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Abstract. The original paper by Michael Evans and Tim Swartz ap-
peared in the August 1995 issue of Statistical Science (10 254–272). Due
to a publication error the following discussion of the paper was not in-
cluded in that issue.

Comment
J. E. H. Shaw

I am very grateful to the authors for their clear
summary of the current state of approximate in-
tegration in statistics and for the opportunity to
contribute some further suggestions based on my
own research and experience in practical Bayesian
inference.

Suppose for the moment that the aim is to use a
numerical integration method over Rk to integrate
with respect to a fairly well-behaved unnormalized
posterior density f�θ�. The various recommended
methods then have similar stages: (1) initial param-
eterization, (2) iterative search for an appropriate
representation of f�θ� that uses at least first and
second moments and (3) estimation of the required
integrals, preferably with diagnostics allowing one
to reassess stages 1 and 2.

For example, asymptotic methods might use con-
jugate gradient methods in stage 2 to find the mode
θ̂ and Hessian H�θ̂�, followed by Laplace approxi-
mation for stage 3. Iterative importance sampling
typically aims to represent f�θ� approximately by
an importance sampler wα�θ� with appropriate
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first and second moments and tail behavior. Mul-
tiple quadrature approaches might at stage 2 use
the Naylor–Smith algorithm to arrive at approxi-
mate first and second moments to standardize f�θ�
and use a high-degree integration rule at stage 3.
Similarly, Markov chain methods might iteratively
choose the transition function r�θ; ·� based partly
on current estimates of posterior moments and in-
crease the number of points for a given r�θ; ·� when
the process appears to be converging.

As the authors say, it is important for the user
to have the option of using any of these methods.
This facilitates convergence at stage 2 as well as er-
ror estimation at stage 3. Before investigating such
an ambitious unified approach, comments follow on
some specific integration methods that I have found
useful.

IMPORTANCE SAMPLING

An alternative to spherically symmetric impor-
tance sampling is given by forming the importance
sampler w as a product of k univariate importance
sampling functions. This approach was briefly de-
scribed in Shaw (1988), and implemented in the
BAYES FOUR package as described in Naylor and
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Shaw (1991). Particularly useful univariate families
for importance sampling are given implicitly by

XA = Aφ�U� − �1−A�φ�1−U�;(1)

where U is a random variable with a uniform
U�0;1� distribution, 0 ≤ A ≤ 1, and φ�·� is a simple
monotonic increasing function on �0;1�, such that
φ�u� → −∞ as u → 0. For example, if φ�u� =
log�u�, then X0 has an exponential distribution,
X0:5 has a logistic distribution and XA for other
values of A ∈ �0;1� has a skewed distribution with
support �−∞;∞� and with exponential tail behav-
ior. Another example is φ�u� = tan�0:5π�u−1��, for
which X0:5 has a Cauchy distribution and X0 has a
half-Cauchy distribution.

These families have several attractive properties
apart from their ease of generation. For example,
for a given φ�·�, the distance from the pth to the
�100 − p�th percentile is independent of A, so that
the interpercentile distances are convenient sum-
maries of scale and tail behavior. Also, the median
and the mean of XA are both linear in A, and the
variance is quadratic in A. Such properties help one
choose the importance sampler iteratively to match
its characteristics to those of the integrand in each
dimension separately. Note by the way that the im-
portance sampler in BAYES FOUR is scaled so as to
integrate a multivariate normal density with mini-
mum mean squared error, rather than using the in-
verse Hessian at the mode as described in Section 8
of the paper.

For a smooth unnormalized posterior f�·�, the ef-
ficiency of the above importance sampling method
is intimately related to the use of quasirandom se-
quences as in Shaw (1988). Provided the importance
sampling function w�·� has heavier tails than f�·�
(which is in any case usually desirable for stabil-
ity), the above approach is equivalent to integrating
over �0;1�k a smooth function that tends to 0 at the
boundary. Quasirandom sequences are widely rec-
ognized to be extremely efficient with periodic inte-
grands like this. They can also be useful in many
other integration methods, for example, by generat-
ing points efficiently on concentric ellipsoidal shells
as in Shaw (1988a). Important additional references
to quasirandom sequences and related methods are
Fang and Wang (1993) and Sloan and Joe (1994).

MULTIPLE QUADRATURE

The development of certain novel monomial rules,
with positive weights and real (rather than complex)
nodes was reported briefly in Shaw (1993). These de-
signed rules use error-correcting codes and related
theory to attain high efficiency. For example, a de-
signed Gauss–Hermite rule of monomial degree 7

in 5, 10 and 20 dimensions requires roughly 100,
1000 and 8500 function evaluations respectively,
compared to roughly 1000, 106 and 1012 evaluations
for the corresponding product Gauss–Hermite rules!
This allows multiple quadrature methods to be-
come competitive for reasonable integrands in much
higher dimensions than the k ≤ 6 suggested in Sec-
tion 8 of the paper. Note that designed rules do not
suffer from the curse of dimensionality as does the
subregion adaptive algorithm.

