26. Springer, New York.

BERCHTOLD, A. (1996). Modélisation autorégressive des chalnes
de Markov: Utilisation d’une matrice différente pour chaque
retard. Rev. Statist. Appl. 44 5-25.

BERCHTOLD, A. (1997). Swiss health insurance system: Mobility
and costs. Health and System Science 1 291-306.

BERCHTOLD, A. (1998). Chaines de Markov et Modeles de
Transition: Applications aux Sciences Sociales. HERMES,
Paris.

BERCHTOLD, A. (1999). The double chain Markov model. Com-
mun. Statist. Theory Methods 28 2569-2589.

BERCHTOLD, A. (2001). Estimation in the mixture transition
distribution model. J. Time Ser. Anal. 22 379-397.

BERCHTOLD, A. (2002). High-order extensions of the double
chain Markov model. Stoch. Models 18 193-227.

BERCHTOLD, A. and RAFTERY, A. E. (1999). The mixture
transition distribution (MTD) model for high-order Markov
chains and non-Gaussian time series. Technical Report 360,
Dept. Statistics, Univ. Washington. Available at www.stat.
washington.edu/www/research/reports/1999/tr360.ps.

BESAG, J. (1974). Spatial interaction and the statistical analysis of
lattice systems (with discussion). J. Roy. Statist. Soc. Ser. B 36
192-236.

BESAG, J. (1975). Statistical analysis of non-lattice data. The
Statistician 24 179-195.

BESAG, J. (1977). Efficiency of pseudolikelihood estimation for
simple Gaussian fields. Biometrika 64 616—618.

BESAG, J., YORK, J. and MOLLIE, A. (1991). Reply to comments.
Ann. Inst. Statist. Math. 43 49-59.

BILLINGSLEY, P. (1961). Statistical Inference for Markov
Processes. Univ. Chicago Press.

BisHOP, Y. M. M., FIENBERG, S. E. and HOLLAND, P. W.
(1975). Discrete Multivariate Analysis. MIT Press, Cam-
bridge.

BOLLERSLEV, T. (1986). Generalized autoregressive conditional
heteroscedasticity. J. Econometrics 31 307-327.

BOLLERSLEV, T., CHOU, R. Y. and KRONER, K. F. (1992).
ARCH modeling in finance: A review of the theory and
empirical evidence. J. Econometrics 52 5-59.

BREMAUD, P. (1999). Markov Chains: Gibbs Fields, Monte Carlo
Simulation, and Queues. Springer, New York.

BUHLMANN, P. and WYNER, A. J. (1999). Variable length
Markov chains. Ann. Statist. 27 480-513.

Cox, D. R. (1981). Statistical analysis of time series: Some recent
developments (with discussion). Scand. J. Statist. 8 93—115.

CRAIG, P. (1989). Time series analysis of directional data. Ph.D.
thesis, Dept. Statistics, Trinity College, Dublin.

DEMPSTER, A. P., LAIRD, N. M. and RUBIN, D. B. (1977). Max-
imum likelihood from incomplete data via the EM algorithm
(with discussion). J. Roy. Statist. Soc. Ser. B 39 1-38.

DIGGLE, P. J., LIANG, K.-Y. and ZEGER, S. L. (1996). Analysis
of Longitudinal Data. Clarendon, Oxford.

DowmB, C. and PoTTS, R. B. (1951). Order—disorder statistics.
IV. A two-dimensional model with first and second interac-
tions. Proc. Roy. Soc. London Ser. A 210 125-141.

ENGLE, R. F. (1982). Autoregressive conditional heteroscedastic-
ity with estimates of the variance of United Kingdom inflation.
Econometrica 50 987-1007.

FAHRMEIR, L. and KAUFMANN, H. (1987). Regression models
for non-stationary categorical time series. J. Time Ser. Anal. 8
147-160.

FAHRMEIR, L. and TuTz, G. (1994). Multivariate Statistical
Modelling Based on Generalized Linear Models. Springer,
New York.