Cameron and van Lint (1991) and Conway and
Sloane (1988) are excellent references for coding
theory. I hope to use computer algebra (see, e.g.,
Cox, Little and O’Shea, 1992) to help find further
efficient quadrature rules including ones with de-
gree d > 7.

A UNIFIED APPROACH?

The above importance sampling and multiple
quadrature approaches may fail if f�θ� is not as
well behaved as initially supposed; for example, if it
exhibits multimodality, extreme skewness or heavy
tails, “banana-shaped contours” and so forth.

Automatic reparameterization based simply on
the given ranges of the initial parameters may cure
such behavior and can be made transparent to the
user once the statistical problem has been speci-
fied. However, if no simple transformation can be
found to transform the integrand into one with
a single dominant peak and approximately ellipti-
cal contours, then it is often very dangerous to at-
tempt to identify a complicated reparameterization:
the transformed f�θ� can become more and more
badly behaved, but in ways that become harder and
harder to pick up.

An alternative approach is to decompose f�θ�:
f�θ� = f1�θ� + · · · + fn�θ�;(2)

where each fi�·� is a nonnegative function and at-
tempts to capture a particular aspect of f�·�. For
example, an fi�·� may be centered at each mode.
One possibility is to define

fi�θ� = f�θ� × gi�θ�
/ n∑

j

gj�θ�;(3)

where each gi�·� has a multivariate normal shape
whose mean, variance and weight are chosen iter-
atively. This multikernel approach works well with
a range of specific statistical models, but has so far
proved difficult to automate in full generality for the
naive user.

I have been developing a general Bayesian analy-
sis package called BINGO based on this unified ap-
proach of automatic initial reparameterization and
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iterative multikernel representation with a wide
choice of integration methods. The Warwick Statis-
tics World-Wide Web page (currently http://www
.warwick.ac.uk/WWW/faculties/science/Statistics)

will contain further information and downloadable
software, including a catalogue of efficient designed
integration rules in up to 20 dimensions, and an up-
dated version of Shaw (1993).

Comment
Alan Genz and John Monahan

The authors are to be congratulated on their ex-
cellent survey (including an extensive and current
reference list) of numerical integration methods for
statistical computation problems. They also demon-
strate how a multivariate Studentk�ζ� density can
be used effectively in an adaptive importance sam-
pling algorithm for some problems.

PARAMETERIZATION

A key issue for statistical numerical integration
methods is what the authors refer to as parameteri-
zation (or reparameterization). Most methods begin
with some kind of standardizing transformation,
and the most common choice is u = m + Cv, where
m is the posterior mode and C is the Cholesky fac-
tor of the negative inverse Hessian at m. This kind
of transformation is very useful for problems where
the posterior has a global maximum at µ, but after
this transformation has been made, two features of
the transformed posterior are sometimes present:
skewness and thick tails. When these features are
not present, a multivariate normal model usually
accounts for most of the posterior behavior, so that
asymptotic methods can be used to provide good es-
timates for simple posterior expectations, and a va-
riety of other simple methods can be used if higher
accuracy if desired. However, if either of these fea-
tures is present, the use of the simple multivariate
normal (MVN) model can lead to inaccurate and
misleading results. Thick tails create the biggest
problems and are the most difficult to recognize and
remedy. In high dimensions, the tail behavior of the
posterior function is often impossible to determine
analytically, and even in one dimension, the logis-
tic distribution resembles the normal in shape so
that the two may be difficult to distinguish visually.
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ics, Washington State University, Pullman, Wash-
ington 99164-3113. John Monahan is Professor, De-
partment of Statistics, North Carolina State Univer-
sity, Raleigh, North Carolina 27695-8203.

The differences in tail behavior may have unrecog-
nizable consequences.

After standardization, the tail of the normal ex-
tends as far as 3.1, where the tail area is 0.001, or
perhaps to 3.7, where the tail area is 0.0001. For
a logistic, these points correspond to 6.9 and 9.2,
and, after the modal standardization, still extend to
5 and 6.5. Using normal-like tail cutoff points will
miss substantial probability mass, and the effect on
first and second moments will be substantial. Some
methods, such as the subregion adaptive approach,
which essentially do not rely on tail behavior, may
still be affected. The inverse normal transformation
is often used to map the unit interval to the real
line. Here the problem arises in that there may be
no points near 1 which correspond to any beyond
10 on the real line, even using double precision. Al-
ternately, if in order to avoid a transformation to
�0;1�k, a Gauss–Hermite product rule is applied di-
rectly to the standardized posterior, a rule with at
least 32 points in each variable needs to be used
to account for tails with significant content beyond
ωi = ±10, and the use of such a rule is probably
infeasible for k > 3 or 4.

The multivariate Studentk�5� has a starkly con-
trasting very thick tail. Here our fear may instead
be that so much effort is devoted to controlling the
tail that most of the time might be spent evaluating
the posterior where the mass may be small and in-
significant. Clearly, a middle ground may be prefer-
able, and a useful addition to the authors’ method
would be a heuristic for estimating a good value for
the degrees of freedom parameter ζ.

The authors do suggest using the sum
�
W∗2i as

a diagnostic for troublesome tail behavior in impor-
tance sampling. The second author of this comment
(Monahan, 1993) investigated the use of this diag-
nostic for testing whether the weights have a finite
variance, and found that estimates of tail rates work
much better in this regard. The reader should note
that when improper priors are used, these weights
may even fail to have a finite mean.
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The authors combine the use of the multivariate
Student model with an adaptive strategy for up-
dating the location µ and scale C parameters. This
strategy can handle skewness by shifting the center
of the model. However, this strategy is still based
on a centrally symmetric model and this approach
may be an inefficient way to deal with skewness.

THE EXAMPLES

The results for the examples show that the adap-
tive importance sampling method with a multivari-
ate Student model can be very effective. The ac-
tual problem for the first example is really only a
two-dimensional problem when the θ10 variable is
treated as an outer integration variable, because
the integrand for this variable is then just a product
of nine independent one-dimensional integrals. The
authors could have exploited this feature to save
time computing “exact” values for the integrals in
this problem. However, the problem as posed does
make a good 10-dimensional test problem for sta-
tistical numerical integration software. The inte-
grands for each of the other nine θi variables be-
have asymptotically like θ−20

i or a Student(19), and
this suggests that the adaptive importance sam-
pling method should be more efficient if a larger
value of ζ is used, even though the authors did not
observe this with the tests that they have reported.

The comparisons with results from the subregion
adaptive method (software ADBAYS) are perhaps
a little unfair, for two reasons. One reason is that
the authors use ADBAYS only with an MVN model
and without adaptively adjusting the model param-
eters. The first author of this comment did obtain
improved results with ADBAYS using a Student(5)
model combined with adaptive adjustment of the
model parameters. The second reason is that the
error estimates produced by ADBAYS are known to
be very conservative (Genz and Kass, 1993), and
the long running times for ADBAYS could have
been reduced if a less conservative error estimate
(as discussed in Genz and Kass, 1993) had been
used. Similar comments could be made about the
use of ADBAYS for the second example. However
even after taking these comments into account, the
dimensionality in both of these problems is proba-
bly too high for currently available subregion adap-
tive methods to be competitive with adaptive im-
portance sampling. Overall, the the authors have
made a fair assessment of the usefulness of subre-
gion adaptive methods for statistical numerical in-
tegration problems. The third example is probably
not a very good example for the adaptive importance
sampling method, because there are already avail-
able good methods for computing MVN probabilities
(see Genz, 1993).

Comment
Mark J. Schervish, Larry Wasserman and Russ Wolfinger

1. INTRODUCTION

We congratulate the authors on a timely and
well-written paper. Given the current attention that
Markov chain Monte Carlo (MCMC) is receiving, it
is important to be reminded that there are other
methods available. The choice of method should cer-
tainly be problem dependent. We find ourselves in
agreement with much of what the authors say. Our
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discussion focuses on several different issues. In
Section 2 we discuss the importance of using al-
gorithms that are simple to program. In Section 3
we discuss the examples and, in particular, we note
that Example 2 may not be appropriate for compar-
ing the methods. In Section 4 we touch upon the
problem of computing normalizing constants from
simulation output. Finally, in Section 5 we consider
the authors’ classes of methods in the context of the
variance components model.

2. MACHINE EFFICIENCY VERSUS
HUMAN EFFICIENCY

In comparing the efficiency of various methods
we must bear in mind that CPU time is only one
dimension. Another is how difficult it is to write a
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program to use the method. If a method is so simple
that a user can write a program from scratch very
quickly, then the method has a chance of becoming
widely used. Consider Example 2. The authors did
not consider a MCMC approach. By introducing a
latent variable that indicates which of the two con-
tingency tables each subject is from, it is quite sim-
ple to write a Gibbs sampling program; we did so in
less than 30 min. It seems unlikely that the other
methods can be programmed so quickly and easily.
The actual running time of the program is often not
crucial since we can do other things while the com-
puter runs the program. In contrast, we are pretty
much stuck in front of the computer screen while
programming. (Incidentally, we wrote both a For-
tran version and S-Plus version. The Fortran pro-
gram took 16 s for 10,000 runs. The S-Plus program
took 9 min; not swift but not terrible either.)