FRANCIS, B. et al. (1993). The GLIM System: Release 4 Manual
(B. Francis, M. Green and C. Payne, eds.). Clarendon, Oxford.

GILKS, W. R., RICHARDSON, S. and SPIEGELHALTER, D. J.,
eds. (1996). Markov Chain Monte Carlo in Practice. Chapman
and Hall, London.

GRIMMETT, G. R. (1973). A theorem about random fields. Bull.
London Math. Soc. 5 81-84.

HAMILTON, J. D. (1994). Time Series Analysis. Princeton Univ.
Press.

HANEY, D. J. (1993). Methods for analyzing discrete-time, finite
state Markov chains. Ph.D. dissertation, Dept. Statistics, Stan-
ford Univ.

HEALY, M. J. R. (1988). GLIM: An Introduction. Clarendon,
Oxford.

HECKERMAN, D. J., CHICKERING, D. M., MEEK, C., ROUNTH-
WAITE, R. and KADIE, C. (2000). Dependency networks for
inference, collaborative filtering, and data visualization. J. Ma-
chine Learning Research 1 49-75.

HOLGATE, P. (1964). Estimation for the bivariate Poisson distrib-
ution. Biometrika 51 241-245.

HoLLAND, J. H. (1975). Adaptation in Natural and Artificial
Systems. Univ. Michigan Press, Ann Arbor.



356 A. BERCHTOLD AND A. E. RAFTERY

HOSKING, J. R. M. (1981). Fractional differencing. Biometrika 68
165-176.

JACOBS, P. A. and LEWIS, P. A. W. (1978a). Discrete time series
generated by mixtures. I. Correlational and runs properties.
J. Roy. Statist. Soc. Ser. B 40 94-105.

JACOBS, P. A. and LEWIS, P. A. W. (1978b). Discrete time
series generated by mixtures. II. Asymptotic properties. J. Roy.
Statist. Soc. Ser. B 40 222-228.

JAcoBS, P. A. and LEWIS, P. A. W. (1978c). Discrete time
series generated by mixtures. III. Autoregressive processes.
Technical Report NPS 55-78-022, Naval Postgraduate School.

JacoBs, P. A. and LEWIS, P. A. W. (1983). Stationary discrete
autoregressive-moving average time series generated by mix-
tures. J. Time Ser. Anal. 4 18-36.

JOHNSON, N. L. and Ko7z, S. (1969). Distributions in Statistics:
Discrete Distributions. Houghton Mifflin, Boston.

KARLIN, S. and TAYLOR, H. M. (1981). A Second Course in
Stochastic Processes. Academic Press, New York.

KaAss, R. E. and RAFTERY, A.E. (1995). Bayes factors. J. Amer.
Statist. Assoc. 90 773-795.

KATZ, R. W. (1981). On some criteria for estimating the order of
a Markov chain. Technometrics 23 243-249.

KATZ, L. and PROCTOR, C. H. (1959). The concept of configura-
tion of interpersonal relations in a group as a time-dependent
stochastic process. Psychometrika 24 317-327.

KEMENY, J. G. and SNELL, J. L. (1976). Finite Markov Chains.
Springer, New York.

KEMENY, J. G., SNELL, J. L. and KNAPP, A. W. (1976).
Denumerable Markov Chains. Springer, New York.

KINDERMAN, R. and SNELL, J. L. (1980). Markov Random Fields
and their Applications. Amer. Math. Soc. Providence, RI.

KwoK, M. (1988). Some results on higher-order Markov chain
models. Ph.D. thesis, Univ. Hong Kong.

LAIRD, N. M. (1996). Longitudinal panel data: An overview of
current methodology. In Time Series Models in Econometrics,
Finance and Other Fields (D. R. Cox, D. V. Hinkley and
O. E. Barndorff-Nielsen, eds.). Chapman and Hall, London.