3. THE EXAMPLES

The authors chose three examples to compare the
methods. We agree that using test examples is the
best way to compare methods. Example 2, however,
may not be a good choice for comparing methods
since it is nonidentifiable.

In fact, Example 2 has two sources of noniden-
tifiability. One source of nonidentifiability comes
from “label-switching,” that is, it is impossible to
say which table is to be called �1� and which one
is to be called �2� without further restriction. The
authors have imposed the restriction that θ ≤ 1/2.
However, there is another source of nonidentifiabil-
ity. A 3 × 3 table has only 8 degrees of freedom,
while the authors fit a 9 parameter model. This sec-
ond source of nonidentifiability manifests itself as
a ridge of high likelihood. (The label-switching pro-
duces a second, mirror-image ridge of high likeli-
hood. Oddly enough, both of these ridges include
substantial portions with θ ≤ 1/2. Each of these
portions represents that portion of the other ridge
where θ ≥ 1/2 and the labels are switched.) As the
sample size goes to infinity, the posterior converges
to a singular distribution on a lower dimensional
manifold (rather than a point). To put it another
way, even if we knew the true cell proportions for
the 3 × 3 table, we could still decompose this ta-
ble as the mixture of two independence tables in
infinitely many ways. Hence, none of the parame-
ters has a “true value” and it is not meaningful to
produce point estimates of θ.

All the methods used by the authors for this ex-
ample assume that the posterior is unimodal and
well behaved. None is appropriate because of the
peculiar shape of the posterior. It is worth remark-

ing that we discovered this problem by observing
several different runs of MCMC some of which mi-
grated to one of the areas of high likelihood and
some of which migrated to the other one.

We have to agree with the authors that Example
3 does not lend itself to a MCMC solution. The algo-
rithm of Schervish (1984) is not designed for achiev-
ing absolute accuracy of 10−10 for six-dimensional
problems in any reasonable amount of time. How-
ever, when converted to double precision, it does
consistently produce the answer 0:166626 × 10−4

when one requests absolute accuracy of 10−3, 10−4,
10−5 or 10−6. (This last took 12.4 h, so we did not
continue the sequence.) The absolute error bound is
apparently far too conservative in this example. It
is unfortunate that we could not know that in ad-
vance.

In Example 1, the authors used both indepen-
dence and random walk Metropolis chains. In the
latter case, it appears that the authors used a mul-
tivariate random walk. In our experience, these two
MCMC methods—independence chains and multi-
variate random walks—are not very effective. In-
deed, these were found to be less accurate than
Gibbs sampling by the authors. A third type of
Metropolis chain, that often does better, is the com-
bination of Metropolis and Gibbs that the authors
attribute to Mueller (1991). In this chain, one gen-
erates a candidate for a single coordinate of θ (often
with a symmetric distribution centered at the cur-
rent value), accepting or rejecting it with probabili-
ties given by the Metropolis–Hastings method. Then
one cycles through the coordinates over and over as
in Gibbs sampling. The advantage to this method
is that it does not require the user to estimate any
of the joint distributional information about θ in or-
der to implement the chain. Typically, one merely
adjusts the scaling of the candidate distributions to
meet a desired acceptance rate for each coordinate.

4. NORMALIZING CONSTANTS

In Section 8, the authors say that Gibbs sampling
does not provide an easy method to estimate the nor-
malizing constant of the posterior. Actually, there
are several methods for estimating the normaliz-
ing constant from MCMC output. DiCiccio, Kass,
Raftery and Wasserman (1995) review five such
methods including simulation-based and Bartlett-
corrected Laplace estimators, reciprocal importance
sampling (Gelfand and Dey, 1994) and bridge esti-
mators (Meng and Wong, 1993). The latter actually
requires two simulations, for example, a MCMC run
followed by an importance sampling run. However,
the importance sampler can be chosen using the
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MCMC output. Nobile (1994, Section 4.3) presents
a conditional importance sampling method tailor-
made to Gibbs sampling. Space does not permit
a detailed account of these methods here. Expla-
nations of these and other methods can be found
in the aforementioned papers as well as in Carlin
and Chib (1995), Gelman and Meng (1994), Green
(1994), Phillips and Smith (1994), Raftery (1995)
and Verdinelli and Wasserman (1995).

We applied a few of these methods to Example
1. The conditional importance sampling estimator
gives Î�1� = 0:115 × 10−21, the simulation Laplace
gives 0:133× 10−21, reciprocal importance sampling
gives 0:130 × 10−21 and a particular version of the
bridge estimator gives 0:132 × 10−21. We note that
the first three use only the MCMC output.

5. ANOTHER EXAMPLE: THE VARIANCE
COMPONENTS MODEL

A practical extension of the linear model dis-
cussed in Example 1 is the mixed linear model

y =Xβ+Zγ + ε;
where y denotes the data vector, β is a vector of un-
known fixed-effects parameters with known design
matrix X, γ is a vector of unknown random-effects
parameters with known design matrix Z and ε is
a vector of error disturbances. The most common
assumptions associated with this model are that γ
and ε are independent multivariate Gaussian vec-
tors with zero means and variance–covariance ma-
trices G and R, respectively.

Although the assumption of a Student distribu-
tion is certainly possible for γ and/or ε, we focus on
the familiar Gaussian case for ease of exposition.
Furthermore, we initially assume that R = σ2I,
where I is an identity matrix, and G is a diagonal
matrix of variance components. Using θ to denote
the vector of all unknown variance parameters, we
assume a flat prior for β and a Jeffreys prior for θ
(Zellner, 1971; Box and Tiao, 1973; Harville, 1974;
Broemeling, 1985).

The conditional posterior distribution of β given
θ is multivariate normal with mean �X′V−1X�−X′ ·
V−1y and variance–covariance �X′V−1X�−, where
V = ZGZ′ + R and the superscript minus (−) de-
notes a generalized inverse to account for possible
rank deficiencies in X. Unfortunately the remain-
ing posterior results are difficult to derive analyti-
cally (Gelfand, Hills, Racine-Poon and Smith, 1990;
Searle, Casella and McCulloch, 1992). This model is
therefore an excellent candidate for application of
the approximation methods described by Evans and
Swartz.

As a practical exercise, let us briefly investigate
the feasibility of the five classes of methods de-
scribed by Evans and Swartz with reference to the
variance components model. Even though Evans
and Swartz focus on integration, a general objective
associated with this model is to carry out Bayesian
inferences on a variety of functions of β and θ. As
they discuss, often these inferences are in the form
of an integral with respect to the joint posterior den-
sity β and θ.

Because of the analytical difficulties associated
with this model, especially with unbalanced data,
the asymptotic methods appear to be too challenging
to pursue in general. As mentioned by Gelfand et
al. (1990), these calculations are usually very func-
tion specific and thus typically have to be performed
again from scratch for each new function of interest.
Similar arguments apply to the multiple quadrature
methods, in spite of the fact that the dimension of θ
is usually less than 6.

The sampling-based methods have much more
promise. They have the attractive property of al-
lowing one to construct any function of interest once
a sample from the joint posterior density of β and
θ has been generated. The problem then becomes
one of selecting among the plethora of sampling-
based methods, and Evans and Swartz are to be
commended for helping to sort out the differences
between them (see also Tierney, 1994, who is excel-
lent in this regard). They divide the sampling-based
methods into three categories: importance sampling,
adaptive importance sampling and Markov chain
methods (including the Gibbs sampler). Each of
these categories contains numerous possible algo-
rithms, and selecting one among them is not a triv-
ial task. An ideal algorithm would possess the fol-
lowing attributes:

• simple in form and construction;
• robust across a variety of data sets and models;
• computationally efficient;
• easily implementable.

It would also preferably generate an independent
sample from the joint posterior of β and θ to avoid
the difficulties associated with analyzing a depen-
dent sample.

In an attempt to meet these algorithmic goals for
the variance components model, it seems impera-
tive to exploit the inherent structure of the model.
This involves the natural separation between β and
θ and the fact that the conditional density of β given
θ is multivariate normal. Thus if the algorithm can
generate a sample from the marginal posterior den-
sity of θ, then one for β can be easily obtained as
with the Gibbs sampler.
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Based on analytical work (Hill, 1965, and the pre-
ceding references), the joint marginal posterior den-
sity of the variance components can be closely ap-
proximated using products of the inverse gamma
density

IG�xya; b� ∝ x−�1+a�e−b/x:
Because the inverted gamma is often very right-
skewed, importance samplers based on the Student
or split-t do not seem appropriate; however, one
can easily generate samples directly from inverted
gamma densities. One algorithm that suggests itself
here is to simply generate a sample from an appro-
priate importance sampling density and output its
values along with the weights computed as ratios
with the true density.

Gelfand et al. (1990) also make use of the inverted
gamma density in discussing the Gibbs sampler
for the variance components problem. The method
works well for the example they consider and goes
a long way toward achieving the goals of an ideal
algorithm. Some difficulties with the Gibbs sampler
for this problem are as follows:

• The conditional densities for unbalanced mod-
els with multiple variance components can be com-
plex.
• Automatically assessing convergence of the al-

gorithm can be tricky.
• The final sample is not independent.