LE,N. D., MARTIN, R. D. and RAFTERY, A. E. (1996). Modeling
flat stretches, bursts, and outliers in time series using mixture
transition distribution models. J. Amer. Statist. Assoc. 91
1504-1515.

LIANG K.-Y. and ZEGER, S. L. (1986). Longitudinal data analysis
using generalized linear models. Biometrika 73 13-22.

LLoyp, E. H. (1977). Reservoirs with seasonally varying Markov-
ian inflows and their first passage times. Research Report RR-
77-4, International Institute for Applied Systems Analysis,
Laxenburg, Austria.

LoGAN, J. A (1981). A structural model of the higher-order
Markov process incorporating reversion effects. J. Math.
Sociol. 8 75-89.

MACDONALD, I. L. and ZUCCHINI, W. (1997). Hidden Markov
and Other Models for Discrete-Valued Time Series. Chapman
and Hall, London.

MARTIN, R. D. and RAFTERY, A. E. (1987). Robustness, com-
putation, and non-Euclidean models. Comment on “Non-
Gaussian state-space modelling of nonstationary time series,”
by G. Kitagawa. J. Amer. Statist. Assoc. 82 1044—1050.

MCLACHLAN, G. J. and KRISHNAN, T. (1996). The EM Algo-
rithm and Extensions. Wiley, New York.

MEHRAN, F. (1989a). Longitudinal analysis of employment and
unemployment based on matched rotation samples. Report,
International Labour Office, Bureau of Statistics, Geneva.

MEHRAN, F. (1989b). Analysis of discrete longitudinal data:
Infinite-lag Markov models. In Statistical Data Analysis and
Inference (Y. Dodge, ed.) 533-541. North-Holland, Amster-
dam.

PEGRAM, G. G. S. (1980). An autoregressive model for multilag
Markov chains. J. Appl. Probab. 17 350-362.

RAFTERY, A. E. (1985a). A model for high-order Markov chains.
J. Roy. Statist. Soc. Ser. B 47 528-539.

RAFTERY, A. E. (1985b). A new model for discrete-valued time
series: Autocorrelations and extensions. Rassegna di Metodi
Statistici ed Applicazioni 3—4 149-162.

RAFTERY, A. E. (1993). Change point and change curve modeling
in stochastic processes and spatial statistics. J. Appl. Statist.
Sci. 1403-423.

RAFTERY, A. E. and BANFIELD, J. D. (1991). Stopping the Gibbs
sampler, the use of morphology and other issues in spatial
statistics. Ann. Inst. Statist. Math. 43 32-43.

RAFTERY, A. E. and TAVARE, S. (1994). Estimation and mod-
elling repeated patterns in high order Markov chains with
the mixture transition distribution model. Appl. Statist. 43
179-199.

SCHAFER, J. L. (1997). Analysis of Incomplete Multivariate Data.
Chapman and Hall, London.

SCHIMERT, J. (1992). A high order hidden Markov model. Ph.D.
dissertation, Univ. Washington.

SCHWARZ, G. (1978). Estimating the dimension of a model. Ann.
Statist. 6 461-464.

SUBBA RAO, T. and GABR, M. M. (1984). An Introduction to
Bispectral Analysis and Bilinear Time Series Models. Lecture
Notes in Statist. 24. Springer, New York.

THEIL, H. (1971). On the estimation of relationships involving
qualitative variables. American J. Sociology 76 103—154.
WEINBERGER, M. J., RISSANEN, J. J. and FEDER, M. (1995).
A universal finite memory source. IEEE Trans. Inform. Theory

41 643-652.

WONG, C. S. and L1, W. K. (2000). On a mixture autoregression
model. J. Roy. Statist. Soc. Ser. B 62 95-115.

ZEGER, S. L. and LIANG, K.-Y. (1986). Longitudinal data
analysis for discrete and continuous outcomes. Biometrics 42
121-130.

ZEGER, S. L. and QAQISH, B. (1988). Markov regression models
for time series: A quasi-likelihood approach. Biometrics 44
1019-1031.