An algorithm that avoids these difficulties is one
which is not mentioned by Evans and Swartz: re-
jection sampling (Ripley, 1987; Smith and Gelfand,
1992; Tierney, 1994). This algorithm works by gen-
erating a pseudo random observation from a con-
venient base distribution (chosen to be as close as

possible to the posterior) and then retaining that ob-
servation in the final sample with probability pro-
portional to the ratio of the two densities times a
bounding constant.

Whether rejection sampling is a better algorithm
for the variance components model than importance
sampling or some Markov chain method remains
an open question. Perhaps Evans and Swartz could
provide recommendations in this regard, especially
with a view toward implementation in a commercial
software package such as the SAS MIXED proce-
dure (SAS Institute Inc., 1992). The rejection sam-
pling algorithm has already been implemented in
Release 6.11 and appears to work well for many
common examples with rejection rates usually less
than 10%.

Another popular mixed model worthy of consider-
ation is the random coefficients model (Laird and
Ware, 1982; Rutter and Elashoff, 1994). Here G
is typically block diagonal, with blocks containing
variance and covariance components for random in-
tercepts, slopes and so forth. Recommendations for
this model would be welcome as well.

6. FINAL REMARKS

The survey of numerical methods given by Evans
and Swartz will be very useful to researchers faced
with difficult integration problems. Apart from mi-
nor disagreements about some of the examples, we
found this to be an excellent paper. It would be a
service to the statistical community if the authors
were to put some of their software for adaptive im-
portance sampling on Statlib. Some S-Plus routines
for doing subregion adaptive quadrature are already
there.

Rejoinder
Michael Evans and Tim Swartz

A number of interesting and significant points
have been made by the discussants and we are
grateful for their attention to the paper. There are
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few mathematical certainties with numerical work
and by necessity one’s own experience is always
somewhat limited. The points of view of others
are therefore particularly important. There is still
a lot to learn about the “right” way to approxi-
mate integrals and we remain convinced that none
of the methods that we have discussed should be
uniformly discarded in favor of some universal ap-
proach. Overall we believe the conclusions that
we have drawn remain sound. If we had been in
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possession of the discussions before writing the
paper, however, we would have done some things
differently.

1. RESPONSE TO THE DISCUSSION OF SHAW

We look forward to the results of Professor Shaw’s
research on new multiple quadrature methods and
the multikernel approach. The ultimate goal of all
research in this area is to develop code that can be
used reliably by practitioners and BINGO may be
helpful in this regard.

The univariate importance sampling family men-
tioned in his comments does seem to us to be use-
ful, but we have reservations concerning the rec-
ommended use of such families in high-dimensional
contexts. For suppose we took as importance sam-
pler on Rk a product of independent Cauchy densi-
ties; that is, w�x� ∝ �ki=1�1+ x2

i �−1. Then along any
coordinate axis the tail is going down like ��x��−2,
but along any ray given by unit vector u with all
ui 6= 0, the density goes down like ��x��−2k. Thus the
tails of such densities are much shorter between co-
ordinate axes and this leads to a somewhat unnatu-
ral shape for the importance sampling distribution.
In contrast, the multivariate Cauchy has tails like
��x��−2 in every direction.

As discussed in the paper there is a need to de-
velop truly multivariate families of practical impor-
tance samplers. In particular there is a need to pro-
duce importance samplers to model skewness and
other deviations from ellipsoidal shape. Presumably
such families will also be found useful in the Markov
chain context. As mentioned in the paper, we feel
that the most promising candidate for such a family
is given by mixtures of multivariate Student distri-
butions, but more work remains to be done to extend
its usage beyond that described in Oh and Berger
(1992).

The simplicity of the Monte Carlo methods with
respect to mathematical analysis, error estimation
and the lack of dependence on dimension provide
for us decided advantages over the use of quasiran-
dom rules at this point. One possibility is to combine
the methods into a hybrid as is done in Cranley
and Patterson (1976) and Owen (1994). These are
examples of a more general class of methods that
includes antithetic sampling and were referred to
generally as systematic sampling in the paper. As
discussed in Evans and Swartz (1995) these meth-
ods are related to groups T of symmetries of the
importance sampler and this is helpful in charac-
terizing when these techniques will be useful in a
given context. The most important point in ensur-
ing a successful approximation is to get the impor-

tance sampler right, and when we do, systematic
sampling is markedly less efficient than straight im-
portance sampling. This is because the integrand is
close to being invariant under the relevant symme-
tries in such a situation. The value in systematic
sampling methods, from this point of view, arises
when we have made a very poor choice of impor-
tance sampler and thus the integrand is far from
being invariant under the subgroup. On the basis
of this analysis we conclude that systematic sam-
pling should be used with caution. For some recent
work on the related randomized quadrature rules,
see Monahan and Genz (1995). The research out-
lined in Professor Shaw’s discussion could make a
contribution to this class of techniques as well.

2. RESPONSE TO THE DISCUSSION
OF GENZ AND MONAHAN

The comments concerning tail length strike us
as being particularly appropriate. We wish we had
more to say on this topic. Our choice of 5 degrees
of freedom for the multivariate Student importance
sampler was an attempt to be conservative without
going too far. Given that there are typically many
integrals to evaluate, we did not try to optimize the
choice for each case. We have heard recommenda-
tions as low as 1 degree of freedom for the impor-
tance sampler but we agree with Genz and Mona-
han on the principle of trying to get the tail length
reasonably correct so that sampling takes place pri-
marily where the posterior is high. What is needed
is a good automatic way to choose the degrees of
freedom.

Diagnosing when an importance sampler has
failed is a difficult issue. While the sum of squares of
the normalized weights is an appropriate measure
of the accuracy of the approximation of the integral,
it is unlikely to work well as a diagnostic when the
importance sampler is very bad. In fact it can be
very misleading. We look forward to any additional
work by the discussants that can shed light on this
problem. We also agree with the comments concern-
ing the need to model skewness; see our response to
Professor Shaw.

In choosing Example 1 we wanted it to be repre-
sentative of the typical level of difficulty one might
encounter in implementing a Bayesian analysis of
a linear model with nonnormal error. Thus it would
not have been appropriate for us to exploit the spe-
cial feature of the problem pointed out in the dis-
cussion. On the other hand, in developing software
to be used by practitioners, it is important that such
characteristics be recognized by the software and ex-
ploited. Many statistical problems will exhibit such
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structure and the computational savings can be sub-
stantial.

We certainly believe that our usage of ADBAYS
can be improved with adaptive modifications as de-
scribed. As mentioned in the paper it is our im-
pression that this is the algorithm of choice for
relatively low-dimensional problems. Anything that
extends the upper limit of the dimension for prac-
tical computation times is good news. It would also
be helpful if less conservative error estimates could
be obtained from ADBAYS.

RESPONSE TO THE DISCUSSION OF
SCHERVISH, WASSERMAN

AND WOLFINGER

(a) Machine Efficiency versus Human Efficiency

Programming effort is an important aspect to be
considered when choosing among algorithms for a
specific problem. This is a difficult issue upon which
to make comparisons, however, as it depends to a
certain extent on individual tastes and on available
software. Hopefully, in the near future, there will
be software available that will minimize the need to
write code as much as possible for any of the meth-
ods we have discussed, so that this will not be an
issue. To a certain extent this is already happening
as summarized in the Conclusions section of the pa-
per, but having such facilities available from a con-
venient environment like S would be valuable. The
speed of simulations is a limiting factor, however.
While 10,000 iterations may seem like enough for
some problems, our experience suggests that this is
not the case for many other problems. Furthermore,
9 minutes to wait for an outcome does not encourage
experimentation and this is an important aspect of
numerical work.

With many examples Gibbs sampling is straight-
forward to code and, as we said in the paper, this is
a strong point in its favor in such contexts. In par-
ticular Gibbs sampling avoids the need to maximize
and this eliminates the programming of derivatives.
On the other hand, it is not in general easy to gener-
ate from the requisite conditional distributions, and
the associated programming problems can be diffi-
cult or even intractable when efficient algorithms
are desired.

(b) The Examples

The Gibbs sampling algorithm for Example 2,
as mentioned by the discussants, is particularly
straightforward to implement and we wish in retro-
spect that we had tried it. In particular this would
have lead to modifications in all of the methods we

applied to this example, including two Markov chain
algorithms.

Whenever 2�I + J� − 3 > IJ − 1 in an I × J ta-
ble then, as noted in the discussion, this model suf-
fers from nonidentifiability even when the switch-
ing symmetry is removed via the prior as we did.
This is reflected by the posterior in this example, in
the basic parameterization, having one-dimensional
contours that are independent of the data obtained.
This does not invalidate the use of this model, how-
ever, as it is still reasonable to ask whether such a
model can fit the data and to consider a Bayesian
analysis. There is an issue concerning what are rel-
evant estimates to quote for model parameters, but
we see nothing wrong with quoting estimates pro-
vided that it is acknowledged that all values in
the same contour are inferentially equivalent. So
the problem of computing various integrals for this
model is, in our opinion, still relevant.

It is interesting, however, that the deviation in
the results obtained by Gibbs sampling does not
seem to be caused by this second type of noniden-
tifiability. For in the original parameterization it is
true that the posterior will have a ridge where it
is maximal, but after the reparameterization this
ridge is removed because of the Jacobian factor, and
the transformed posterior has a unique global max-
imium. It turns out, however, that there is another
mode in the new parameterization, or equivalently
another ridge of high posterior probability density
in the original parameterization. This was discov-
ered in our original computations, but its effect was
not explicitly taken into account. Our claim of only
two modes is based on searches starting from 104

uniformly chosen points in the basic parameteriza-
tion. At the global maximum the transformed log
posterior takes the value −271:90, while at the sec-
ond mode it takes the value −273:06. Implement-
ing the Student mixture importance sampling algo-
rithm described in the paper gives a mixture weight
of 0.647 to the multivariate Student at the global
maximum. The estimates of R�θ� and R�θ2� com-
puted via this algorithm and 105 iterations equal
0:431 and 0:188, respectively. These results were
verified by a brute force calculation based on a se-
quence of product Gauss–Jacobi rules of increasing
order. Notice that all moments of the parameters
can be computed exactly using such rules of ap-
propriate orders (see Evans, Gilula and Guttman,
1989, for more details), but this requires far too
much computation to implement. The Gibbs algo-
rithm got stuck in each of the high posterior den-
sity regions depending on what starting values were
given. It did not give accurate estimates of the pos-
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terior means in practically meaningful computation
times.

The estimates of model parameters obtained us-
ing integration strategies based on approximating
the transformed posterior at the global maximum,
as was done in all the algorithms used in the paper,
provides a remarkable fit to the data. For exam-
ple, the chi-squared goodness-of-fit statistic equals
1:26. We also obtain a good fit when we base our in-
tegration strategies on the second lesser mode, as
the chi-squared statistic equals 1:97 in this case.
On the other hand, when we accurately compute
the posterior means of the parameter values using
Student mixture importance sampling we obtain a
chi-squared value of 22.98. Thus we are confronted
with the general issue of what are appropriate in-
ference methods for parameters when the posterior
is multimodal. From the point of view of accurate
computations, however, the only algorithm that we
would recommend here is the importance sampling
algorithm via a mixture of Students.

(c) Normalizing Constants

The additional references on the estimation of the
normalizing constant from the output of a Markov
chain algorithm are valuable and should have been
included in our review. In many contexts, such as
Example 1, importance sampling and adaptive im-
portance sampling provide simpler methods for es-
timating the normalizing constants. This is because
importance sampling methods avoid the need to as-
sess convergence to stationarity, the selection of an
appropriate error estimate and the specification of
additional ingredients to the simulation. Of course
in contexts where the importance sampling algo-
rithms are not feasible the methods outlined in the
discussion are necessary.

(d) The Variance Components Model

The rejection algorithm mentioned in the discus-
sion can be considered as an alternative to impor-
tance sampling. For suppose that w is the density
generating the base chain for the rejection algo-
rithm as described in Tierney (1994). Further sup-
pose that we have a constant c such that f ≤ cw,
where f is the unnormalized posterior. Then we
can estimate I�1� using the rejection algorithm by
recording the proportion of acceptances in n steps. It
is easily shown, however, that this estimate always
has variance at least as large as the variance of the
importance sampling estimate of I�1� based on w.
In the general rejection algorithm we may not have
the inequality f ≤ cw holding everywhere and, in
addition, we are often primarily interested in esti-
mating posterior expectations R�m�. Therefore the

above result does not say that importance sampling
is necessarily uniformly better than the rejection al-
gorithm. It seems likely, however, that in a problem
where the rejection algorithm performs well, that is,
the rejection rate is low, then we might expect im-
portance sampling to do as well or better. In such
a situation there are some definite advantages to
importance sampling; for example, the avoidance of
the need to assess convergence to stationarity and
straightforward measures of error. Therefore, with-
out knowing the specific details of the rejection al-
gorithm used in the SAS implementation, it would
appear to be reasonable to consider importance sam-
pling here. We hesitate to make a more concrete rec-
ommendation without further study.

Importance sampling based on a multivariate
Student would seem to be feasible for this problem
after reparameterizing by taking logs of the vari-
ance components. Implementation of this requires
maximizing the posterior; we have not tried this,
but it appears to be a tractable problem. The virtue
of this approach, rather than trying to mimic the
marginal posterior of the variance components by
a product of inverse gammas, is that it takes into
account the posterior correlations among all the pa-
rameters and, in our experience, these can some-
times be substantial. This may result in a more
complicated algorithm than that currently imple-
mented. In a package, however, this is not a rele-
vant issue as the coding need only be done once.
The essential criteria for comparing algorithms in
such contexts are accuracy within reasonable CPU
times and the existence of reliable diagnostics for
the assessment of accuracy.
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